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1 Introduction

To what extent long lives matter for growth is a topic that has been investigated both
theoretically and empirically, in history and in contemporary data. In this note, I shall first
provide some empirical evidence that improvements in life expectancy occurred before
the take-off to modern growth. Establishing the precedence of longevity over growth is
one argument in favor of causality. After a short section on measurement, I shall discuss
two mechanisms through which longevity may impact growth, both in the past and today,
and their quantitative significance: the contact time effect and the incentive effect.

2 Early Longevity Increases

Today, I would claim that the precedence of longevity improvements for the elite over the
Industrial Revolution is firmly established. That longevity increased in the seventeenth
and eighteenth centuries was already known by historian demographers on the basis of
local evidence, and for specific social groups. For example, Hollingsworth (1977) builds
mortality tables for British peers sampled from genealogical data. Vandenbroucke (1985)
provides vital statistics for the Knights of the Golden Fleece, an order started in 1430 with
the Dukes of Burgundy and continued with the Hapsburg rulers, the kings of Spain and
the Austrian emperors. In both samples, mortality reduction for nobility took place in
the 17th century, showing that improvements in the longevity of the upper social class
anticipated the overall rise in standard of living by at least one hundred years.

Two recent studies provide a more general picture. The paper by Cummins (2014) pro-
poses an analysis of the longevity of European nobility over a long period of time, encom-
passing several critical events such as the Black Death and the Industrial Revolution. It
therefore extends the existing demographic studies of Europe’s aristocracy considerably.
Such an analysis is now possible thanks to the data collection performed by the church
of Jesus Christ of Latter-day Saints and exploited by several independent genealogists.
The empirical challenge is to extract the major time and spatial trends in nobles’ lifes-
pans from the noisy data while controlling for the changing selectivity and composition
of the sample. The main result of the paper is that the rise in longevity started as early
as 1400, with improvements over 1400-1500. Then, this phase was followed by a second
phase of improvements after 1650. The first phase is only observed in Ireland and the
UK. The fact that only England, Scotland, Ireland and Wales benefitted from an increase

2



in longevity over 1400-1500 is probably subject to a broad confidence region because of
the low number of observations. The second tipping point, in the middle of the 17th
century, is however hardly disputable.

The paper by de la Croix and Licandro (2015) pursues the same aim but builds a different
database based on the Index Bio-bibliographicus Notorum Hominum (IBN), which con-
tains entries on famous people from about 3,000 dictionaries and encyclopedias. It also
contains information on multiple individual characteristics, including place of birth and
death, occupation, nationality, as well as religion and gender, among others. de la Croix
and Licandro (2015) document that there was no trend in adult longevity until the sec-
ond half of the 17th century, with the longevity of famous people being at about 60 years
during this period. This finding is important as it provides a reliable confirmation to con-
jectures that life expectancy was rather stable for most of human history and establishes
the existence of a Malthusian epoch. They also show that permanent improvements in
longevity preceded the Industrial Revolution by at least one century. The longevity of
famous people started to steadily increase for generations born during the 1640-9 decade,
reaching a total gain of around nine years in the following two centuries. The rise in
longevity among the educated segment of society hence preceded industrialization, lend-
ing credence to the hypothesis that human capital may have played a significant role in
the process of industrialization and the take-off to modern growth. Finally, using infor-
mation about locations and occupations available in the database, they also found that
the increase in longevity did not occur only in the leading countries of the 17th-18th cen-
tury, but almost everywhere in Europe, and was not dominated by mortality reduction in
any particular occupation. Compared to Cummins (2014), this study has the advantage
of covering a broader population than just the nobility, including all the professions that
could be suspected of having played a role in the transition to modern growth: scientists,
professors, writers, merchants, etc.

3 Measuring Adult Longevity

The evidence presented in the previous section leads us to wonder what the mechanism(s)
linking longevity improvements to growth could be. I will explore two of them. Be-
fore being able to measure the quantitative effect of longevity improvements on income
growth, these improvements first need to be evaluated in a formal framework that can
later be embedded into an economic model. Let us start with the Gompertz approach to
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mortality.

GOMPERTZ MORTALITY LAW: Let death rates be denoted by δg(a), an age-dependent
function, where a denotes an individual’s age. The Gompertz law of mortality, as sug-
gested by Gompertz (1825), asserts that the logarithm of the death rate is linear in age:

δg(a) = exp{ρ + µa}. (1)

In the Gompertz function, the parameter ρ measures the mortality of young generations
while the parameter µ, µ > 0 represents the rate at which mortality increases with age.
The corresponding survival law is

Sg(a) = exp
{
−
∫ a

0
δg(a)da

}
= exp

{
(1− exp{µa}) exp ρ

µ

}
. (2)

The Gompertz law of mortality is extensively used in demographics to study adult sur-
vival, but it is often untractable to use within structural economic models because of the
double exponential.

BCL MORTALITY LAW: Boucekkine, de la Croix, and Licandro (2002) suggest using the
following mortality law:

δb(a) =
β

1− α exp{βa} ,

with α ∈ R+ and β ∈ R, and
α < 1⇔ β > 0.

The corresponding survival function is:

Sb(a) =
exp{−βa} − α

1− α
.

As soon as α is positive, the survival function displays a maximum age ā, solving Sb(a) =
0:

ā = − 1
β

ln α.

As stressed by Bruce and Turnovsky (2013), this survival function ( referred to as BCL) is
in fact a first-order approximation of the Gompertz law of mortality. Indeed, starting from
the Gompertz survival (2), using the first-order expansion of the exponential function
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exp(x) ≈ 1 + x, we obtain

Sg(a) ≈ 1 +
(1− exp{µa}) exp ρ

µ
,

which after some rearrangement leads to

Sg(a) ≈ exp{µa} − µ/ exp{ρ} − 1
−µ/ exp{ρ} = Sb(a),

with
ρ = ln

β

1− α
, and µ = −β. (3)

Three remarks on the BCL survival law are in order. First, life expectancy at a = 0 can be
computed as: ∫ ā

0
Sb(a)da =

1
β
+

α ln α

(1− α)β
= P.

When the cohort of newborns is of size 1, life expectancy is also equal to the size of
the population P. Second, this two-parameter curve fits the data very well (Mierau and
Turnovsky 2014), except for the inflexion point which is observed for very old ages. Third,
depending on the value of α and β, the survival function can reproduce several special
cases, as shown in Figure 1. The top left panel shows a survival function with a proba-
bility of death independent of age (β = 0.05, α = 0). This is the perpetual youth model
popularized by Blanchard (1985). In this set-up, there is a positive probability of reaching
any age a ∈ R. When β, α > 0, the survival function is convex, as illustrated in the top
right panel of Figure 1 for α = 0.1, β = 0.03. When α approaches 1 and β approaches
0, the survival function becomes close to linear (see bottom left panel, with α = 0.999
and β = 0.000013), which is, for example, a characteristic of the Roman Empire.1 Finally,
when α > 1 and β < 0, the survival function is concave, like the current survival curves
of modern societies. Letting α increase and β decrease leads to a rectangularization of the
function. For α very large, survival until the maximum age is almost certain, which is the
case assumed for example by Hazan (2009). The bottom right panel illustrates the case
for α = 5000000 and β = −0.2.

ESTIMATION OF PARAMETERS: The parameters of the BCL survival function have been
estimated on different populations. As this function is only valid for adult survival, the

1From http://www.richardcarrier.info/lifetbl.html, consulted on January 12, 2015,
adapted from “Frier’s Life Table for the Roman Empire,” p.144 of T.G. Parkin, Demography and Roman
Society (1992).
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Figure 1: Four examples of survival functions

empirical survival function is normalized by setting it to one for an initial age a0 > 0.
Table 1 provides a summary of the various estimates. The estimates of Boucekkine, de la
Croix, and Peeters (2007) and de la Croix, Lindh, and Malmberg (2008) are not reported;
they estimate β and α as polynomial functions of time, for England and Sweden, respec-
tively. The estimates of Córdoba and Ripoll (2013) are not reported either; they calibrate
the BCL survival function for 74 countries but do not publish individual country results.

COMPENSATION EFFECT: In the literature using the Gompertz law of mortality, there is
a relationship called the Compensation Effect of Mortality. The Compensation Effect of
Mortality states that any observed reduction in the mortality of the young, ρ, has to be
compensated for by an increase in the mortality of the old, µ, following the relation

ρ = C0 − C1µ

where C0 and C1 > 0 are constant parameters, the same for all human populations. Un-
der the Compensation Effect, survival laws tend to rectangularize when α goes to infinity;
in this case, the maximum lifespan of humanity tends to C1 (to which the initial age a0

should be added to get the lifespan in terms of biological age). According to Strulik and
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Place cohort or period a0 −β α Source

Roman Empire c. 100 15 -0.001 0.93 own computation

Geneva 1625-1674 10 0.005 1.45 Boucekkine, de la Croix,

Geneva 1675-1724 10 0.010 2.18 and Licandro (2003)

Geneva 1725-1825 10 0.018 3.86

France 1875-1899 10 0.019 4.92 Boucekkine, de la Croix,

France 1900-1924 10 0.032 15.11 and Licandro (2004)

France 1925-1949 10 0.052 94.83

Netherlands 1960 (p) 18 0.068 122.64 Heijdra and Mierau (2010)

USA 1840 20 0.018 5.37 Cervellati and Sunde (2013)

USA 1850 20 0.019 5.66

USA 1860 20 0.020 6.39

USA 1870 20 0.022 7.49

USA 1880 20 0.023 8.64

USA 1890 20 0.025 10.28

USA 1900 20 0.028 13.46

USA 1910 20 0.031 18.05

USA 1920 20 0.032 20.94

USA 1930 20 0.037 33.42

USA 1960 (p) 18 0.054 43.98 Mierau and Turnovsky (2014)2

USA 2006 (p) 18 0.057 78.36

Table 1: Estimates of S(a)

Vollmer (2013), the Compensation Law indeed holds until about 1950, testifying to a bi-
ological maximum to aging. Beyond, they find some evidence that C1 itself increased,
testifying to the effect of medical advances on the maximum lifespan (they call it manu-
factured lifespan.)

In the case of the BCL law of mortality, using (3) the Compensation Effect implies:

ln
−β

α− 1
= C0 + C1β

This relation on the US data from Cervellati and Sunde (2013), which is provided in Ta-
ble 1, can be checked. The regression is:

ln
−β

α− 1
= −4.21 + 68.6β,

7



with an R2 = 99.6, and a maximum lifespan C1 + a0 of 68.6+20=88.6. The very good
fit indicates that the Compensation Law holds to a large degree, and that most of the
changes in survival are related to a rectangularization process. Let us finally remark that
rectangularization has a particular economic importance. It means that the early increase
in longevity benefits adults in their working age, therefore affecting economic incentives
to invest. At later stages, increasing longevity benefits old workers and retired people
more, and is probably of less importance as far as incentives are concerned.

Oxborrow and Turnovsky (2015) study the properties of a dynamic general equilibrium
model for an open economy where survival is modelled using various functions. They
find that assuming a fully rectangular survival curve or a BCL survival curve delivers
similar economic responses to macroeconomic shocks, while assuming a constant mor-
tality rate à la Blanchard yields very different outcomes (not much in the face of a pro-
ductivity shock, but more facing changes in foreign interest rates ). The fact that, using
current data, the BCL and the rectangular curves have similar properties in terms of eco-
nomic incentives is not surprising as the rectangularization process of actual survival
functions is well advanced. Their conclusion would probably be reversed if they looked
at pre-industrial data where the survival function was close to linear. Then, the constant
mortality function and the BCL would yield similar results, which are very different from
the rectangular curve. As a conclusion, in order to study both periods, pre-industrial and
contemporaneous, the BCL survival function offers the required flexibility.

4 Contact Time Effect

For a long time, knowledge was not written in books or encoded in computer systems but
was embodied in people. Face-to-face communication was key for knowledge transmis-
sion and enhancement. Today, even if books and computers have become key, person-
to-person interactions remain essential for learning. That is why, after all, we economists
organize and attend conferences and workshops.

When face-to-face communication does matter to accumulate knowledge, longer lives
increase the contact time between people. This is particularly important as far as appren-
ticeship and teaching is concerned. The longer masters live, the more likely they are to
accumulate knowledge and to transmit it to a large number of apprentices. If Robert Lu-
cas had died in 1992 at the age of 55, a pre-modern value for longevity, he would have
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directed 17 Ph.D. dissertations instead of 34.3 Moreover he would not have had the op-
portunity to further improve by exchanging ideas beyond the age of 55.

APPRENTICESHIP: I view a model of person-to-person exchange of ideas as crucial for
modeling technological progress in the pre-industrial era. Most productive knowledge
was tacit, and was passed on directly from a “teacher” to a “student.” Across societies,
much of this knowledge transmission took place within families, i.e. children entered
the same occupations as their parents and acquired knowledge from working with them.
However, the transmission of knowledge across family lines was also important, and here
(at least in some areas) institutions such as apprenticeship and journeymanship played an
important role. By adopting a formal model of person-to-person transmission of knowl-
edge, de la Croix, Doepke, and Mokyr (2015) help our understanding of the role of such
institutional arrangements for the transmission of knowledge and, ultimately, the overall
rate of productivity growth. 4

LUCAS’S MODEL: A formal link between productivity growth and longevity is implic-
itly provided by Lucas (2009) who builds on earlier contributions by Jovanovic and Rob
(1989) and Kortum (1997). In his model, the productivity of any individual evolves as fol-
lows. Suppose individuals have the productivity z at date t, viewed as a draw from the
date-t technology frontier, represented by a cumulative distribution function G. Over the
time interval (t, t + h), they get ηh independent draws from another distribution, with
a cumulative distribution function H. Assuming that the source of everyone’s ideas is
other people in the same economy, G = H. Let y denote the best of these draws. Then at
t + h, their productivity will be either their original productivity z or the best of their new
ideas y, whichever is higher: max(z, y).

MINIMUM STABILITY POSTULATE: Each idea y gives the possibility of producing one unit
of output with cost x = y−1/θ. The distribution of ideas is assumed to be a Fréchet
distribution with shape parameter 1/λt and scale parameter 1/θ:

Pr(Y < y) = exp{λt y−1/θ}

This distribution has the advantage of being preserved by the max operator of the match-

3Computations made using the genealogy module of RePec
4In their model, knowledge is represented as the efficiency with which workers can perform tasks. While

there is some scope for new innovation, the main engine of technological progress is the transmission of
productive knowledge from old to young workers. Young workers learn from elders through a form of
apprenticeship. There is a distribution of knowledge (or productivity) across workers, and when young
workers learn from multiple old workers, they can adopt the best technique that they have been exposed
to. Through this process, average productivity in the economy increases over time.
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ing process. Let us see how. If ideas are drawn from a Fréchet distribution, the corre-
sponding costs are distributed following an exponential distribution with rate parameter
λt:

Pr(X < x) = Pr(Y > x−θ) = 1− Pr(Y < x−θ) = 1− exp{λtx}.

The exponential distribution satisfies the minimum stability postulate according to which
if x1 and x2 are mutually independent random variables, exponentially distributed with
rate parameter λ, then min(x1, x2) is exponentially distributed with rate parameter 2λ.
As a consequence, the maximum of two independent random variables, Fréchet dis-
tributed with parameters (1/θ, 1/λ) will be itself Fréchet distributed with parameters
(1/θ, 1/(2θλ)). The Fréchet distribution is said to satisfy the maximum stability postu-
late.

The consequence of this nice property is that it is not necessary to track the entire distribu-
tion of knowledge over time, but only the rate parameter of the underlying exponential
distribution of cost. The only state variable of the model is λt, which is equal to the
inverse of the mean cost. Being inversely related to the cost, λt is an indicator which is
positively associated with aggregate knowledge. Along a balanced growth path, λt grows
at a constant rate γ, while GDP per capita grows at rate γθ.

INTRODUCING A COHORT STRUCTURE: In addition to these assumptions on knowledge
diffusion, Lucas introduces a cohort structure with a stationary population characterized
by the density p(a) giving the density of population aged a in the economy. This implies
age-specific distributions of ideas. Assuming that everyone is met with equal proba-
bility, Lucas relates the parameter λt of the aggregate distribution of knowledge to the
age-specific distributions. It is through this structure that longevity affects knowledge
diffusion. Indeed, if the survival curve is more rectangular, there are more old people in
the economy and the probability of meeting them is higher. As these old people are those
with the best ideas – as they had more opportunities to improve their knowledge through
the operator max –, having more old people around accelerates the rate of knowledge
diffusion.

In the end, the growth rate of knowledge along a balanced growth path is given by Equa-
tion (8) in Lucas (2009):

γ = η
∫ ā

0
p(a)(1− e−γa)da, (4)

where, as explained above, γ is the growth rate of knowledge, η is a parameter measuring
the frequency of contacts and the ability to learn from others, and p(a) is the density of
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population aged a. p(a) can be computed with the BCL survival function as:

p(a) =
S(a)∫ ā

0 S(x)dx
=

β
(
e−βa − α

)
1− α + α ln α

. (5)

Only in the case where α = 0, one can solve Equation (4) for γ. It yields two solutions,
γ = 0, and γ = η − β. Growth depends negatively on the constant death rate β. In the
more general case, numerical solutions must be used.

QUANTIFICATION: From the model above, what can be concluded is that the idea-processing
rate η and the demographic parameters α and β combine to determine the rate γ of tech-
nological change. Together with the Fréchet scale parameter 1/θ, they determine the
growth rate of GDP per capita γθ. This set-up can now be used to quantify the effect of
longer lives on GDP growth. I proceed in four steps.

1. Following Lucas (2009), θ is a parameter which can be estimated from the variance
of earnings across workers. I take the value estimated by Lucas which is equal to
0.5.

2. η is now calibrated to give a realistic growth rate with a recent estimate of the sur-
vival function. I consider the growth rate of the last century to be about 2% per
year. Given the value of θ, it requires a growth of knowledge λt of 4%. I take the
α and β estimated on the cohort born in 1930 in the USA (β = −0.037, α = 33.42).
Equations (4) and (5) are solved with these parameters to find the value of η with
such a growth. It gives η = 0.0588.

3. Next, I compute what the growth rate would be if the survival parameters from
cohorts born one century before are imputed. I take θ = 0.5, η = 0.0588, the α and β

estimated on the cohort born in 1840 in the USA (β = −0.018, α = 5.37), and solve
for γ which leads to γ = 0.0366, implying an annual growth rate of GDP per capita
of 1.83%. This is the annual growth obtained with the 20th century characteristics
as implicitly contained in η and θ, but a 19th century survival level.

4. The same exercise is repeated with pre-industrial levels of the survival parameters.
I still take θ = 0.5, η = 0.0588, together with the α and β estimated on the cohort
born in 1625-1674 in Geneva (β = −0.005, α = 1.45), and solve for γ which leads to
γ = 0.0245, implying an annual growth rate of GDP per capita of 1.22%.

Column (a) of Table 2 summarizes the results. The relatively short lives of people before
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(a) (b) (c) (d)
Model Lucas Lucas Ben-Porath Ben-Porath
Benchmark calibration 1930 1650 1930 1650

1650−→1850 + 0.0061 + 0.0074 +0.0030 + 0.0060
1850−→1930 + 0.0017 + 0.0017 +0.0010 + 0.0019

1650−→1930 + 0.0078 + 0.0091 + 0.0040 + 0.0079

Table 2: Gain in Annual Growth Rates Obtained by Increased Longevity

the Industrial Revolution made knowledge accumulation slow. An economy endowed
with the characteristics of modern growth but pre-industrial survival would grow at
1.22% per year, instead of 2% with late 20th century survival. The impact of increased
longevity on growth through the contact time effect is to increase annual growth rates by
+0.0061 over the 1650-1850 period, and by +0.0017 over 1850-1930. On the whole, it can
explain 40% of the increase in growth rate over the last two centuries (+0.0078 over +0.02),
which is quantitatively significant.5 Let us finally stress that most of the rise in growth
comes from early increases in longevity, i.e. those taking place before and during the 19th
century. The more recent improvements in longevity appear to matter less for growth.

An alternative analysis can be obtained by taking the initial period as benchmark to cal-
ibrate η rather than the final one. Now calibrate η to give a realistic growth rate over
the seventeenth century (=0%) with the survival parameters of the cohort born in 1625-
1674 in Geneva. This yields η = 0.4144. Implementing the 19th century survival in this
environment leads to γ = 0.0148 (hence an increase in annual growth of +0.0074) and
implementing the 20th century survival leads to γ = 0.0182. Column (b) of Table 2 sum-
marizes the gains in growth for both periods. The choice of the benchmark to calibrate η

does not matter much for the results.

5 Incentive Effect

A second effect of longer lives is to change the incentives for people to invest in the fu-
ture. The so-called Ben-Porath mechanism, following Ben-Porath (1967)’s seminal con-

5Recent growth models that build on Lucas (2009) include Lucas and Moll (2014) and Perla and Tonetti
(2014), but they do not develop the demographic side of their model.
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tribution, belongs to this category. According to this theory, the return to investment in
education depends on the length of time during which education will be productive, i.e.
a longer active life makes initial investment in human capital more profitable. Longer ed-
ucation makes future income higher. Provided that human capital is an engine of growth,
this may in turn sustain permanent income growth. The first authors to put this argument
at work in an endogenous growth model were de la Croix and Licandro (1999). Further
contributions are in Kalemli-Ozcan, Ryder, and Weil (2000), Boucekkine, de la Croix, and
Licandro (2002), Soares (2005) and Cervellati and Sunde (2014). Quantifications of the
effect can be found in de la Croix, Lindh, and Malmberg (2008) and Córdoba and Ripoll
(2013). A complementary mechanism argues that longer lives give stronger incentives to
save and invest. Following the intuition of the life-cycle hypothesis, Nicolini (2004) claims
that the increase in adult life expectancy must have implied less farmer impatience and
could have caused more investment in nitrogen stock and land fertility, the increase in
agricultural land, and higher production per acre in hyphen 18th century England.

With these models, the same exercise as with the “contact time” model can be repeated:
calibrate the set-up to modern growth, and then feed in the mortality conditions of the
pre-industrial era keeping the other parameters constant and compare the growth rates.
Let us first summarize the set-up linking mortality to growth through education incen-
tives.

THE HOUSEHOLD PROBLEM: An individual born at time t, ∀t ≥ 0, has the following
expected utility: ∫ t+ā

t
c(t, z) S(z− t) e−$(z−t)dz, (6)

where c(t, z) is the consumption of a generation t member at time z and $ is the pure time
preference parameter. Risk neutrality is assumed for simplicity.

There is a unique material good, the price of which is normalized to 1, which can be
used for consumption. Every working household produces a quantity of good y(t) using
human capital h(t) according to the following simple technology: y(t) = h(t). A house-
hold’s human capital depends on the time spent on education, T, on the average human
capital H̄(t) of the society at birth, and on the state of technology A:

h(t) = AH̄(t)T. (7)

With H̄(t), the typical externality which positively relates the future quality of the agent
to the cultural ambience of the society (through for instance the quality of the school)
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is introduced. Technology parameter A is a scale parameter that allows to match the
observed growth rate of human capital and output.

Equation (7) relates the human capital of an individual to the human capital of the society
when this individual started his/her education (“at birth”). This implies that, along a
balanced growth path with T constant and H(t) growing, old workers are less productive
than younger ones at any instant t, because they were educated long before, when average
human capital was not as high as today. This contrasts with the contact time approach,
in which old workers are those with the highest skills (on average) as they had more
opportunities to improve their knowledge by meeting people than young workers.

The inter-temporal budget constraint of the agent born at t is:

∫ t+ā

t
c(t, z)R(t, z)dz =

∫ t+ā

t+T
h(t)R(t, z)dz. (8)

The left-hand side is the current cost of of all future contingent life-cycle consumptions.
The right-hand side is the current value of contingent earnings. R(t, z) is the contingent
price paid by members of generation t to receive one unit of the physical good at time z
in the case where they are still alive. By definition, R(t, t) = 1.

Individuals enter the labor market at age T with human capital h(t), and produce h(t)
per unit of time. They work until death.6

The problem of the representative individual from generation t is to select a consumption
contingent plan and the duration of his or her education to maximize the expected utility
subject to the inter-temporal budget constraint, and given the per capita human capital
and the sequence of contingent wages and contingent prices. The corresponding first-
order necessary conditions for a maximum lead to the following optimal rule for T:

T S(T) e−$T =
∫ ā

T
S(a) e−$a da, (9)

The left-hand side is related to the opportunity cost of postponing the entry in the labor
market, while the right-hand side is the marginal benefit of increasing education mea-
sured by the increase in the discounted flow of future wages.

AGGREGATE HUMAN CAPITAL: The productive aggregate stock of human capital is com-

6In the original version of Boucekkine, de la Croix, and Licandro (2002), they have a disutility of labor
increasing with age and they choose a retirement age optimally.
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puted from the human capital of all generations currently at work:

Y(t) = H(t) =
∫ t−T

t−ā
S(t− z)h(z)dz, (10)

where t− T (= t− T along a BGP) is the last generation that entered the job market at t
and t− ā is the oldest generation still alive at t. The average human capital at the root of
the externality (7) is obtained by dividing the aggregate human capital by the size of the
population:

H̄(t) =
H(t)

P
. (11)

Hence, the dynamics of human capital are given by:

H(t) =
∫ t−T

t−ā
S(t− z)

AH(z)T
P

dz, (12)

and its growth rate g, along a balanced growth path, should satisfy:

1 =
AT
P

∫ ā

T
S(z)e−gzdz. (13)

As shown in Boucekkine, de la Croix, and Licandro (2002), a rise in life expectancy (ei-
ther through an increase in α or a drop in β) increases the optimal length of schooling.
Moreover, along a balanced growth path, a rise in life expectancy has a positive effect
on economic growth for low levels of life expectancy and a negative effect on economic
growth for high levels of life expectancy. Intuitively, the total effect of an increase in life
expectancy results from combining three factors: (a) agents die on average later, thus the
depreciation rate of aggregate human capital decreases; (b) agents tend to study more
because the expected flow of future wages has risen, and the human capital per capita
increases; and (c) the economy consists more of old agents who received their schooling
a long time ago. The first two effects have a positive influence on the growth rate, but the
third effect has a negative influence.

QUANTIFICATION: I now proceed with the quantitative analysis in four steps.

1. First, the pure rate of time preference $ is set to 4% per year.

2. Next, A is calibrated to give a realistic growth rate with a recent estimate of the
survival function. I consider that the growth rate of the last century is about 2% per
year. Given the value of $, and taking the α and β estimated on the cohort born in
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1930 in the USA (β = −0.037, α = 33.42), Equations (9) and (13) are solved to find
A = 0.1723. Along this balanced growth path, T = 20.8, which is too high.7

3. Next, I compute what the growth rate would be if the survival parameters from
cohorts born one century before are imputed. Taking $ = 0.04, A = 0.1723, and the α

and β estimated on the cohort born in 1840 in the USA (β = −0.018, α = 5.37), I solve
for γ which leads to γ = 0.0190, implying an annual growth rate of GDP per capita
of 1.9%. This is the annual growth obtained with the 20th century characteristics as
implicitly contained in η and θ, but a 19th century survival level.

4. The same exercise is repeated with pre-industrial levels of the survival parameters.
Still taking $ = 0.04, A = 0.1723, together with the α and β estimated on the cohort
born in 1625-1674 in Geneva (β = −0.005, α = 1.45), and solving for γ, I find
γ = 0.016, i.e. an annual growth rate of GDP per capita of 1.6%. Schooling in this
simulation is T = 15.8.

What can be concluded from this exercise is that the rectangularization of the survival
curve can be held responsible for one-fifth of the increase in growth rates over the last
two centuries (explaining +0.4% over +2%), and one-fourth of the increase in schooling
(5 years over 20). Column (c) of Table 2 summarizes these results. The effects are smaller
than with the contact time model. If, instead of calibrating the parameter A to reproduce
2% of growth in the twentieth century, A is chosen to reproduce the absence of growth
in the seventeenth century, the results are magnified as shown in column (d) of Table 2.
Longevity increases account for an increase in annual growth of +0.6% between 1650 and
1850 and +0.79% between 1650 and 1930.

Similar results have been debated in the literature. Assuming a perfectly rectangular
survival function, Hazan (2009) argues that if it was true that longevity increased school-
ing investment through the incentive mechanism of Ben-Porath (1967), an increase in
expected lifetime working hours should also be observed, while what is observed on US
data is that lifetime labor supply actually decreased over the last century. This observa-
tion led him to conclude that the Ben-Porath mechanism cannot be responsible for the
observed rise in education and growth.

It is easy to understand that Hazan (2009)’s critique cannot be true in general. Consider
the following example illustrated in Figure reffig:hazan. Households live for three peri-
ods. In period 1, they can either work or get education. In periods 2 and 3, they work. If

7There are several ways to fix this problem: lower the return to schooling, introduce a fixed retirement
age, or assume that some part of the schooling was achieved before age a0.
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Figure 2: Example with Increasing Longevity & Schooling but Decreasing Lifetime Labor
Supply

they do not get education, their income per period is 22. If they get an education, their
income per period is 40.

• Suppose first that they have a 50% chance of dying during the second period but
if they survive, they live through the third period for sure. If they do not get an
education, their expected lifetime income is: 22 + 0.5× 22 + 0.5× 22 = 44 and their
expected lifetime labor supply is: 2. If they get an education, their expected lifetime
income is: 0.5× 40+ 0.5× 40 = 40 and their expected lifetime labor supply is 1. The
best choice is to get no education and work 2 units on average.

• Suppose now that they are certain to survive in period 2, but they have a 50% chance
of dying in period 3. This is a shift in the survival function - a rectangularization. If
they do not get an education, their expected lifetime income is: 22+ 22+ 0.5× 22 =

55 and their expected lifetime labor supply is: 2.5. If they get an education, their
expected lifetime income is 40 + 0.5 × 40 = 60 and their expected lifetime labor
supply is: 1.5. It is now best to get an education, as a response to lower mortality,
and to work 1.5 units on average.

Hence, to summarize, the drop in mortality has the following consequences: Education
goes from 0 to 1, income goes from 44 to 60, labor supply goes from 2 to 1.5, and the Ben
Porath mechanism is compatible with a shorter lifetime labor supply.

More generally, Cervellati and Sunde (2013) show that Hazan (2009)’s claim relies on
the rectangular survival function he assumed, and that the Ben Porath mechanism can
be reconciled with decreasing lifetime labor supply when the survival function is not
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perfectly rectangular.8

6 Conclusions

In this note, I have made the point that increases in longevity are quantitatively signifi-
cant to explain the acceleration of growth over the last two centuries. Hence, beyond geo-
graphical, institutional and cultural determinants of growth, demographic factors should
also be considered.
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