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1 Introduction

Since the seminal contribution of Kalecki [14] very few authors have investi-
gated the implications of time-to-build in continuous time growth models. To
the best of our knowledge, El Hodiri et al. [12] were the �rst to introduce ges-
tation lags in production in an optimal control framework. In a similar setting,
Rustichini [18] provided some key theoretical results on the rising of determin-
istic (Hopf) cycles while Asea and Zak [1] and Bambi [3] applied these results
in an exogenous and endogenous growth model, respectively. The main reason
for these few contributions in growth theory is that the dimensionality of the
problem switches from �nite to in�nite as soon as capital takes time to become
productive; then unusual techniques as complex analysis, functional analysis,
and nonstandard optimal control theory, become necessary to handle this kind
of models.1 The methodological approach used in the previously cited contri-
butions consists in applying a modi�ed version of the Maximum Principle (see
Kolmanovsky and Mishkis [15]) and then an open loop control to determine the
optimal trajectory for the aggregate economic variables and the possibility of

1A completely di�erent picture for discrete time models. There, the dimensionality of the
problem remains always �nite independently by the presence of time to build, Bambi and
Gori [4]. This is probably the reason why the RBC and neo-keynesian literature is richer of
contributions and time-to-build is often used to increase the explanatory power of the models
(see for example Kydland and Prescott [16], or more recently Edge [11]).

2



(Hopf) cycles. However the impossibility to identify explicitly the closed loop
policy (CLP) function, is the main limitation of this approach since it prevents
a deep understanding of the economic implications of these models.

In this paper we want to move further and investigate not only the balanced
growth path properties and the transitional dynamics (Asea and Zak [1], and
Bambi [3]) but also the consumption smoothing mechanism and the relation
among delays in production, the real interest rate, and the magnitude of the
smoothing e�ect, characterizing an endogenous growth model with time to build
and linear technology. Dealing with these �new� questions means to �nd the
explicit formula of the CLP function between consumption and capital which
cannot be anymore a linear function of the present value of capital as in the
standard AK model (Barro Sala-i-Martin [2], page 208) because the presence
of damping oscillations in capital, induced by the delay in production, would
trigger the same dynamics on consumption.

The most natural way to identify this function is through the method of Dy-
namic Programming as soon as its associated Hamilton-Jacobi-Bellman equa-
tion (HJB) can be solved explicitly. The counterpart of this method is that,
in the case of time-to-build, the HJB equation is a Partial Di�erential Equa-
tion in in�nite dimension which does not admit explicit solutions unless speci�c
assumptions on the production and utility function are introduced.

Luckily the speci�c structure of our problem (linear production function
and homogeneity of the utility function) let us to develop an ad hoc approach
in order to calculate explicitly the HJB equation and then the CLP function
which, as explained before, will be the key element in unfolding the consumption
smoothing mechanism at work in a time to build model. Once identi�ed, the
CLP function will unveil the following smoothing e�ect: the perfect foresight
agents know that a share of their past investments are installed but not yet
productive machines which will become fully operative as soon as the time to
build period is expired. Then these machines enter in the consumers' total
wealth but with a discounted value as shown in Section 5. For this reason, the
rational agents anticipate today part of their future consumption, smoothing in
this way the oscillations transmitted by present capital to present consumption.

Moreover a comparison with a vintage capital model characterized by the
same linear technology and utility function, is also proposed.2 The CLP function
for this case was identi�ed for the �rst time by Fabbri and Gozzi [13], using a
DP approach which presents several nontrivial di�erences with respect to that
one proposed here as clearly discussed at the beginning of Section 3. What will
emerge from this comparison is a completely di�erent nature of the consumption
smoothing mechanism in the two frameworks. In fact, there is no anticipation
of future consumption in a vintage capital setup but the smoothing e�ect is
entirely due to the replacement activity of the old machines which prevents the
economy (and then consumption) to shrink over time. It is worth noting that
the mechanism re�ects again a forward looking behaviour since the consumers'

2Following the seminal contribution of Benhabib and Rustichini [5], Boucekkine at al. [8]
were the �rst to deal with an AK vintage capital model through the Maximum Principle.
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total wealth internalizes the expected future obsolescence cost of the machines.
Finally, several considerations are also proposed on the speed of convergence

of the optimal path and on the e�ciency of the DP approach and the Maximum
Principle concerning the balanced growth path and the transitional dynamics
parameters restrictions.

The paper is organized as follows. In Section 2, the model setup is introduced
and its main features presented. Section 3 explains how the problem can be
rewritten in in�nite dimension and how to handle it with the Hamilton-Jacobi-
Bellman equation in order to �nd a solution of the problem. The closed loop
policy function and the properties of the optimal paths are derived and described
in Section 4. The next section, 5, explains in details the economic implications of
the results developed with a particular attention to the consumption smoothing
e�ects. A comparison with vintage capital models and some considerations on
the speed of convergence are also investigated in this section. Finally Section 6
concludes. The Appendix contains all the proofs.

2 The model and its main features

2.1 Basic setup

We model time-to-build in the simplest possible way by assuming, as suggested
by Kalecki [14], that capital goods produced at time t become operative at time
t+ d, the time-to-build delay d being strictly positive.3 This assumption is ap-
pended to an AK endogenous growth model with an irreversibility constraint on
investment. The social planner problem can be considered since no distortions
are present:

max

∫ ∞

0

c(t)1−σ − 1

1− σ
e−ρtdt

subject to

k̇(t) = Ãk(t− d)− c(t) ∀t ≥ 0 (1)

k̇(t) ≥ −δk(t− d), ∀t ≥ 0 (2)

k(t) ≥ 0 ∀t ≥ 0 (3)

c(t) ≥ 0, ∀t ≥ 0 (4)

k(t) = k0(t), k0(t) ≥ 0, k0(t) 6≡ 0 ∀t ∈ [−d, 0] (5)

All the variables are per capita. The parameter Ã = (A − δ) > 0 depends on
the productivity level A, and the usual capital depreciation rate δ ≥ 0.4 As
usual ρ > 0 indicates the intertemporal preference discount factor, while σ > 0
with σ 6= 1 is the inverse of the elasticity of substitution. The inequality (2) is

3Kalecki refers to the parameter d as "gestation period" of any investment. This period
starts with the investment orders and ends with the deliveries of �nished industrial equipments.

4Di�erently from Bambi [3], the dynamic programming approach proposed here let us
to completely characterize the dynamics of the economy without any further assumption on
capital depreciation.
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the irreversible investment constraint. Irreversibility means that once installed,
capital has no value unless used in production. It is worth noting that the
problem can be analyzed through the dynamic programming approach with or
without the irreversibility constraint (2). As in the standard AK model, the set
of initial conditions which lead to a corner solution is smaller when irreversibility
is not introduced. In what follows, we focus on the interior solutions, and we will
�nd that the optimal strategies and trajectories coincide with those of the same
problem without the irreversibility constraint even if the latter is characterized
by a wider set of initial conditions. Finally, relation (5) is the relevant history
of capital in the interval [−d, 0].

2.2 The associated optimal control problem

In this subsection we rephrase the model presented above as an optimal
control problem of a di�erential delay equation. Given any initial datum
k0(·) ∈ C([−d, 0];R+) and any control strategy c(·) ∈ L1

loc([0,+∞);R), where
L1
loc([0,+∞);R) is the set of all functions from [0,+∞) to R that are Lebesgue

measurable and integrable on all bounded intervals, we call kk0(·),c(·)(·) the
unique related capital trajectory, that is the unique (see [7] Theorem 4.1 page
222) absolutely continuous solution of (1). Moreover, given any initial datum
k0(·) ∈ C([−d, 0];R+), c(·) is an admissible consumption strategy for such initial
datum if

c(·) ∈ A(k0(·)) :=
{
c ∈ L1

loc([0,+∞);R) :

: c(t) ≥ 0 and Akk0(·),c(·)(t− d)− c(t) ≥ 0 for all t ≥ 0
}
. (6)

The functional to maximize is (dropping the constant −(1 − σ)−1 which does
not change the optimal strategies)

J(k0(·), c(·)) :=
∫ ∞

0

e−ρt c(t)
1−σ

1− σ
dt. (7)

The value function of the problem is de�ned as

V (k0(·)) := sup
c(·)∈A(k0(·))

J(k0(·), c(·)) (8)

with the agreement that V (k0(·)) = −∞ if A(k0(·)) = ∅ or if J is always −∞.

2.3 The equation for the maximal growth of capital

When we set consumption equal to 0 we obtain the equation describing the
maximal growth path of capital, kM (·), which is indeed described by the homo-
geneous part of the capital accumulation equation (1):{

˙kM (t) = ÃkM (t− d)
kM (s) = kM0 (s) for all s ∈ [−d, 0]. (9)
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In this subsection we study the properties of this equation, which will be crucial
to fully characterize the solution of our problem. Observe �rst that this equation
has a unique continuous solution. The characteristic equation of (9) is the
transcendental equation

z = Ãe−zd. (10)

whose spectrum of roots is described in the next proposition.

Proposition 2.1. Concerning the roots of the characteristic equation (10) we
have the following.

(a) There is only one real root ξ of (10). This root is simple and satis�es5

0 < ξ0 := Ã
e−Ãd(Ãd+ 1)

1 + Ãde−Ãd
< ξ < Ã. (11)

(b) The characteristic equation (10) has only simple roots.

(c) There are two real sequences {µk, k = 1, 2, ...} and {νk, k = 1, 2, ...}
such that all the complex and nonreal roots of (10) are given by {λ+k =
µk + iνk, k = 1, 2, ...} and {λ−k = µk − iνk, k = 1, 2, ...}.

(d) For each k we have d · νk ∈ ((2k − 1)π, 2kπ).

(e) The real sequence {µk, k = 1, 2, ...}, is strictly decreasing to −∞. We
have µ1 = 0 i� ν1 = Ãd = 3π

2 . Finally

µ1 < 0 ⇐⇒ Ãd <
3π

2
, (12)

ν1 <
3π

2
⇐⇒ Ãd <

3π

2
. (13)

Note that in the paper [3] the main results on the optimal equilibrium path
and its characteristics are based on the assumption Ãd < 3π

2 . Here we extend
the results without imposing such constraint on the delay parameter. See the
proof of Proposition 4.6.

In the next proposition, we also prove how the �rst two characteristic roots
of (10) depend on the main parameters of the economy. This information will
be useful later when the global speed of convergence will be studied.

Proposition 2.2. The roots ξ and µ1 + iν1 of (10) satisfy the following.

(a) ∂ξ

∂Ã
= 1

Ãd
· ξd
1+ξd > 0, ∂ξ

∂d = − 1
d2 · (ξd)2

1+ξd < 0,

(b) ∂µ1

∂Ã
= 1

Ãd
· µ1d+(µ1d)

2+(ν1d)
2

(1+µ1d)2+(ν1d)2
> 0, ∂µ1

∂d = 1
d2

[
−µ1d+

µ1d+(µ1d)
2+(ν1d)

2

(1+µ1d)2+(ν1d)2

]
,

∂ν1

∂Ã
= 1

Ãd
· ν1d
(1+µ1d)2+(ν1d)2

> 0, ∂ν1

∂d = 1
d2

[
−ν1d+ ν1d

(1+µ1d)2+(ν1d)2

]
< 0,

5In the degenerate case d = 0 we have ξ = Ã which is the real interest rate in the standard
model.
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Now we use the above Proposition 2.1 to derive a condition on the parameters
that guarantees the �niteness of the value function.

Proposition 2.3. We have the following facts:

(i) For all c(·) ∈ L1
loc([0,+∞);R) with c(·) ≥ 0 we have that kk0(·),c(·)(t) ≤

kM (t) for all t ≥ 0.

(ii) For all ε > 0 we have that

lim
t→+∞

kM (t)

et(ξ+ε)
= 0

Proposition 2.4. Suppose that

ρ > ξ(1− σ). (14)

then −∞ < V (k0(·)) < +∞ for all k0(·) ∈ C([−d, 0];R+).

Before proceeding, it is worth noting that the highest real root ξ of (10) is
indeed the (constant) real interest rate of the economy. This can be seen look-
ing at the �rm's behaviour and more precisely at its intertemporal investment
decisions to maximize the present value of current and future dividends6

max
{k(t),i(t)}+∞

t=0

∫ ∞

0

(Ak(t− d)− i(t))e−rtdt

k̇(t) = i(t)− δk(t− d)

k(t) = k0(t) t ∈ [−d, 0]

The Hamiltonian is H := [Ak(t− d)− i(t)] e−rt + q(t)[i(t) − δk(t − d)] and its
�rst order conditions:

q(t) = e−rt

q̇(t) = −Ae−r(t+d) + δq(t+ d)

lead to the relation r = Ãe−rd and then to the transcendental equation (10)
studied before. Taking into account this fact, relation (14) is the standard
condition in endogenous growth theory that the discount factor ρ has to be
large enough to the objective be bounded.

A similar reasoning can be extended to the case of a vintage capital model
with linear technology. The problem becomes

max
{k(t),i(t)}+∞

t=0

∫ ∞

0

(Ak(t)− i(t))e−rtdt

6The discounted dividends a �rm pays out are equal to earnings Ak(t− d) less investment
expenditure. Observe also that the real interest rate used to discount is assumed constant
because our guessed real interest rate ξ was proved to be time invariant due to the linear
technology assumption.
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k̇(t) = i(t)− i(t− T )

k(0) =

∫ 0

−T

i0(z)dz

i(t) = i0(t) with t ∈ [−T, 0)

The �rst order conditions of this problem are:

q(t)− q(t+ T ) = −e−rt

q̇(t) = Ae−rt

which lead to the relation r = A(1− e−rT ) which is exactly the same equation
found by Fabbri and Gozzi [13], equation 14, page 340, for the maximal rate of
reproduction of capital ξ.

2.4 A useful change of variables

Here we introduce a suitable change of variables that will allow us to treat
more e�ciently the problem. Before proceeding we need to ask a bit more
on the initial datum k0(·), namely we assume that k0(·) ∈ H1([−d, 0];R+)7.
We also assume that c(·) ∈ L2

loc([0,+∞);R), this is not a strong assumption
since such set contains the optimal strategies of our problem8. Chosen k0 ∈
H1([−d, 0];R+) and c(·) ∈ L2

loc([0,+∞);R), the equation (1) admits a unique
continuous solution and such a solution belongs to H1

loc([−d,+∞);R) as proved
in [7] page 2879.

As usual we denote by y(t), i(t), j(t) = k̇(t) respectively the output, the
gross investment, the net investment at time t. We now rewrite the optimal
control problem in term of output, y(t) = Ak(t − d) (for t ≥ 0) and adjusted
net investment, u(t) = (A/Ã)k̇(t) (for t ≥ −d) since this is convenient from a
mathematical point of view. To do this we �rst observe that, multiplying both
sides of the capital accumulation equation (1) by (A/Ã) and using the de�nition
of adjusted net investment (u(·)), we get

u(t) = y(t)− A

Ã
c(t).

Moreover taking into account the resource constraint of the economy y(t) =
i(t) + c(t) it follows immediately that u(t) ∈ [j(t), i(t)] or, in term of y(t),

u(t) ∈
[(

1− A

Ã

)
y(t), y(t)

]
(15)

7H1([−d, 0];R+) is the set of the absolutely continuous functions f : [−d, 0] → R+ such

that
∫ 0
−d |f ′(r)|2 dr < +∞.

8L2
loc([0,+∞);R) is the set of all functions from [0,+∞) to R that are Lebesgue measurable

and square integrable on all bounded intervals.
9The space H1

loc([−d,+∞);R) is the set of all functions f from [−d,+∞) to R that are
absolutely continuous and such that, for every T > −d∫ T

−d
|f ′(s)|ds < +∞.
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Then, maximizing the functional (7) is equivalent to maximize

J(k0(·), c(·)) :=
∫ ∞

0

e−ρt

(
A
Ã
c(t)
)1−σ

1− σ
ds =

∫ ∞

0

e−ρt (y(t)− u(t))
1−σ

1− σ
ds (16)

subject to the state equation
ẏ(t) = Ãu(t− d) t ≥ 0

u(s) = u0(s)
(
= A

Ã
k̇(s)

)
s ∈ [−d, 0)

y(0) = y0 (= Ak(−d))
(17)

and the constraints (15). Observe that the state equation (17) is obtained by
time di�erentiating the production function and applying the de�nition of ad-
justed net investment. Observe also that in (17) the initial datum is now a couple
(y0, u0) where y0 ∈ R (indeed in R+ as k(−d) ≥ 0) and u0 ∈ L2([−d, 0);R) while
the control strategy is the function u(·) ∈ L2

loc([0,+∞);R).
Given any initial data y0 ∈ R and u0 ∈ L2([−d, 0);R), and any control

strategy u(·) ∈ L2
loc([0,+∞);R) we call y(y0,u0(·)),u(·)(·) the unique related out-

put trajectory, that is the unique (see [7] Theorem 4.1 page 222) absolutely
continuous solution of (17).

Remark 2.5. To apply the above change of variables we need to assume that
k0 belongs H1([−d, 0];R+). Indeed with a limiting procedure we could study also
the case when k0 is only continuous and positive. Since this would not add
useful information from the economic point of view we will always assume that
k0 ∈ H1([−d, 0];R+).

3 Solution through the in�nite dimensional ap-

proach

In this section we rewrite the optimal control problem (16)-(17)-(15) in a suitable
in�nite dimensional form and then we solve it with the Dynamic Programming
approach. The study of the associated in�nite dimensional problem is done
following the basic steps of the Dynamic Programming approach as in [13]. We
recall that our problem has three important di�erences with respect to the one
of [13]

• the presence of delay in the state and not in the control (exactly the
opposite of what happens in [13]);

• the presence of a state-control constraint with a delay (while in [13] there
was no delay in the state-control constraint);

• the initial condition which is given as the historic path of capital (while in
[13] it is the historic path of investments that also determines the present
capital).
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These three facts complicates the problem with respect to [13], especially for the
key point: �nding the closed loop policy function (also called optimal feedback).
This means that the in�nite dimensional study made in [13] cannot be repeated
here.

We sketch the �road map� to solve the problem mentioning the points where
the technical di�culties arise and where we cannot use the arguments of [13].

• (Section 3.1) First rewrite the problem in a suitable in�nite dimensional
space. The main point here is the choice of the state variable of the system
(the so called structural state) in De�nition 3.1 which is di�erent from [13]
and makes the associated in�nite dimensional problem solvable.

• (Section 3.2) Write the associated HJB equation computing exactly the
Hamiltonians, de�ne the right concept of solution of it and �nd an explicit
solution. To guess this explicit solution we proceed as in [13] taking the
power 1− σ of a suitable linear function of the structural state. However
the spaces where the function is de�ned are di�erent from the case treated
in [13] due to the di�erent constraints of our problem.

• (Section 3.3) Prove that the explicit solution of the HJB found in Section
3.2 is indeed the value function and �nd the Closed Loop Policy (CLP)
function in in�nite dimension. The form of the candidate CLP is obvious
from the form of the explicit solution. What is absolutely nontrivial is
to prove that this candidate CLP gives optimal strategies. This task is
much harder than in [13] and requires a di�erent set of assumptions, see
the discussion before Proposition 3.11.

Once this is done we only have to translate the results into the ��nite di-
mensional� language. This will be done in Section 4.

3.1 The problem rewritten in in�nite dimension

There are various ways to write an in�nite dimensional problem associated to
(16)-(17)-(15): as in [13] we choose the approach depicted in [19] as it is the one
that �ts better into our problem. We have �rst to de�ne a new state variable
(the structural state) that lives in a suitable in�nite dimensional space. Then we
will write the state equation for the this new state variable and �nally rewrite
the objective functional.

The in�nite dimensional space where we rewrite the problem is the Hilbert
space M2 := R× L2([−d, 0];R)10. The inner product on M2 is de�ned as:

〈(x0, x1), (z0, z1)〉M2 := x0z0 + 〈x1, z1〉L2 = x0z0 +

(∫ 0

−d

x1(s)z1(s) ds

)
10We recall that for L2 spaces the extrema of the interval are not important so

L2([−d, 0];R) = L2([−d, 0);R). Here we use the closed interval as it is more convenient
to de�ne the second element of the state on it.
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for every (x0, x1), (z0, z1) ∈M2. We will avoid the subscript M2 when it is not
ambiguous.

We now introduce the new state variable (the structural state).

De�nition 3.1. Given the initial data y0 ∈ R and u0 ∈ L2([−d, 0];R), and
the control strategy u(·) ∈ L2

loc([0,+∞);R) we de�ne the structural state of the
system at time t ≥ 0 the couple11

x(y0,u0(·)),u(·)(t) = (x0(y0,u0(·)),u(·)(t), x
1
(y0,u0(·)),u(·)(t))

:= (y(y0,u0(·)),u(·)(t), γ(t)[·]) ∈M2,

where γ(t)[·] is the element of L2([−d, 0];R) de�ned as:{
γ(t)[·] : [−d, 0] → R
γ(t)[s] := Ãu(t− d− s)

(18)

In the following we will often avoid to write the dependence of x(·), y(·) on
y0(·), u0(·) and u(·) to obtain a more compact notation.

Now we are going to rewrite the state equation. We need �rst to introduce
some operators. We start de�ning the unbounded operator G on M2

D(G) := {(ψ0, ψ1) ∈M2 : ψ1 ∈W 1,2([−d, 0];R), ψ0 = ψ1[0]}
G : D(G) →M2

G(ψ0, ψ1) := (0, d
dsψ

1).

The operator G∗ is (see [7] Section 4.6 page 242) the generator of a C0 semigroup
on M2.

Now we want to de�ne the Dirac's delta δ−d, (i.e. the evaluation of a func-
tion at the point −d) on the elements of D(G). To do this we �rst recall that,
given a function f [·] ∈ C([−d, 0];R) the Dirac's delta at the point −d (denoted
by δ−d) is simply f [−d]. With this de�nition δ−d is a linear continuous func-
tional from C([−d, 0];R) to R. Since (by the Sobolev embedding Theorem)
W 1,2([−d, 0];R) ⊆ C([−d, 0];R), it is possible to calculate δ−df = f [−d] for
all f [·] ∈ W 1,2([−d, 0];R). This means that, for ψ = (ψ0, ψ1) ∈ D(G), we can
calculate δ−dψ

1 = ψ1[−d]. From now on, with an abuse of notation, we will
agree that, for every ψ = (ψ0, ψ1) ∈ D(G),

δ−d(ψ
0, ψ1) = δ−dψ

1 = ψ1[−d] ∈ R. (19)

We are now ready to rewrite the state equation of our starting problem as an
ODE in M2. We have the following theorem whose proof can be found in ([7]
Theorem 5.1 page 258).

11Note that, for a �xed t ≥ 0, γ(t) is a function that belongs to L2([−d, 0];R). We use from
now on the notation γ(t)[s] to mean its evaluation in the point s ∈ [−d, 0). We will use the
same notation to denote the evaluation of a function, de�ned on [−d, 0], at a point s ∈ [−d, 0].
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Theorem 3.2. Given any initial data y0 ∈ R, u0 ∈ L2([−d, 0];R), any control
strategy u(·) ∈ L2

loc([0,+∞);R), the structural state x(y0,u0(·)),u(·)(·), introduced
in De�nition 3.1, is the unique solution of the equation{

d
dtx(t) = G∗x(t) + u(t)Ãδ−d, t ≥ 0
x(0) = p = (y(0), γ(0)[·]) (20)

(γ(0)[·] is de�ned as function of u0(·) as in (18)) in the space

Π :=

{
f ∈ C(0,+∞;M2) :

d

dt
f ∈ L2

loc(0,+∞, D(G)′)

}
in the following weak sense: for every ψ ∈ D(G){

d
dt 〈ψ, x(t)〉 = 〈Gψ, x(t)〉+ Ãψ1[−d]u(t), t ≥ 0

〈ψ, x(0)〉 = ψ0x0 +
〈
ψ1, x1(0)

〉
L2 = ψ0y(0) +

∫ 0

−d
ψ1[s]u(−s− d) ds

(21)

Note (see [7] page 258) that (20) has a unique solution for every initial datum
p ∈ M2 and control strategy u(·) ∈ L2

loc([0,+∞);R), we call such a solution
xp,u(·)(·). We will give here some de�nitions that work for a generic p ∈ M2.
The constraints in the new language become

u(t) ∈
[(

1− A

Ã

)
x0(t), x0(t)

]
, t ≥ 0,

so the set of admissible control strategies for a given initial datum p ∈ M2 is
given by

A0(p) :=
{
u ∈ L2

loc([0,+∞);R+) :

: u(t) ∈
[(

1− A

Ã

)
x0p,u(·)(t), x

0
p,u(·)(t)

]
for all t ≥ 0

}
. (22)

Note that if x0p,u(·)(t) < 0 then
[(

1− A
Ã

)
x0p,u(·)(t), x

0
p,u(·)(t)

]
= ∅, so the condi-

tion for the admissibility imply x0p,u(·)(t) ≥ 0 for all t ≥ 0. The functional to be
maximized becomes

J0(p, u(·)) :=
∫ ∞

0

e−ρs
(x0p,u(·)(t)− u(t))1−σ

(1− σ)
ds. (23)

The only di�erence with (16) is the dependence on p ∈M2. The value function
is:

V0(p) := sup
u(·)∈A0(p)

J0(p, u(·))

where we mean V0(p) = −∞ if A0(p) is empty or if J0 is always −∞.

12



3.2 The HJB equation and its explicit solution

First we introduce the current value Hamiltonian: it will be de�ned on a subset
of M2 ×M2 × R called E:

E :=

{
((x0, x1), P, u) ∈M2 ×D(G)× R : x0 ≥ 0, u ∈

[(
1− A

Ã

)
x0, x0

]}
The current value Hamiltonian HCV is then de�ned as:

HCV : E → R

HCV ((x
0, x1), P, u) := 〈(x0, x1), GP 〉M2 +

〈
uÃδ−d, P

〉
M2

+
(x0 − u)1−σ

1− σ

=
〈
x1, d

dsP
1
〉
L2 + uÃP 1[−d] + (x0 − u)1−σ

1− σ

in the points where u < x0 or σ < 1. When u = x0 and σ > 1 we de�ne
HCV = −∞.

The (maximum value) Hamiltonian of the system is de�ned as follows: we
call S the subset of M2 ×M2 given by:

S := {((x0, x1), P ) ∈M2 ×M2 : x0 ≥ 0, P ∈ D(G)};

the Hamiltonian becomes then:{
H : S → R
H : ((x0, x1), P ) 7→ supu∈[(1−A

Ã
)x0,x0]HCV ((x

0, x1), P, u).

The HJB equation of the problem is then:

ρV (x0, x1) −H((x0, x1), DV (x0, x1)) = 0 (24)

We now give the de�nition of �regular� solution of the HJB equation (24) that
takes into account the fact that the domain where we want to de�ne the solution
is not open.

De�nition 3.3. Let Ω be an open set of M2 and Ω1 ⊆ Ω be a closed subset.
An application g ∈ C1(Ω;R) is a solution of the HJB equation (24) on Ω1 if for
all (p0, p1) in Ω1 we have{

((p0, p1), (Dg(p0, p1))) ∈ S,
ρg(p0, p1)−H

(
(p0, p1), Dg(p0, p1)

)
= 0.

Remark 3.4. If P ∈ D(G) and (ÃP 1[−d])−1/σ ∈ (0,+∞) the function

HCV (x, P, ·) :
[(

1− A

Ã

)
x0, x0

]
→ R (25)
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admits a unique maximum point at

uMAX =

{
x0 − (ÃP 1[−d])−1/σ, if (ÃP 1[−d])−1/σ ∈

(
0, A

Ã
x0
]
,

x0, otherwise,

and we can write the Hamiltonian as

H((x0, x1), P ) =



〈(x0, x1), GP 〉M2 + x0ÃP 1[−d] + σ
1−σ (ÃP

1[−d])σ−1
σ ,

if (ÃP 1[−d])−1/σ ∈
(
0, A

Ã
x0
]
,

〈(x0, x1), GP 〉M2 + 1
1−σ (x

0)1−σ, otherwise.

(26)
The interesting case (�no bad corner solutions�) is when (ÃP 1[−d])−1/σ ∈(
0, A

Ã
x0
]
, so the unique maximum point uMAX belongs to

[(
1− A

Ã

)
x0, x0

)
.

The expression for uMAX will be crucial to write the solution of the original
problem in closed-loop form so to �nd the Closed Loop Policy function.

Remark 3.5. If we consider the problem without the irreversibility constraint
we can use the simpli�ed form of the Hamiltonian in a wider range of points.
In this case we let u vary on the whole interval (−∞, x0), so, for all P ∈ D(G)
with (ÃP 1[−d])−1/σ > 0, the function

HCV (x, P, ·) :
(
−∞, x0

]
→ R

admits a unique maximum point at

uMAX = x0 − (ÃP 1[−d])−1/σ ∈
(
−∞, x0

)
and the Hamiltonian has the simpli�ed form:

H((x0, x1), P ) = 〈(x0, x1), GP 〉M2 + x0ÃP 1[−d] + σ

1− σ
(ÃP 1[−d])

σ−1
σ . (27)

Now we want to �nd an explicit solution of the (24). Since (24) is analogous
to the one-dimensional HJB equation related to the linear problem with CRRA
utility functional we guess that a possible form of the solution can be v(x) =
ν(Γ(x))1−σ where ν is a constant and Γ(·) is a linear function on M2. This is
indeed the case. However, di�erently from the standard one dimensional AK
model it is di�cult to �nd the form of Γ(·) and to identify the spaces Ω and Ω1

where the solution lives. We �rst de�ne the function Γ(·) :M2 → R as

Γ(x0, x1) = x0 +

∫ 0

−d

eξsx1[s] ds.

If we consider the function

θ(·) : [−d, 0] → R, θ(s) = eξs

14



and we de�ne ψ ∈M2 as

ψ = (ψ0, ψ1) := (1, θ) (28)

we can express Γ(·) as
Γ(x) = 〈x, ψ〉M2 .

Note that
ψ ∈ D(G). (29)

Using Γ(·) we can de�ne

X :=

{
x ∈M2 : Γ(x) > 0

}
.

Moreover we call

α =
ρ− ξ(1− σ)

σξ
(30)

and

Y :=

{
x = (x0, x1) ∈ X : Γ(x) ≤ x0

(
1

α

A

Ã

)}
. (31)

It is easy to see that X is an open set of M2 and Y a closed subset of X.
We have the following:

Proposition 3.6. Under the assumption (14) the function v : X → R given by

v(x) := νΓ(x)1−σ (32)

with

ν = α−σ 1

(1− σ)ξ

is di�erentiable in all x = (x0, x1) ∈ X and is a solution of the HJB equation
(24) in Y in the sense of De�nition 3.3.

Remark 3.7. If we consider the problem without the irreversibility constraint,
as we have seen in Remark 3.5, we can use the simpli�ed form of the Hamilto-
nian and, arguing exactly as in Proposition 3.6 we obtain that

v(x) = νΓ(x)1−σ

is a solution of the HJB equation (24) on the whole set X.

3.3 Closed Loop Policy in in�nite dimensions

We call C(M2) the set of the continuous functions from M2 to R. We give �rst
some de�nitions concerning feedback strategies (or closed loop policies).
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De�nition 3.8. Given p ∈M2 we call ϕ ∈ C(M2) a feedback strategy related
to p if the equation.{

d
dtx(t) = G∗x(t) + Ãδ−d(ϕ(x(t))), t > 0
x(0) = p

(33)

has a unique solution xϕ(t) in Π (in the sense of (21)). We denote by FSp the
set of feedback strategies related to p.

De�nition 3.9. Given p ∈ M2 and ϕ ∈ FSp we say that ϕ is an admissi-
ble feedback strategy related to p if the unique solution xϕ(t) of the equation
(33) satis�es: ϕ(xϕ(·)) ∈ A0(p). We call AFSp the set of admissible feedback
strategies related to p.

De�nition 3.10. Given p ∈ M2 and ϕ ∈ AFSp we say that ϕ is an optimal
feedback strategy related to p if

V0(p) =

∫ +∞

0

e−ρt

(
xϕ(t)− ϕ(xϕ(t))

)1−σ

(1− σ)
dt

We denote by OFSp the set of optimal feedback strategies related to p.

While it is easy to write the candidate optimal feedback, it is di�cult to prove
that it is really optimal. and the procedure and the assumptions are di�erent
from [13] and more di�cult. The main reason for this di�culty is the nature of
initial datum of the problem. Indeed such datum is done by two component: the
present (belonging to R) and the past (belonging to L2). In [13] the present (the
initial capital) is always determined by the past (the history of investments).
Here this is not true: the present (the initial output) is not determined by the
past (the history of the adjusted net investments). So in our problem we have
one more degree of freedom in the datum. So the set of admissible initial data
(which is the domain of the candidate optimal feedback) become more complex
to study.

We start proving that our candidate feedback is in FSp.

Proposition 3.11. For every p ∈M2 the map{
φ : M2 → R
φ(x) := x0 − αΓ(x)

(34)

is in FSp.

Now we prove the following crucial invariance properties.

Theorem 3.12. Along the trajectories driven by the feedback φ de�ned in (34)
we have that

Γ(xφ(t)) = Γ(xφ(0))e
gt

where

g := (ξ(1− α)) =

(
ξ − ρ− ξ(1− σ)

σ

)
=
ξ − ρ

σ
(35)
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so in particular, if p ∈ X then the evolution of (62) remains in X. Moreover,
if α < 1 (which is equivalent to ρ < ξ) the sets

Ic :=
{
(x0, x1) ∈M2 : x0 > 0 and x1[s] ∈

[
0, cx0

]
for almost all s ∈ [−d, 0]

}
(36)

are invariant for the �ow of the the autonomous ODE:

d

dt
xφ(t) = G∗xφ(t) + Ãδ−d(φ(xφ(t))). (37)

when

c < c̄ :=

(
1

α
− 1

)(
ξÃ

Ã− ξ

)
Corollary 3.13. The set

I :=
⋃
c<c̄

Ic (38)

is invariant for the �ow of (37).

From now on we assume the following.

Hypothesis 3.14. α < 1 i.e. ρ < ξ.

Observe that this assumption has a clear economic interpretation: it guar-
antees endogenous growth. Indeed the growth rate of the optimal strategy will
be exactly g = (ξ − ρ)σ−1.

In the standard AK model, endogenous growth is guaranteed only when the
real interest rate is higher than the intertemporal preference discount rate ρ;
exactly the same relation holds here since we have shown that the maximal
growth rate of capital ξ is also the real interest rate of the economy once the
time to build assumption is introduced. Moreover, from (9) we have that

Ã
(Ãd+ 1)e−Ãd

1 + Ãde−Ãd
:= ξ0 < ξ < Ã

and, for d → 0+ we have ξ0 → Ã− so also ξ → Ã− and then the return to
capital ξ converges to A− δ as soon as d→ 0+.

Theorem 3.15. Assume (14) and Hypothesis 3.14. Then

1. The set I de�ned in (38) is a subset of Y and then for every p ∈ I the
map φ de�ned in (34) is in AFSp.

2. For every p ∈ I the map φ de�ned in (34) is also in OFSp.
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4 Explicit form of the value function, of the

closed loop policy and properties of the optimal

paths

We now use the results of the previous subsection to write the solution of the
original optimal control problem in the delay di�erential equation setting. From
Proposition 3.6 we have the following.

Proposition 4.1. Assume (14) and Hypothesis 3.14. Given an initial datum
(y0, u0(·)) ∈ I the value function V related to the problem is

V (y0, u0(·)) = ν

(∫ 0

−d

eξsÃu0(−d− s) ds+ y0

)1−σ

where

ν = α−σ 1

(1− σ)ξ

Moreover, from Theorem 3.15 we can give a solution in closed form of the
problem

Proposition 4.2. Let assume to have (14). Given an initial datum (y0, u0(·)) ∈
I the optimal control u∗(·) and the related state trajectory y∗(·) satisfy for all
t ≥ 0:

u∗(t) = y∗(t)− α
(
y∗(t) +

∫ 0

−d

Ãeξsu∗(t− s− d) ds
)

(39)

Corollary 4.3. Assume (14) and Hypothesis 3.14. Given an initial datum
(y0, u0(·)) ∈ I the optimal control u∗(·) is the only absolutely continuous solution
on [0,+∞) of the delay di�erential equation.

u̇∗(t) = Ãu∗(t− d) (1− α)−
−α

(
ξÃeξt

∫ −t

−d−t
eξsu∗(−d− s) ds+ Ã(−u∗(t− d) + e−dξu∗(t))

)
u∗(s) = u0(s) for s ∈ [−d, 0)
u∗(0) = (1− α) y0 − α

∫ 0

−d
eξsu0(−d− s)(s) ds

(40)

Now we observe that y∗(·) − u∗(·) (and so the optimal consumption path) has
constant growth rate.

Lemma 4.4. Assume (14) and Hypothesis 3.14. Given any initial datum
(y0, u0(·)) ∈ I there exists a Λ such that along the optimal trajectory the op-
timal control u∗(·) and the related state trajectory y∗(·) satisfy for all t ≥ 0:

y∗(t)− u∗(t) = Λegt (41)

where g = ξ−ρ
σ . Moreover we can compute explicitly the value of Λ; it is given

by

Λ = α

(∫ 0

−d

Ãeξsu0(−s− d) ds+ y0

)
and
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An immediate consequence of the above result is the following.

Corollary 4.5. Assume (14) and Hypothesis 3.14. Given any initial datum
(y0, u0(·)) ∈ I, de�ne the detrended state and control variables as:

ȳ(t) := e−gty∗(t)

ū(t) := e−gtu∗(t),

we have that c̄(t)
:
= Ã

A

(
ȳ(t) − ū(t)

)
is constant on optimal trajectories, and its

value is Ã
AΛ.

Proposition 4.6. Assume (14) and Hypothesis 3.14. Given any initial datum
(y0, u0(·)) ∈ I, let ū(·) and ȳ(·) be the detrended variables de�ned as in Corollary
4.5. Then

lim
t→∞

ȳ(t) = yL and lim
t→∞

ū(t) = uL

where

yL = Λ

(
1− 1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd

)−1

(42)

and

uL = Λ

(1− 1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd

)−1

− 1

 . (43)

In Subsection 2.4 we rephrased the control problem with the variables y(·) (state)
and u(·) (control). Now we express the obtained results using the original vari-
ables: k(·) (state) and c(·) (control). In particular we assume to have, as initial
datum, the history of k in the interval [−d, 0] (the same that in (1)). More
precisely we assume to know the history of k0(·) ∈ H1(−d, 0). Recalling (17)
we have

u0(s) =
A

Ã
k̇0(s) for s ∈ (−d, 0) (44)

and
y0 = Ak0(−d). (45)

We can also rewrite the set I in terms of k0, obtaining that (y0, u0(·)) ∈ I if
and only if k0 ∈ K where:

K :=
{
k0 ∈ H1(−d, 0) : k0(−d) ≥ 0 and k̇0(s) ∈ [0, c̄k0(−d)]

}
.

Using the previous results of this section we have the following theorem.

Theorem 4.7. Let us consider the optimal control problem with state equation
(1), target functional (7) and set of controls (6). Let assume to have (14), if
k0 ∈ K we have the following facts:
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1. The optimal consumption c∗(t) is given by:

c∗(t) = ÃΛ0e
gt (46)

where g = ξ−ρ
σ and

Λ0 =

(
ρ− ξ(1− σ)

σξ

)(∫ 0

−d

eξsk̇0(−s− d) ds+ k0(−d)
)
.

2. The trajectory of the capital along the optimal path is the unique solution
of the following DDE: k̇∗(t) = Ãk∗(t− d)− ÃΛ0e

gt

k∗(s) = k0(s) for all s ∈ [−d, 0)
k∗(0) = k0(0)

(47)

where g and Λ0 are de�ned above.

3. The explicit expression for the value function, de�ned in (8), is

V (k0(·)) = Ã1−σν

(∫ 0

−d

eξsk̇0(−d− s) ds+ k0(−d)
)1−σ

where

ν =

(
ρ− ξ(1− σ)

σξ

)−σ
1

(1− σ)ξ
.

4. The detrended trajectory of the capital along the optimal path admits a
limit for t→ +∞. More precisely if we de�ne k̄(t) := e−gtk∗(t) we have

lim
t→+∞

k̄(t) = Λ0

(
1− 1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd

)−1

=: kL

where Λ0 is de�ned above.

5. The optimal capital trajectory can be written as:

k∗(t) = kLe
gt +

+∞∑
j=1

eµjt
[
k1j cos(νjt) + k2j sin(νjt)

]
.

where {µj} and {νj} are de�ned in Proposition 2.1-(c), kL is known from
the point 4 above while k1j , k

2
j can be calculated from k0 and the other

parameters of the model.
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5 Economic implications of the model

5.1 Disentangling the consumption smoothing e�ect

It is well known that in the standard AK model, optimal consumption is a con-
stant rate of total wealth (capital) since the interest rate of the economy is time
invariant. For the same argument the economy jumps immediately on its bal-
anced growth path. However when the time to build assumption is introduced,
transition to the balanced growth path is no more instantaneous; it has been
shown indeed in Theorem 4.7 that the agents' optimal decision is character-
ized by smooth consumption (namely detrended consumption is constant) but
�uctuations in all the other aggregate variables. Similar results in a time to
build context were found by Collard et al. [9], where a Ramsey model is solved
numerically, and by Bambi and Gori [4] in a model with indivisible labor supply.

These contributions justify the consumption smoothing behavior by pointing
out to the advanced nature of the Euler-type equation but no further e�ort in
explaining the mechanisms which links the time to build structure of capital to
this speci�c consumption dynamics has been done yet. In the following, we �ll
this gap by showing how the closed loop policy function for c∗(t) together with
a rational expectation argument can be used to explain consumption smoothing
in a time to build context.

First of all we take the closed loop policy function developed in Proposition
4.2 and Corollary 4.3 and we rewrite it in terms of optimal consumption and
optimal investment:12

c∗(t) = αA

(∫ t−d

−∞
i∗(s)ds+

∫ t

t−d

i∗(s)eξ(t−s−d)ds

)
(48)

The representative agent chooses a consumption path at time t which is a con-
stant share of total wealth. Di�erently from the standard AK model, the total
wealth, namely the term in parenthesis in (48), is characterized by the sum of
two components. The �rst component corresponds to k(t − d), and it remains
the only one determining the optimal consumption path as soon as the delay
parameter, d, goes to zero. Under this circumstance, the parameter αA con-
verges to 1

σ [ρ− (A− δ)(1−σ)] and then the CLP function becomes exactly that
one in the standard AK model (see for example Barro, and Sala-i-Martin [2],
page 208).

Since a strictly positive choice of the delay parameter leads to oscillations
in capital (the �rst term in parenthesis in (48)) as proved in Corollary 4.3,
and Lemma 4.4 then the total wealth's second component has to play a key
role in o�setting the �uctuations transmitted through capital to consumption.
Broadly speaking the smoothness of the optimal consumption path proved in
Corollary 4.5 is achieved through a smoothing e�ect induced by the last element

12In the proposed discussion the depreciation rate δ is assumed equal to zero and then
investment, i(t), is the key variable in the optimal feedback policy. However all the results
still hold when δ > 0 and the key variable is the adjusted net investment u(t).

21



in parenthesis of (48). This component represents the value of capital produced
between t−d and t, which is not yet operative; investments are discounted, using
the interest rate ξ, for the period still remaining until the machines become
operative for the �rst time. Observe also that these investments will lead to
new productive machines from t + d on, whose arrival (and discounted value)
is already known at time t by the perfect foresight agent. Then part of his
future consumption is moved backward, CS−(t+d), conditioning on his rational
expectations on future production:

c∗(t) = αA
(
k∗(t) + CS−(t+ d)

)
(49)

This mechanism can be exploited even more when the CLP function is written
in terms of the optimal level of consumption at time t+ d as a function of the
optimal level of consumption at time t:

c∗(t+ d) = c∗(t) + αA

(∫ t

t−d

i∗(s)ds−
∫ t

t−d

i∗(s)eξ(t−s−d)ds+

∫ t+d

t

i∗(s)eξ(t−s)ds

)
(50)

which, once rewritten in terms of the optimal capital variation between period
t and t+ d and the backward movements in consumption, CS−, becomes:

c∗(t+ d) = c∗(t) + αA
(
∆dk

∗(t+ d)− CS−(t+ d) + CS−(t+ 2d)
)

(51)

It is now evident how part of consumption at time t+ d is moved backward in
order to smooth consumption at time t while part of the consumption at time
t+ 2d is moved backward in order to o�set the �uctuations at time t+ d rising
from the output variation and the smoothing mechanism between (t, t + d).
Summing up, two conditions are required to achieve consumption smoothing
in the economy. Firstly, investment has to �uctuate to fully compensate for
output �uctuations. Secondly, investment �uctuations have to be consistent
with a smooth path for total wealth, since consumption is a constant rate of it.

It is also possible to compare and underline the analogies and di�erences
with a vintage capital model with linear technology. In this case, the CLP
function is given by the following relation ([13], page 23):

c∗(t) = αA

(∫ t

t−T

i∗(s)ds−
∫ t

t−T

i∗(s)eξ(t−T−s)ds

)
(52)

Optimal consumption is again determined by a share of total wealth, namely
the object in parenthesis, which depends on two components. The �rst term is
a share of the output as before but with a technology induced by the vintage
capital structure where T indicates the machine life span. The second term
represents the obsolescence costs associated to scrapping, and it is forward-
looking, since it subtracts the expected future obsolescence cost from the value
of total wealth. Finally the main di�erence in the consumption smoothing
mechanism between vintage capital and time to build lies on a di�erent de�nition
of total wealth.
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5.2 Speed of convergence to the balanced growth path

Once time to build (or vintage capital) is embedded in the AK model, the econ-
omy displays transitional dynamics in the main aggregate variables. Moreover,
it has been proved in Corollary 4.5 and in Theorem 4.7 that the detrended
path x̄(t) of the aggregate variable x(t), where x̄(t) = x(t)e−gt, converges to
a constant value, xL. Then, it becomes interesting to analyze the speed of
convergence of ȳ(t), k̄(t), and ū(t) to yL, kL, and uL respectively, in order to
understand how much emphasis has to be placed on the transition or on the
long run behavior.13 More precisely, a low speed of convergence indicates a
relevant role of the transitional dynamics in ascertaining the predictive power
of the model even in an endogenous growth model.

It is also worth noting that in our framework with linear technology we are
able to derive analytically the global speed of convergence while in previous con-
tributions the main focus was on its local version (see for example Ortigueira
and Santos [17]).14 Then it is possible to identify the parameters in the econ-
omy which may a�ect the global dynamics and then the speed of convergence
of the stationary solutions. Of course, the main role is played by the delay pa-
rameter which avoids the immediate adjustment of all the aggregate variables
to their balanced growth path switching their speed of convergence from in�-
nite to a �nite value. In particular, the speed of convergence is measured by
λ̂ = |Re(λmax) − g|, with λmax the complex (and non real) root of the char-
acteristic equation (10) having the highest real part; changes in the speed of
convergence due to di�erent choices of the time to build parameter are reported
in Figure 1 after having calibrated the economy yearly.15 In the same graph, we
have also reported a green line showing the speed of convergence to the steady
state of a neoclassical growth model with Cobb Douglas technology and no time
to build.16. For a yearly calibration, the Ramsey model's rate of convergence is
around 7 per cent. On the other hand, the red line, at around 2 per cent, points
out the empirical estimated value of the speed of convergence as documented in
the literature (for a survey on econometric contributions refer to [17]).

This analysis indicates how time to build has to be considered a new di�er-
ent channel through which reducing the speed of convergence of growth models.
Moreover a high level of the time to build parameter, useful to meet an empir-
ical plausible speed of convergence, induces large oscillations in the aggregate
variables (see for several numerical examples Bambi [3], Figure 7) and ampli-
�es in this way the magnitude of the smoothing mechanism necessary to keep

13Consumption is kept aside from this analysis since c̄(t) jumps immediately to the constant
cL.

14In this sense, our measure of the global speed of convergence is more accurate since we
avoid computational errors induced by calculating numerically the stable manifold.

15More precisely we have set δ = 0.1, and σ = 1.5; the level of technology A and the
intertemporal preference rate ρ are let to vary in order to pin down the real interest rate to
�ve per cent a year.

16The parameters δ, and σ are the same as in the AK case while the real interest rate is again
set to �ve percent by adjusting accordingly the level of technology A and the intertemporal
preference rate ρ once the share of capital is set to 0.3.
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Figure 1: Speed of Convergence for di�erent choices of d.

detrended consumption a constant share of total wealth. At d = 1, d = 5, and
d = 10 the smoothing mechanism o�sets variations in detrended consumption
from its steady state level of a maximum magnitude of 0.08%, 3%, and 36%
respectively. Then a negative trade o� between the speed of convergence and
the magnitude of the smoothing e�ect emerges. Finally, the presence of time
to build triggers also in an AK model, the usual relations between the level of
technology, the rate of intertemporal preference and the depreciation rate on
the speed of convergence as pointed out in Proposition 2.2.

6 Conclusion

In this paper, we have shown how the close form policy function of an AK model
with time to build can be found by using a not-standard Dynamic Programming
approach, and how this result let us to fully explain the consumption smoothing
e�ects induced by gestation lags in production. The di�erences and similari-
ties with a vintage capital model having linear technology are also exploited by
comparing the closed loop policy function in the two di�erent frameworks and
enlightening the di�erent role of the equivalent capital. Finally several consid-
erations on how delay in production may a�ect the global speed of convergence
are proposed.
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Appendix: Proofs

Proof of Proposition 2.1. First of all we prove (a). Let us de�ne the function{
f(·) : R → R
f(·) : z 7→ z − Ãe−zd.

It can be easily seen that

lim
z→−∞

f(z) = −∞ and lim
z→∞

f(z) = ∞. (53)

Moreover the derivative of f(·) is

f ′(z) = 1 + Ãde−zd > 0

so f is strictly increasing and by (53) it has a unique zero ξ and this prove the
�rst statement. Since f(0) = −Ã < 0 we have that ξ > 0. Moreover

0 < Ã(1− eÃd) = f(Ã)

so, since f(·) is strictly growing, ξ < Ã. This prove the second inequality of
the (11). The �rst can be proved observing �rst that f(·) is concave, indeed it
second derivative is given by

f ′′(z) = −Ãd2edz < 0.

So, in particular, for all real z 6= Ã we have

f(z) < f(Ã) + f ′(Ã)(z − Ã) = Ã(1− e−Ãd) + (z − Ã)(1 + Ãde−Ãd), (54)

and if we consider the unique zero

ξ0 = Ã
e−Ãd(Ãd+ 1)

1 + Ãde−Ãd
6= Ã

of the right hand side of (54) (it is just a straight line varying z in R) we have
f(ξ0) < 0 and since f is growing and ξ is its unique zero the �rst inequality of
(11) follows.

To prove the other parts observe �rst that z is a root of (10) if and only if
w = zd is a root of

w = Ãde−w. (55)
Now it is enough to apply Theorem 3.1 p. 312 of [10] to get (b), (c), (d).

The �rst statement of (e) follows from Theorem 3.12 p.315 of [10]. Indeed
there it is stated that the sequence µk is strictly decreasing. The fact that
µk → −∞ as k → +∞ follows since, rewriting (10) we have

dµk = Ãde−dµk cos(dνk), dνk = −Ãde−dµk sin(dνk),

So from the second equation and the fact (coming from (d)) that νk → +∞ as
k → +∞, the claim follows.

The second statement of (e) follows from Lemma 3.3 p. 312 of [10]. The
�nal statement follows from the second statement and from the fact that (see
Exercise 3.11, p.315 of [10]) µ1 and ν1 are strictly increasing functions of Ãd.
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Proof of Proposition 2.2. It is a simple application of the implicit function the-
orem. For the root ξ one considers the function F (Ã, d, ξ) = ξ − Ãe−ξd and
observe that

∂ξ

∂Ã
= −

∂F
∂Ã
∂F
∂ξ

∂ξ

∂d
= −

∂F
∂d
∂F
∂ξ

,

and make the straightforward computations.
For the root µ1+iν1 to simplify computations we use the fact that z = µ+iν

is a root of (10) if and only if w = zd =: µ̄+ iν̄ is a root of

w = βe−w ⇐⇒
{
µ̄ = βe−µ̄ cos ν̄
ν̄ = −βe−µ̄ sin ν̄

. (56)

where β = Ãd. Then we use the implicit function theorem to �nd dµ̄
dβ ,

dν̄
dβ and

then we use the fact that µ̄ = dµ, ν̄ = dν and that β = Ãd so

∂µ

∂Ã
=

1

d
· ∂µ̄
∂β

· ∂β
∂Ã

=
∂µ̄

∂β

∂µ

∂d
= − 1

d2
µ̄+

1

d

∂µ̄

∂β
· ∂β
∂d

= − µ

d2
+
Ã

d
· ∂µ̄
∂β

and then the claim follows by straightforward computations.

Proof of Proposition 2.3. The �rst part follows easily from the de�nition of
kM (·) and the positivity of c(·). As proved in [3] ξ is the solution of (10)
with highest real part, so the claim follows from [10] page 34.

Proof of Proposition 2.4. For σ > 1 it is obvious since J(k0(·); c(·)) < 0 always.
For σ ∈ (0, 1) we observe that for every c(·) ∈ L1

loc([0,+∞);R+),

J(k0(·); c(·)) ≤
1

1− σ

∫ +∞

0

e−ρt(Akk0,c(t))
1−σ dt ≤

≤ 1

1− σ

∫ +∞

0

e−ρt(AkM (t))1−σ dt < +∞. (57)

where the last inequality follows from part (2) of Proposition 2.3.

Proof of Theorem 3.2. The proof (in a more general case) can be found in [7]
Theorem 5.1 page. 258.
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Proof of Proposition 3.6. v is of course continuous and di�erentiable in every
point of X and its di�erential in x is

Dv(x) = (ν(1− σ)Γ(x)−σ, (1− σ)νΓ(x)−σψ1}) = νΓ(x)−σψ

So Dv(x) ∈ D(G) everywhere in X.
We can also calculate explicitlyGDv and Ãδ−dDv, we have (using that ξ satis�es
the characteristic equation (10) and then Ãδ−d(ψ

1) = ξ):

GDv(x) = (0, (1− σ)νΓ−σξψ1}) (58)

Ãδ−dDv(x) = (1− σ)νΓ−σξ > 0 (59)

so
(Ãδ−dDv(x))

−1/σ = αΓ(x) (60)

For the de�nition of X (Ãδ−dDv)
−1/σ > 0.

If x = (x0, x1) ∈ Y then

Γ(x) ≤ 1

α

A

Ã
x0 (61)

and then (Ãδ−dDv)
−1/σ ≤ A

Ã
x0. So we can use Remark 3.4 and use the Hamil-

tonian in the form of equation (26).
Now it is su�cient substitute (58) and (59) in (26) and verify, by easy calcula-
tions, the relation:

ρv(x0, x1)− 〈(x0, x1), GDv(x0, x1)〉M2 −

−x0Ãδ−dDv((x
0, x1)− σ

1− σ
(Ãδ−dDv((x

0, x1))
σ−1
σ = 0

Proof of Proposition 3.11. Clearly φ ∈ C(M2). Given p ∈M2 we have to prove
that {

d
dtxφ(t) = G∗xφ(t) + Ãδ−d(φ(xφ(t))), t > 0
xφ(0) = p

(62)

has a unique solution in Π. Unfortunately this cannot be done using known
theorems available in the literature so we do it directly.
Informal description of the approach
We begin with an informal description of our approach: along the trajectories
driven by the (candidate) feedback φ we have (using the DDE notation, with u
and y):

u(t) = y(t)− α

(
y(t) +

∫ 0

−d

eξsÃu(t− d− s) ds+

)
=

y(t)α− αeξt
∫ t+d

t

e−ξrÃu(r − d) dr. (63)
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If we take the derivative of such an expression and impose ẏ(t) = Ãu(t− d) we
�nd

u̇(t) = Ãu(t− d)(1− α)−
−α

(
ξÃeξt

∫ t+d

t
e−ξsu(s− d) ds+ Ã(−u(t− d) + e−dξu(t))

)
.

(64)

and u(0) = y(0)(1 − α) − α
∫ 0

−d
eξsu(−d − s = ds. In the (rigorous) proof we

will consider (64), together with the equations ẏ(t) = Ãu(t− d) and the initial
conditions, as a starting point. We will prove the existence and uniqueness
of the solution of such a DDE and, eventually, tranforming such DDE in the
in�nite dimensional setting, the existence and the uniqueness of the solution for
(62).
End of the informal description of the approach
We consider the following DDE in ũ and ỹ:

˙̃u(t) = Ãũ(t− d) (1− α)−
−α

(
ξÃeξt

∫ t+d

t
e−ξsũ(−d+ s) ds+ Ã(−ũ(t− d) + e−dξũ(t))

)
t ≥ 0 (65a)

˙̃y(t) = Ãũ(t− d) t ≥ 0 (65b)
ỹ(0) = y(0) (65c)
ũ(s) = u(s) for s ∈ [−d, 0) (65d)

ũ(0) = (1− α) y(0)− α
∫ 0

−d
eξsÃu(−d− s) ds (65e)

that has an absolute continuous solution (ũ, ỹ) on [0,+∞) (see for example [7]
page 287 for a proof). Setting x̃ := (ỹ, γ̃(t)) where

γ̃(t)[s] = Ãũ(t− d− s) for s ∈ [−d, s),

thanks to Theorem 3.2, x̃(·) satis�es, by (65b), (65c) and (65d),{
d
dt x̃ = G∗x̃(t) + Ãδ−d(ũ(t)), t > 0
x̃(0) = (y(0), γ(0))

Moreover, integrating (65a),

ũ(t) = ũ(0) +

∫ t

0

Ãũ(s− d) (1− α) ds−

− α

∫ t

0

[
ξÃeξs

∫ s+d

s

e−ξrũ(−d+ r) dr + Ã(−ũ(s− d) + e−dξũ(s))

]
ds =

(65)

(integrating by part in the double-integral term)

= ũ(0) +

∫ t

0

Ãũ(s− d) (1− α) ds−

− α

(∫ 0

−d

eξrũ(t− d− r) dr

)
+ αÃ

∫ d

0

e−ξrũ(−d+ r) dr = (66)
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(using (65e))

= (1− α) ỹ(0) +

∫ t

0

˙̃y(s) (1− α) ds− α

(∫ 0

−d

eξrũ(t− d− r) dr

)
=

= ỹ(t) (1− α)− α

(∫ 0

−d

eξrũ(t− d− r) dr

)
=

= x̃0(t) (1− α)− α

(∫ 0

−d

eξrx̃1(t)[r] dr

)
= φ(x̃(t)) (67)

and so {
d
dt x̃(t) = G∗x̃(t) + Ãδ−d(φ(x̃(t))), t > 0
x̃(0) = (y(0), γ(0))

and then x̃(t) is a solution of (62). The uniqueness follows from the linearity of
φ so. This prove that φ ∈ FSp.

Proof of Theorem 3.12. To prove the �rst statement we take the derivative of
the expression Γ(xphi(t)) = 〈ψ, xφ(t)〉. Note that, since φ is a feedback strategy
(Proposition 3.11) and φ ∈ D(G) (as observed in (29)) such derivative exists
and (from (21)) we have

d

dt
Γ(xφ(t)) =

d

dt
〈ψ, xφ(t)〉 = 〈Gψ, xφ(t)〉+ Ãδ−dψφ(xφ(t)) =

(thanks to the de�nition of ψ given in (28)

= ξ
〈
ψ1, xφ(t)

〉
+ Ãe−ξd

(
(x0φ(t)− αΓ(xφ(t)))

)
=

(
since ξ = Ãe−ξd

)
=
[
ξ
〈
ψ1, xφ(t)

〉
+ ξ(x0φ(t)

]
− ξαΓ(xφ(t))) = ξ(1− α)Γ(xφ(t))). (68)

This conclude the proof of the �rst statement.
To prove the invariance of Ic let us take a c < c̄ and a p = (p0, p1) ∈ Ic. For

t ≥ 0 we have that (we call xφ simply x)

u(t) = φ(x(t)) := x0(t)− α

(∫ 0

−d

eξsx1(t)[s] ds+ x(t)
0

)
(69)

where (x0(t), x1(t)) is the trajectory starting from p. Since, thanks to Theorem
3.11, φ ∈ FSp then the trajectory (x0(·), x1(·)) is continuous and then u(·) is
continuous on [0,+∞). Let t̄ ∈ [0,+∞) be, by contradiction, the �rst time such
that u(t̄) ≤ 0 or u(t̄) ≥ x0(t̄). We have

u(t̄) = x0(t̄)− α

(∫ 0

−d

eξsx1(t̄)[s] ds+ x(t̄)
0

)
(70)
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Since p1 ≥ 0 and u(t) > 0 for all t ∈ [0, t̄) then x0(t) is always growing17 on
[0, t̄]. Now for t ≥ 0 and s ∈ [−d, 0] we have:

x1(t)[s] =

{
p1[s− t] if s− t > −d
Ãu(t− d− s) if s− t < −d (71)

Then, since p ∈ I, we have, for almost every s ∈ (−d, 0),

0 ≤ x1(t̄)[s] ≤ cx0(t̄)

and so
∫ 0

−d
eξsx1(t̄)[s] ds ≤ c

ξ

(
1− e−ξd

)
x(t̄)

0
, then

0 < α

(∫ 0

−d

eξsx1(t̄)[s] ds + x(t̄)
0

)
≤ α

(
c

ξ

(
1− e−ξd

)
+ 1

)
x(t̄)

0
(72)

where the �rst inequality follows from the fact that x0(t̄) ≥ x0(0) > 0. So,
from the �rst inequality of the (72) and from (70), we have immediately that
u(t̄) < x0(t̄). Moreover from (70) and the second inequality of (72) we have

u(t̄) ≥ x0(t̄)

[
1− α

(
c

ξ

(
1− e−ξd

)
+ 1

)]
and then, thanks to the fact that c < c̄ we have

0 < u(t̄).

Summarizing u(t̄) > 0 and u(t̄) < x0(t̄) and this is a contradiction with the
de�nition of t̄. So, for t ≥ 0, u(t) ∈ (0, x0(t)). This also implies that x0(t) is
always growing and then (since x0(0) > 0) anways strictly positive. Thanks to
the relation (71) Ic is an invariant set and we have the claim.

Proof of Corollary 3.13. It follows easily by the fact that by Theorem 3.12, ev-
ery Ic is invariant.

Proof of Theorem 3.15. 1. To prove that I ⊆ Y we have only to verify that
for every Ic (with c < c̄) Ic ⊆ X and the inequality appearing in the (31) is
satis�ed. The �rst fact follows by the strict positivity of x0 and by the positivity
of x1(·) of the element of Ic. To prove the inequality appearing in (31) we have
only to observe that, on I(∫ 0

−d

eξsx1[s] ds+ x0
)

≤
(
c

ξ

(
1− e−ξd

)
+ 1

)
x0 <

1

α
x0 ≤ A

Ã

1

α
x0

17Since x0(t) solves the DDE:

x0(t) = p0(0) +

∫ t∧d

0

p1[−s]

Ã
ds+

∫ (t−d)∧d

0
u(s) ds.

This fact easily follows by the fact that x0(t) = y(t) where y(t) follows the DDE in (65).
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where the �rst inequality follows from the de�nition of Ic (as in (72)) and the
second by Hypothesis 3.14 and by the de�nition of c̄. So we have that I ⊆ Y .
We take now p ∈ I, in particular p ∈ Ic for some Ic with c < c̄. Considering
the evolution of the system starting from p and driven by the feedback φ is the
same that considering the evolution of equation (37) starting from p. But from
Theorem 3.12 we know that Ic is invariant for the �ow of (37) and then the
trajectory starting from p ∈ Ic remains in Ic and then, since Ic ⊆ Y , remains in
Y and then, thanks to the de�nition of Y and the fact that along the paths of
(37) we have (69) we have that u(·) ∈ A0(p) and so φ ∈ AFSp.

2. Now we prove that φ ∈ OFSp. We consider v as de�ned in Proposition
3.6. From what we have just said on the admissibility of u(t) follows that x(·)
remains in Y as de�ned in (31) and so the Hamiltonian can be expressed in the
simpli�ed form (26) recalled in Remark 3.4. Moreover, thanks to Theorem 3.6
v is a solution of HJB on the points of the trajectory.
We introduce: {

ṽ(t, x) : R×X → R
ṽ(t, x) := e−ρtv(x) (v is de�ned in (32)).

(73)

Using that (Dv(x(t))) ∈ D(G) and that the function x 7→ Dv(x) is continuous
with respect the norm of D(G) (see the proof of Proposition 3.6 for the explicit
form of Dv(x)), we �nd:

d

dt
ṽ(t, x) = −ρṽ(t, x(t)) + 〈Dxṽ(t, x(t)), G

∗x(t) + (Ãδ−d)
∗u(t)〉D(G)×D(G)′

− ρe−ρtv(x(t)) + e−ρt
(
〈GDv(x(t)), x(t)〉M2 + (Ãδ−d)Dv(x(t))u(t)

)
(74)

By de�nition (recalling that u(·) = φ(x)(·)):

v(p)− J0(p, u(·)) = v(x(0))−
∫ ∞

0

e−ρt (x
0(t)− φ(x)(t))1−σ

(1− σ)
dt =

Then, using (74) (using Proposition 2.3 to guarantee that the integral is �nite
and that the �boundary term at ∞� vanishes), we obtain

=

∫ ∞

0

e−ρt

(
ρv(x(t))− 〈GDv(x(t)), x(t)〉M2 − 〈(Ãδ−d)Dv(x(t)), u(t)〉R

)
dt−

−
∫ ∞

0

e−ρt

(
(x0(t)− u(t))1−σ

(1− σ)

)
dt =

=

∫ ∞

0

e−ρt

(
ρv(x(t))− 〈GDv(x(t)), x(t)〉M2

−〈(Ãδ−d)Dv(x(t)), u(t)〉R − (x0(t)− u(t))1−σ

(1− σ)

)
dt =
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using Theorem 3.6

=

∫ ∞

0

e−ρt

(
H(x(t), Dv(x(t)))−HCV (x(t), Dv(x(t)), u(t))

)
dt (75)

The conclusion follows by three observations:

1. Noting that H(x(t), Dv(x(t))) ≥ HCV (x(t), Dv(x(t)), u(t)) the (75) im-
plies that, for every admissible control λ(·), v(p) − J0(p, λ(·)) ≥ 0 and
then v(p) ≥ V0(p).

2. The original maximization problem is equivalent to the problem of �nd a
control λ(·) that minimize v(p)− J0(p, λ(·))

3. The feedback strategy φ achieves v(p)−J0(p, u(·)) = 0 that is the minimum
in view of point 1. Moreover this implies that v(p) ≥ V0(p).

Proof of Lemma 4.4. The �rst statement follows by Theorem 3.12. In view of
Proposition 4.2 along optimal trajectory we have:

Λegt = y∗(t)− u∗(t) = α

(∫ 0

−d

Ãeξsu∗(t− s− d) ds+ y∗(t)

)
so to compute the explicit value of Λ we only have to compute the value of the
right side at time 0 and we �nd

Λ = α

(∫ 0

−d

eξsÃu(−s− d) ds+ y(0)

)
.

This concludes the proof.

Proof of Proposition 4.6. The existence of the limit yL for ȳ(t) is proved in [3]
(in Proposition 2 page 1027 the author proves the existence of the limit for
k̄(t) = 1

Ay(t + d)). This implies, thanks to Corollary 4.5 the existence of the
limit uL. We can here compute explicitly the value of such limits using the
explicit form of the optimal feedback (39). Namely we have only to impose,
from (39)

uL = yL − α

(
yL + Ã

∫ 0

−d

eξsuLe
−gse−gd ds

)
=

= yl(1− α)− 1− e−(ξ−g)d

ξ − g
uLαÃe

−gd (76)

and then

uL = yL
1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd
. (77)
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Moreover from Corollary 4.5 we have that

uL = yL − Λ. (78)

Using (77) and (78) we �nd:

yL = Λ

(
1− 1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd

)−1

and

uL = Λ

(1− 1− α

1 + 1−e−(ξ−g)d

ξ−g αÃe−gd

)−1

− 1


and so we have the claim.

Proof of Theorem 4.7. All the statements are corollaries of the results of Section
4. More precisely:

1. Follows from Lemma 4.4 and by relations (44)-(45).

2. Follows from the previous point and (1).

3. Follows from Proposition 4.1 and by relations (44)-(45).

4. Follows from Proposition 4.6 and by relations (44)-(45) and by (17).

5. Follows from the point 4 above and [6].
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