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lation is uniformly distributed along the unit circle. Locations only
differ in initial capital endowments. Despite constant returns to cap-
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1 Introduction

The issue of optimal and market allocation of economic activity across space
has always been a central issue in economic theory from the seminal works of
Hotelling (1929) and Salop (1979). Many authors have already investigated
in depth the existence (and sometimes the non-existence) of optimal and/or
market allocation in static models (among them, Starrett, 1974 and 1978).
Recently, some authors have tried to tackle the issue of the spatial alloca-
tion of economic activity in dynamic frameworks, namely within economic
growth frameworks (thus, with capital accumulation). This research line,
initiated by Brito (2004), is nicely surveyed by Desmet and Rossi-Hansberg
(2010). Two aspects turn out to be crucial: factor mobility and space mod-
elling. On the first aspect, Brito and Boucekkine, Camacho and Zou (2009)
consider frictionless capital mobility while Brock and Xepapadeas (2008) use
the trick of a spatial externality to model the spatial component (without
capital mobility). In the former papers, the production function at any place
is neoclassical (decreasing returns in capital): capital flow from regions with
low marginal productivity of capital to regions with high marginal produc-
tivity.

Concerning spatial modelling, both Brito and Boucekkine et al. consider
an infinite spatial line, symmetrical to the infinite time horizon adopted in
standard growth theory. But while Boucekkine et al. introduce spatial dis-
counting (again mimicking time discounting) to ensure the convergence of
the resulting utilitarian objective function, Brito postulates a non-utilitarian
objective function and gets rid of spatial discounting. Brock and Xepapadeas
(2008) take a compact interval to model space, therefore avoiding this tech-
nical problem. A striking finding of Boucekkine et al. is that the model
with infinite time and space support, and utilitarian objective function with
strictly concave preferences, which is admittedly the most natural candidate
for spatial Ramsey model, suffers from a structural ill-posedness problem:
in contrast to the non-spatial Ramsey model, the initial value of the co-state
variable is no longer sufficient to determine the optimal paths. Rather than
considering a non-standard objective function as in Brito (2004), we fol-
low here the example of Brock and Xepapadeas (2008) and consider a more
realistic compact modelling of space. However, in sharp contrast to these
authors, we do not consider a compact interval on the real line but a circle,
which is another traditional modelling of space in economics (Salop, 1979).
A very important advantage of our modelling is that it does not require the
specification of any space boundary conditions, to which the solution paths
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are arguably extremely sensitive. We also keep capital mobility in line with
Boucekkine et al. (2009).

In order to gather at least some partial clean analytical results, we
will consider an AK technology. Using recent developments in dynamic
programming in infinitely-dimensioned problems (Bensoussan et al., 2007),
previously implemented in the literature of vintage capital theory (Fabbri
and Gozzi, 2008), it is possible to identify an explicit value function under
quite reasonable parametric conditions. As in the standard AK model, a
benevolent social planner will choose a constant consumption level (that is
detrended consumption): in our spatial set-up, this turns out to be true
not only over time but also over space assuming homogeneous preferences
and technology over space. Also, we will show that the aggregate capital
stock, that’s the aggregation of capital stocks across space, lies on a balanced
growth path from t = 0, featuring the absence of transitional dynamics for
the aggregate variables as in the standard AK theory. A major and strik-
ing departure from the standard theory will nonetheless emerge: while the
aggregate capital stock shows no dynamics, an intense reallocation of cap-
ital will take place across space giving rise to transition dynamics at any
point in space. Even more strikingly, these spatio-temporal dynamics will
lead to the convergence of (time detrended) capital stocks across space to
the same common value whatever the initial spatial distribution of capital
under certain realistic assumptions.

Two crucial points should be made here. First of all, the spatial dynam-
ics generated in the AK case are essentially different from those exhibited in
Boucekkine et al.: in the former, there are no decreasing returns to capital,
and the whole dynamics derive from the will of the benevolent planner to
keep consumption level constant over time and space, and to move capital
accordingly. Second, the similarity between the AK vintage model (as stud-
ied initially in Boucekkine et al., 2005, and revisited by Fabbri and Gozzi,
2008) and the AK spatial model should be noted here: in both, capital has
a double heterogeneity (time and vintage in the vintage AK model, and
time and space in the spatial AK), resulting in finitely-dimensioned optimal
control problems; in both detrended consumption is constant, and capital
transition dynamics emerge.

This said, the spatial modelling adopted in this paper allows to get much
more specific and striking results concerning the property of economic con-
vergence as outlined above. In our setting, returns to capital are constant,
and one would not take for granted convergence of capital stocks over space,
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that’s transition dynamics equalizing capital across space. Typically, de-
creasing returns to capital are invoked as the engine of convergence in the
neoclassical growth model. Things are much more involved if one keeps
in mind that in our framework initial capital stock is heterogenous across
space, which could be at first glance related to the literature of growth with
heterogenous initial endowments (initiated by Stiglitz, 1969, and pushed
forward by Chatterjee, 1994).a In this literature, decreasing returns to cap-
ital are not enough to ensure convergence of wealth across individuals: if
they differ only in their initial endowments and share the same homothetic
preferences, initial inequalities will be reproduced for ever! In a sense, our
paper establishes a kind of symmetric property: convergence is obtained
under constant return to capital. This said, one should not omit the specific
nature of spatial dynamics. Among other specific results, we analytically
show that convergence of capital stocks across space is guaranteed when the
time discount rate is not to big, a requirement which does not appear in the
growth literature with heterogenous endowments.

The paper is organized as follows. Section 2 sketches the model. Section
3 displays the analytical results. Section 4 provides some numerical illus-
trations and exercises regarding the convergence and divergence questions
outlined above. Section 5 concludes.b

2 The model

We first present the law of motion of capital in time and space. We
shall follow here the very generic modelling adopted in the related literature
(as recently re-used by Boucekkine et al., 2009). At a given point (t, x) ∈
[0,∞) × R, physical capital k(t, x) evolves according to

∂k

∂t
(t, x) = Ak(t, x) − c(t, x) − τ(t, x). (1)

A represents the level of technology, which we assume to be constant over
time and space. The production function is AK at any point in space. c(t, x)
and τ(t, x) stand respectively for consumption and trade balance at the trade
balance at (t, x) ∈ [0,∞) × R. Capital depreciation is zero everywhere.
Finally, we assume that there is no adjustment or transportation cost when
moving capital from a location to another. Such costs traditionally generate

aSee also Caselli and Ventura (2000) for a more recent contribution.
bWe report the heavy mathematical apparatus needed to solve the model in the ap-

pendix.
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non-instantaneous adjustment (to the optimal outcomes), we switch off this
dynamics engine in this model to only rely on spatial dynamics (if any).

Now we come to the space modelling. We assume that individuals are
distributed homogeneously along the unit circle, which we denote by T:

T :=
{

x ∈ R
2 : |x| = 1

}

Two remarks are in order here. First of all, our assumption of a non-
growing and spatially homogeneous population distribution is made for
convenience. Considering an heterogenous spatial population distribution
would lead to introduce space weights in the objective social welfare func-
tion, which will break down the simple analytical solution derived in this
paper. We prefer sticking to our analytical case for clarity. Second, as ar-
gued in the introduction section, the choice of the unit circle to represent
space is not innocuous, it allows to avoid the specification of boundary con-
ditions, which use to condition decisively the shape of optimal dynamics.
It is worth mentioning here that the results obtained along this paper are
robust to certain modifications of the space geometry. More precisely, we
can study the problem on a more general n-dimensional compact and con-
nected manifold without boundary but the mathematical apparatus has to
be adapted accordingly.c

Let us focus on the trade balance in region B, an arc of the circle. We
have that

∫

B

τ(t, x) dx =
∂k

∂x
(t, b) −

∂k

∂x
(t, a),

the regional trade balance is equal to the capital entering from one or its
borders less the capital flowing away from the other border. Using the
Fundamental Theorem of Calculus we can rewrite the above expression as

∫

B

τ(t, x) dx =

∫

B

∂2k

∂x2
(t, x) dx. (2)

Hence the following equality holds in region B:

∫

B

(

∂k

∂t
(t, x) −

∂2k

∂x2
(t, x) − Ak(t, x) + c(t, x)

)

dx = 0. (3)

The evolution of physical capital at any point (t, x) ∈ R
+ × B is obtained

using (3) when the length of B tends to zero, for any B arc of T. Provided

cIn this more general setting the Laplace operator on T considered here has to be
replaced by the so-called Laplace-Beltrami operator on the manifold.
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an initial distribution of physical capital k0(·) on T , the policy maker has
to choose a control c(·, ·) to maximize the following functional

max
c(·,·)

J(k0, c(·, ·)) :=

∫ +∞

0
e−ρt

∫

T

(c(t, x))1−σ

1 − σ
dxdt. (4)

subject to the state equation















∂k

∂t
(t, x) =

∂2k

∂x2
(t, x) + Ak(t, x) − c(t, x)

k(t, 0) = k(t, 2π)
k(0, x) = k0(x).

(5)

We define Uk0 as the set of admissible controls for the problem (4)-(5), which
depends on the initial distribution k0:

Uk0 :=
{

c(·, ·) ∈ L2(R+ × T; R+) : k(t, x) ≥ 0 for all (t, x) ∈ R
+ × T

}

(6)
The value function of our problem starting from k0 is defined as

V (k0) := sup
c(·,·)∈Uk0

J(k0, c(·, ·))

A few comments are in order here. In first place, it should be noted
that the social welfare objective function considered “treats” equally all
the individuals independently of their location, that is independently of
their initial capital endowment. One would invoke ethical criteria to justify
a spatially-weighted objective function, for example to account for initial
inequalities. Here we show that without this kind of weighting, capital
stocks will end up equalized across space. It should be also noted that we
concentrate here on planner’s optimal solutions, we do not address the issue
of decentralization, which would probably bring us close to consider spatial
weighting in the spirit of Negishi (1960). The next section is devoted to
uncover the main analytical properties of our central planner problem.

3 Spatial dynamics in the AK model: analytical

results

We shall start by characterizing a crucial property of the optimal solution:
As in the pre-exiting AK frameworks (with or without vintage capital), the
planner will choose a constant consumption level over time and space, and
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all aggregate variables will grow at a constant growth rate from t = 0. The
next proposition establishes the existence of a unique explicit value function
and gives a first characterization of optimal consumption.

Theorem 3.1. Suppose that

A(1 − σ) < ρ (7)

and consider k0 ∈ L2(T) a positive initial distribution of physical capital.
Define

η :=
ρ − A(1 − σ)

2πσ
. (8)

Provided that the trajectory k∗(t, x) driven by the feedback control (constant
in x)

c∗(t, x) = η

∫

T

k∗(t, y) dy (9)

remains positive,d c∗(t, x) is the unique optimal control of the problem.
Moreover the value function of the problem is finite and can be written ex-
plicitly as

V (k0) = α

(
∫

T

k0(x) dx

)1−σ

(11)

where

α =
1

1 − σ

(

ρ − A(1 − σ)

2πσ

)−σ

. (12)

Proof. See Appendix B.

The theorem deserves some comments. First of all, the parametric condi-
tion (7) is exactly the one needed in the counterpart standard AK theory to
assure that the objective function is finite (or equivalently, that the transver-
sality condition is met). It is also needed here to guarantee that the value
function of the problem is finite. The value function V (k0) is given explicitly
by (11): notice that it depends only on the aggregate initial capital stock.
Two different capital distributions will give the same value function, and

dThe trajectory driven by the feedback control is the unique solution of






















∂k(t, x)

∂t
= ∂2

xk(t, x) + Ak(t, x) − η

∫

T

k(t, y) dy

k(t, 0) = k(t, 2π)

k(0, x) = k0(x).

(10)
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therefore the same optimal consumption rule (here given by equation (9)):
the optimal solution features therefore a kind of pooling of resources, which
is hardly surprising given the social optimum framework considered here.
Finally, one has to notice that both the value function and the feedback
control are similar to those of the standard AK model. However, the pro-
portionality parameters η and α are specific to the space modelling adopted
in this paper. We now extract the optimal solutions for the aggregate capital
stock and the induced optimal consumption rule at any point (t, x).

Proposition 3.2. Under the same assumptions of Theorem 3.1 the aggre-
gate capital K(t) :=

∫

T
k(t, y) dy, along the optimal trajectories, is

K(t) = K(0)eβt (13)

where

β :=

[

A − ρ

σ

]

. (14)

and K(0) :=
∫

T
k0(y) dy.

Proof. See Appendix B.

Notice that the optimal aggregate capital stock evolves exactly as in the
standard AK model: it grows at the same standard growth rate, β = A−ρ

σ
,

from t = 0. From (7), one can then use (13) to obtain that the optimal con-
trol is c∗(t, x) = ηK(0)eβt. As announced repeatedly above, we obtain the
crucial property that the planner will choose the same (detrended) consump-
tion level for all individuals whatever their location and generation. Thus,
the aggregate variables have no transition dynamics just like in the stan-
dard AK theory. Nonetheless, if the planner is willing to keep (detrended)
consumption constant over time and space, he has to move capital over time
and space accordingly. What could be the induced optimal spatio-temporal
dynamics? The next theorem gives the answer to this appealing question.
Indeed, once we obtain an explicit solution for the optimal choice of the
policy maker, we can replace it into (5) to study the evolution of physi-
cal capital. This can be done explicitly in our setting under an additional
parametric condition.

Theorem 3.3. Assume that the hypotheses of Theorem 3.1 are satisfied.
Suppose that

ρ < A(1 − σ) + σ. (15)
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Then, along the optimal trajectory, the detrended capital

kD(t, x) :=
k(t, x)

eβt
(16)

converges uniformly (and a fortiori pointwise), as a function of x, to the

constant function K(0)
2π

when t tends to infinity. In other words

lim
t→∞

(

sup
x∈T

∣

∣

∣

∣

kD(t, x) −
K(0)

2π

∣

∣

∣

∣

)

= 0.

Proof. See Appendix B.

Theorem 3.3 is the main result of this paper: it shows that the spatio-
temporal dynamics induced by the willingness of the planner to give the same
(detrended) consumption over space and time lead to equalize the capital
level across locations in the long-run. Hence, spatio-temporal dynamics do
eliminate the initial inequalities in capital endowments in our spatial AK
model. As mentioned in the introduction, this result is striking in many re-
spects, notably with respect to the traditional theory of convergence, which
typically builds on representative agents settings. In the latter, decreasing
returns to capital drive convergence while AK technologies are associated
with divergence (due to the absence of transition dynamics). If one has in
mind the existing (rather thin) literature on the link between growth and
inequalities where individuals have heterogenous initial endowments, then
our result could be interpreted at first glance as symmetrical to the tradi-
tional property highlighted by Chatterjee (1994): under decreasing returns
to capital, initial inequalities will be reproduced for ever. This said, the
spatial dynamics entailed in our model are specific (though they derive from
a generic law of motion of capital in space and time). In particular, our con-
vergence result is guaranteed when ρ < A(1−σ)+σ. Otherwise, everything
can happen. Notice however, that this condition is very largely satisfied
in realistic parameterizations of the model. The next section provides a
complementary numerical investigation.
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4 Spatial dynamics in the AK model: computa-

tional results

We perform a numerical exercise to shed more light on the transitional
dynamics of the spatial AK-modele. We use the isomorphism between the
circumference T and the closed interval [0, 2π] once we have identified the
two boundary points 0 and 2π. There are three parameters key to our
modelling, ρ, A and σ. In the Ak-model, A = Y/k and consequently we
choose A = 1/3 as a reasonable ratio output to physical capital. Then we
fix ρ = 0.07 and σ = 0.8, the set {ρ,A, σ} satisfies both (7) and (15).

Table 1: Parameters values

Total Factor Productivity A 1/3
Time discount rate ρ 0.07
Intertemporal elasticity of substitution σ 0.8

Provided that conditions (7) and (15) holdf, Theorem 3.3 proves that

detrended capital at any point (t, x) converges to the constant function K(0)
2π

when t tends to infinity. To illustrate this result, we study the case of an
economy made of two regions, the first region, [0, π] is initially endowed with
twice the capital of the second region, [π, 2π], namely

k0(x) =

{

20, x ∈ [0, π],
10, x ∈ [π, 2π].

Theorem 3.3 shows that the policy maker allocates the same amount of
consumption to all locations x at any time t. In the standard Ak-model the
optimal trajectory instantaneously adjusts to the optimal consumption and
production plan. This behavior does no longer hold when physical capital is
allowed to move across space as figures 1 and 2 show. Capital moves from

eProvided that conditions (7) and (15) hold, the optimal trajectory of physical capital
can be simulated using the Fourier series of kD:

kD(t, x) =
K(0)

2π
+
∑

n∈N

n6=0

e(A−n2−β)t

√
π

(

cos(nx)

∫

T

k0(x) cos(nx)dx + sin(nx)

∫

T

k0(x) sin(nx)dx

)

For our exercise n = 20.
fFor A = 1/3 and σ = 0.8, the range of values for ρ which satisfies conditions (7) and

(15) is ]0.0667, 0.8667[.
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rich locations towards poor ones, but adjustment is not instantaneous since
it takes time for capital to achieve its final location. As capital moves a
wave appears and it brings about the emergence of a temporary production
agglomeration in the rich region. Simultaneously, a depressed area is formed
in the center of the poor region. When capital moves from left to right, all
locations in the rich region send capital to the poor region to reach the
optimal path. The depressed area appears since capital moves from t = 0
and from left to right, also within the poor region, without waiting for the
locations to achieve a level close to optimal to pass capital. With time,
both the agglomeration and depression lose force and we can observe a
complete convergence to the spatially homogenous steady state value for
detrended capital from t = 10. The graphs show physical capital across
space at different moments: on the top panel of figure 1 at times t = 0.02,
t = 0.2, t = 1 and t = 10. The bottom panel shows the optimal trajectory
of detrended physical capital for (x, t) ∈ [0, 2π] × [0, 8]g.

Figure 2 illustrates the importance of condition (15). For this example
ρ = A(1−) + σ = 0.8667 and we can see that detrended capital does not
converge to an spatially homogenous distribution. A noteworthy aspect is
that detrended physical capital does converge to a steady state, and it does
so very fast.

gConvergence towards the steady state would have been slower if transportation costs,
adjustment costs, capital depreciation or trade barriers had been present.
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Figure 1: On the top panel: physical capital distribution at t = 0.02, 0.2, 1, 10.
The bottom panel shows k(t, x) where (t, x) ∈ [0, 8]× [0, 2π].

12



0 1 2 3 4 5 6
0

5

10

15

20

25

30

Space from 0 to 2π

k

 

 

t = 0.02
t = 0.2
t = 1
t = 10

0
2

4
6

8
10

0246
0

5

10

15

20

25

30

TimeSpace, x ∈ [0, 2π]

Figure 2: On the top panel: physical capital distribution at t = 0.02, 0.2, 1, 10.
The bottom panel shows k(t, x) where (t, x) ∈ [0, 8]× [0, 2π].
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5 Concluding remarks

In this paper, we have shown how spatial dynamics, introduced through a
generic law of motion of capital, interact with the mechanics inherent to the
AK model. The main result of our work is that the spatio-temporal dynam-
ics, induced by the willingness of the planner to give the same (detrended)
consumption over space and time, lead to convergence in the level of capital
across locations in the long-run. An important opened line of research is to
study to which extent our results are robust to the introduction of spatial
weights in the objective function to cope with specific ethical criteria. An-
other one, more ambitious, would address decentralization in an attempt to
extend Negishi’s work to this type of spatial models.

References

[1] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter. Repre-
sentation and control of infinite dimensional system. Second edition.
Birkhäuser, Boston, 2007.

[2] R. Boucekkine, O. Licandro, L. Puch and F. del Rı́o. Vintage capital
and the dynamics of the AK model. Journal of Economic Theory 120,
39-76 (2005).

[3] R. Boucekkine, C. Camacho and B. Zou. Bridging the gap between
growth theory and the new economic geography: the spatial Ramsey
model. Macroeconomic Dynamics 13, 20-45 (2009).

[4] P. Brito. The dynamics of growth and distribution in a spatially het-
erogenous world. WP 13/2004, ISEG Working Papers (2004).

[5] W. Brock and A. Xepapadeas. General pattern formation in recursive
dynamical systems in economics. MPRA paper 12305 (2008).

[6] F. Caselli and J. Ventura. A representative consumer theory of distribu-
tion. The American Economic Review 90, 909-926 (2000).

[7] S. Chatterjee. Transitional dynamics and the distribution of wealth in
a neoclassical growth model. Journal of Public Economics 54, 97-119
(1994).

[8] K. Desmet and E. Rossi-Hansberg. On spatial dynamics. The Journal of
Regional Science 50, 43-63 (2010).

14



[9] G. Fabbri and F. Gozzi. Solving optimal growth models with vintage cap-
ital: The dynamic programming approach. Journal of Economic Theory
143, 331-373 (2008).

[10] H. Hotelling. Stability in competition. Economic Journal xxxix, 41-57
(1929).

[11] T. Negishi. Welfare economics and existence of an equilibrium for a
competitive equilibrium. Metroeconomica 12, 92-7 (1960).

[12] S.Salop. Monopolistic competition with outside goods. Bell Journal of
Economics 10, 141-156 (1979).

[13] D. Starrett. Market allocations of location choice in a model with free
mobility. Journal of Economic Theory 17, 21-37 (1978)

[14] D. Starrett. Principles of optimal location in a large homogenous region.
Journal of Economic Theory 9, 418-448 (1974).

[15] J. Stiglitz. Distribution of income and wealth among individuals. Econo-
metrica 37, 382-397 (1969).

15



Appendices

A The Hilbert space setting

Consider the Hilbert space L2(T) and define the operator

{

D(G) := H2(T)
G(f) = ∆f.

G is the generator of the C0-semigroup etG (the heat semigroup) on L2(T). The
operator G is self-adjoint (so D(G∗) = D(G) and G∗φ = Gφ = ∆φ). The state
equation (5) can be rewritten as an evolution equation in L2(T)

{

k̇(t) = Gk(t) + Ak(t) − c(t)
k(0) = k0.

(17)

With an abuse of the notation we denote by k(·) the solution of (17). This
is justified by the fact that k(t)(x) = k(t, x) where the latter is the solution
of (5). The set of the admissible controls in the infinite dimensional setting is
{

c ∈ L2
(

R
+; L2(T; R+)

)

: k(t)(x) ≥ 0 for all (t, x)
}

. It is exactly equivalent to
the set Uk0

defined in (6) so the abuse of the notation “c” is justified too. The mild
form of (17) is

k(t) = eGtk0 +

∫ t

0

e(t−s)G (Ak(s) − c(s)) ds.

Let us denote by 〈·, ·〉 the scalar product on L2(T) and by 1 the function

{ 1 : T → R1(x) ≡ 1.

Note that 1 ∈ D(G). Using such a notation the functional (4) can be rewritten as

∫ +∞

0

e−ρt 〈1, U(c(t))〉 dt

where, for a given η ∈ L2(T), U(η) : T → R is the function U(η) : x 7→ (η(x))1−σ

1−σ .

The Hamilton-Jacobi-Bellman equation (HJB equation hereafter) of the system is
defined as

ρv(k) = 〈k, G∇v(k)〉 + A 〈k,∇v(k)〉 + sup
c∈L2(T;R+)

{− 〈c,∇v(k)〉 + 〈1, U(c)〉} . (18)

B Proofs

This sections contains the proofs of the theorems and of the propositions presented
in the text. We use the setting and the notation introduced in Appendix A. The
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statement of the theorems in Section 3 are formulated, for the reader convenience,
without using the infinite dimensional language (we used there the PDE formalism),
but, of course, they are completely equivalent to the related infinite-dimensional
ones we present here.

Proof of Theorem 3.1. We prove the theorem using the dynamic programming.
The proof is presented in some steps:

Step 1: We find an explicit solutionh of the HJB equation (18) on the open set
Ω :=

{

k ∈ L2(T) : 〈k,1〉 > 0
}

.

We look for a solution of (18) of the following form: v(k) = α 〈k,1〉1−σ
for

some positive real number α, so that ∇v(k) = α(1 − σ) 〈k,1〉−σ 1. Note that, for
all k ∈ Ω, ∇v(k) ∈ D(G) and that ∇v : Ω → D(G) is continuous (when D(G) is
endowed with the graph norm). Substituting in (18) we obtain:

ρα 〈k,1〉1−σ = α(1 − σ) 〈k,1〉−σ 〈k, G1〉 + Aα(1 − σ) 〈k,1〉−σ 〈k,1〉
+ sup

c∈L2(T;R+)

{

−α(1 − σ) 〈k,1〉−σ
〈c,1〉 + 〈1, U(c)〉

}

.

Observing that G1 = 0 and that the supremum is attained when c =

(α(1 − σ))
−1/σ

〈k,1〉1 the expression above becomes:

ρα 〈k,1〉1−σ
= Aα(1 − σ) 〈k,1〉1−σ

− 2πα(1 − σ) (α(1 − σ))
−1/σ

〈k,1〉1−σ
+ 2π

[

(α(1 − σ))−1/σ 〈k,1〉]1−σ

1 − σ
. (19)

From (19) we have

ρ = A(1 − σ) − 2π(1 − σ) (α(1 − σ))
−1/σ

+ 2π (α(1 − σ))
−1/σ

so there exists a solution of the requested form when

α =
1

1 − σ

(

ρ − A(1 − σ)

2πσ

)−σ

.

Before passing to step 2 we make an observation that will be useful later: given
an admissible (and hence positive) control c(·), the related trajectory k(·) is given by
the solution of (17). Therefore at every time and at every point x of the space k(·)

remains below the solution of ˙̄k(t) = Gk̄(t) + Ak̄(t) with k̄(0) = k0. In particular,

hWe say that v from some open set O in L2(T) to R is a solution (on O) of (18) if
v ∈ C1(O; D(G)) (where D(G) is endowed with the graph norm) and v solves (18) at
every point of O.
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for all t ≥ 0,
〈

k̄(t),1〉 ≥ 〈k(t),1〉. k̄(t) can be expressed as k̄(t) = etAetGk0 so that
〈

k̄(t),1〉 = etA
〈

k̄0,1〉. This means that for every choice of c(·) we have

∣

∣e−ρtv(k(t))
∣

∣ = e−ρtα 〈k(t),1〉1−σ
≤ e−ρtα

〈

k̄(t),1〉1−σ

= e−ρtetA(1−σ)
〈

k̄0,1〉 = e−(ρ−A(1−σ)t)
〈

k̄0,1〉 t→∞
−−−→ 0 (20)

where we obtain the last limit thanks to Hypothesis (7).

Step 2: We prove that the feedback control provided by the solution is admissible.
The feedback control provided by the solution is










φ : L2(T) → L2(T)

φ(k) := arg maxc∈L2(T)

{

−α(1 − σ) 〈k,1〉−σ
〈c,1〉 + 〈1, U(c)〉

}

=

= (α(1 − σ))−1/σ 〈k,1〉1 = η 〈k,1〉1 (21)

where η = ρ−A(1−σ)
2πσ , the related trajectory is the solution of the mild equation

k(t) = eGtk0 +

∫ t

0

e(t−s)G (Ak(s) − η 〈k,1〉1) ds. (22)

Proving that such an equation has a unique solution k∗(t) and that k∗(t)(x) =
k∗(t, x) where k∗(t, x) is the solution of (10) are standard facts (see for example
Bensoussan et al. (2007) ). The control we want to prove to be admissible (and that
we prove to be optimal in step 3) is that defined, for all t ≥ 0, as c∗(t) := φ(k∗(t)).
Since by hypothesis k∗(t)(x) remains positive, then c∗(t) remains positive too and
then it is admissible.

Step 3: We prove that the feedback control provided by the solution is optimal
(proving at the same time that the solution of the HJB equation we found is indeed
the value function).

To prove that c∗(·) is an optimal control we have to prove that for every other
admissible control c̃(·) we have J(k0, c

∗(·)) ≥ J(k0, c̃(·)).
Let us call k̃(·) the trajectory related to the admissible control c̃(·) and let us

denote by w(t, k) : R × L2(T) → R the function w(t, k) := e−ρtv(k). We have:

v(k0) − w(T, k̃(T )) = w(t, k̃(0)) − w(T, k̃(T )) = −

∫ T

0

d

dt
w(t, k̃(t)) dt

=

∫ T

0

e−ρt
[

ρv(k̃(t)) −
〈

Gk̃(t) + Ak̃(t) − c̃(t),∇v(k̃(t))
〉]

dt

The last expression makes sense thanks to the regularizing properties of the heat
semigroup (in particular for all t > 0, k̃(t) ∈ D(G)). Passing to the limit in the last
expression, as t → ∞, (using (20)) we have

v(k0) =

∫ +∞

0

e−ρt
[

ρv(k̃(t)) −
〈

Ak̃(t) − c̃(t),∇v(k̃(t))
〉

−
〈

k̃(t), G∇v(k̃(t))
〉]

dt
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and then

v(k0) − J(k0, c̃(·))

=

∫ +∞

0

e−ρt

[(

ρv(k̃(t)) −
〈

Ak̃(t),∇v(k̃(t))
〉

−
〈

k̃(t), G∇v(k̃(t))
〉

)

+

(

〈

c̃(t),∇v(k̃(t))
〉

− 〈1, U(c̃(t))〉

)]

dt

=

∫ +∞

0

e−ρt

[

(

sup
c∈L2(T;R+)

{

−
〈

c,∇v(k̃(t))
〉

+ 〈1, U(c)〉
}

)

−
(

−
〈

c̃(t),∇v(k̃(t))
〉

+ 〈1, U(c̃(t))〉
)

]

dt ≥ 0.

We used the fact that v is a solution of (18). Last expression gives v(k0) −
J(k0, c̃(·)) ≥ 0 and from the same expression we can also easily see that
v(k0) − J(k0, c

∗(·)) = 0 (indeed c∗(·) is defined using the feedback defined in
(21)). So, for all admissible c̃, v(k0) − J(k0, c̃(·)) ≥ 0 = v(k0) − J(k0, c

∗(·))
and then J(k0, c̃(·)) ≤ J(k0, c

∗(·)) and then c∗ is optimal. In particular, since
v(k0) = J(k0, c

∗(·)) = 0 and c∗ is an optimal control, v(k0) is the value func-
tion at k0. The uniqueness of the optimal control follows from standard convexity
considerations.

Proof of Proposition 3.2. Along the optimal trajectories we have

k(t) = eGtk0 +

∫ t

0

e(t−s)G (Ak(s) − c(s)) ds

= eGtk0 +

∫ t

0

e(t−s)G (Ak(s) − η 〈k(s),1〉 1) ds. (23)

so

K(t) = 〈k(t),1〉 =
〈

k0, e
Gt1〉+

∫ t

0

〈

(Ak(s) − η 〈k(s),1〉 1) , e(t−s)G1〉 ds

where we used that etG is self-adjoint. Moreover using that eGt1 = 1 the expression
above becomes:

= K(0) +

∫ t

0

K(s)

[

A − 2π
ρ − A(1 − σ)

2πσ

]

ds = K(0) +

∫ t

0

K(s)

[

A − ρ

σ

]

ds.

So K(t) has to be equal to K(0)eβt where β = (A−ρ)/σ and the claim is proved.

Proof of Theorem 3.3. We begin showing that kD(t) converges to K(0)1
2π in the

L2(T) norm when t → +∞. We write kD(t, x) using Fourier series. For n ∈ Z, we
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call en the function en : T → R given by

en(x) :=











cos(nx)√
π

if n ≥ 1
sin(−nx)√

π
= sin(nx)√

π
if n ≤ −1

1√
2π

if n = 0.

They are a complete orthonormal Hilbert basis of L2(T). Consider the selfadjoint
operator G̃ on L2(T)

G̃ := G + A

having the same domain of G. Equation (23) can be written in the following
equivalent form:

k(t) = eG̃tk0 −

∫ t

0

e(t−s)G̃η 〈k(s),1〉1 ds.

The Fourier coefficients can be found using such an expression:

〈kD(t), en〉 = e−βt 〈k(t), en〉

= e−βt
〈

eG̃tk0, en

〉

− e−βt

∫ t

0

〈

e(t−s)G̃η 〈k(s),1〉1, en

〉

ds

= e−βt
〈

k0, e
G̃ten

〉

− e−βt

∫ t

0

η 〈k(s),1〉〈1, e(t−s)G̃en

〉

ds, (24)

using that eG̃ten = e(−n2+A)ten and that, for n 6= 0, 〈en,1〉 = 0, we can see that

〈kD(t), en〉 = e−βt
〈

k0, e
(A−n2)ten

〉

= e(A−n2−β)t 〈k0, en〉 , n 6= 0

If n = 0 we have 〈kD(t), e0〉 = K(0)√
2π

(it follows immediately from Proposition

3.2). Let us we prove now that kD(t) converges in the L2-norm to K(0)1
2π : consider

ε ∈
(

0, A(1−σ)+σ−ρ
σ

)

(it exists thanks to (15)) we have

∣

∣

∣

∣

kD(t) −
K(0)1

2π

∣

∣

∣

∣

2

L2(T)

=
∑

n∈Z

〈(

kD(t) −
K(0)1

2π

)

, en

〉2

=
∑

n∈Z

n6=0

e2(A−n2−β)t 〈k0, en〉
2

= e−2εt
∑

n∈Z

n6=0

e2(A−n2−β+ε)t 〈k0, en〉
2

≤ e−2εt
∑

n∈Z

n6=0

〈k0, en〉
2
≤ e−2εt |k0|

2
L2(T)

t→∞
−−−→ 0,

where we used that, for all n 6= 0, (A − n2 − β + ε) < 0. Observe now that the
Fourier series of k(t)

kD(t)[x] =
K(0)

2π
+
∑

n∈Z

n6=0

e(A−n2−β)t 〈k0, en〉 en[x] (25)
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converges uniformly for t > 0 so kD(t)[·] ∈ C(T) and

sup
x∈T

∣

∣

∣

∣

kD(t)[x] −
K(0)

2π

∣

∣

∣

∣

= sup
x∈T

∣

∣

∣

∣

∣

∣

∣

∑

n∈Z

n6=0

e(A−n2−β)t 〈k0, en〉 en[x]

∣

∣

∣

∣

∣

∣

∣

≤ e−εt

∣

∣

∣

∣

∣

∑

n∈Z

e(A−n2−β+ε)t|k0|L2 sup
x∈T

|en[x]|

∣

∣

∣

∣

∣

≤ |k0|L2e−εt
∑

n∈Z

e(A−n2−β+ε)t. (26)

Considering t ≥ 1 and calling S :=
∑

n∈Z
e(A−n2−β+ε) < ∞, from (26), we have

that

sup
x∈T

∣

∣

∣

∣

kD(t)[x] −
K(0)

2π

∣

∣

∣

∣

≤ e−εt (S|k0|L2)
t→∞
−−−→ 0

and this proves the uniformly convergence.
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