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Abstract

This paper considers a simple static Cournot-Nash model of an ex-
change economy with two productive sectors at �exible prices and wages.
The traders in the atomless sector are price-takers, while the atoms be-
have strategically. We focus on the consequences of strategic interactions
on the market outcome. Firstly, strategic interactions create underemploy-
ment on the labor market. Secondly, when the number of atoms increases
without limit, the underemployment equilibrium coincides with the com-
petitive equilibrium. Thirdly, we compare the welfare reached by traders
at both equilibria. Fourthly, we consider the implementation of a tax levied
on strategic supplies. Finally, we compare the approach retained with the
usual monopolistic competition framework.

1 Introduction

A vast literature has been devoted to un(der)employment equilibrium without
rigidities, especially in a partial equilibrium framework (see for instance Cahuc
and Zylberberg (2001))1 . The motivations in this paper are twofold. Firstly,
it aims at providing a conceptual framework into which the determination of
market general equilibrium outcome is based on strategic interactions at �exible
prices and wages. Secondly, it analyzes the working and the consequences on a
perfectly competitive labor market of the strategic interactions taking place on
the output markets. This paper therefore considers a simple static Cournot-Nash
model of an exchange economy with productive sectors.

�EconomiX, Bureau K116, 200 avenue de la République, 92001 Nanterre Cédex, France.
Mail: ludovic.julien@u-paris10.fr. This paper was presented at the 2009 CEPET Conference
in Udine. I am grateful to G. Codognato and J. Fender for their helpful comments. I also
acknowledge T. Isaac for his remarks. Remaining errors are of my own.

1Without being exhaustive, one could make reference to search theory, matching ap-
proaches, wage bargaining theories...).
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Two main approaches modeled strategic interactions in general equilibrium.
First, the strategic market games were elaborated in order to circumvent the auc-
tioneer (Dubey-Shubik (1978), Sahi-Yao (1989)). Second, the Cournot-Walras
equilibrium (CWE) approach initially developed by Gabszewicz-Vial (1972), and
pursued by Codognato-Gabszewicz (1991), (1993), Gabszewicz-Michel (1997)
and by d�Aspremont et al. (1997) for pure exchange economies, was conceived
to analyze the consequences of market power in general equilibrium. The CWE
models make the equilibrium prices and the allocations the results of a mar-
ket price mechanism in strategic multilateral exchange. As a consequence, the
market demand which addresses to each producer is made endogenous. Conse-
quently, we propose to investigate the question of underemployment equilibrium
in strategic multilateral exchange à la Cournot-Walras.
Many models deal with un(der)employment in general equilibrium under

imperfect competition without rigidities. Models of cooperation failures put
forward un(der)employment equilibrium. Ine¢ ciencies may be caused by lo-
cal market power of �rms and consumers, which stems from the fact that all
goods (and all labors) are imperfect substitutes (Blanchard-Kiyotaki (1987), La-
yard et al. (1991)), or that de�ciency of aggregate demand occurs (Hart (1982),
d�Aspremont et al. (1989), (1990)). Monopolistic competition models do not
provide microfoundations which explain why monopolistic agents could not in-
teract strategically. In addition, there is no market price mechanism which de-
termines equilibrium prices. In other (oligopolistic) models, each seller either
objectively knows or must conjecture subjectively the demand which addresses
to him (Bénassy (1991), Negishi (1961)). Otherwise, models of coordination fail-
ures feature indeterminacy (Heller (1986), Manning (1990), Roberts (1987)), so
multiple equilibria complicate the study of the economic policy (Cooper (1999)).
In this paper, we consider a model in which the equilibrium prices are de-

termined by a market mechanism and the demand functions are micro-founded.
We extend the basic model of an exchange economy with a productive sector of
Gabszewicz and Michel (1997). The economy includes two productive sectors
with a competitive labor market2 . In one sector (the atomless sector), all the
agents are price takers, while the agents in the other sector (the atomic sector)
behave strategically. We therefore refer to the concept of "mixed markets" ra-
tionalized by Shitovitz (1973) in a pure exchange economy. The following results
are obtained. First, there is a CWE with underemployment at �exible prices and
wages3 . Second, when the number of atoms increases unboundedly, the under-
employment CWE coincides with the full employment competitive equilibrium.
Third, we compare the individual welfare reached at both equilibria. Fourth, we
consider economic policy by introducing a tax levied on strategic supplies in or-
der to reduce market distortions caused by strategic behaviors. In addition, we
compute the Chamberlin-Walras equilibrium for the same basic economy. Thus,

2The production activities in time were considered in a bileteral oligopoly model in Cordella
and Datta (2002), but with storage functions and without a labor market.

3The existence and the uniqueness analysis are beyond the scope of this paper, which aims
at computing the market outcome. The existence of a general oligopoly equilibrium usually
rises speci�c problems (Bonnisseau and Florig (2003), Gabszewicz (2002)).
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the CWE is not Pareto dominated by the Chamberlin-Walras equilibrium. And,
the tax policy has more impact on the market outcome at the CWE.
The paper is organized as follows. In section 2, we describe the basic econ-

omy. Section 3 is devoted to the CWE with underemployment. Section 4 con-
siders a tax policy. Section 5 computes the Chamberlin-Walras equilibrium and
compares it with the results previously obtained. In section 6, we conclude.

2 The economy

Consider an exchange economy with two productive sectors. The �rst sector (the
atomless sector) includes two continua of agents represented by the intervals of
mass 1 Ti = [0; 1], i = 0; 1, with the Lebesgue measure �, where T0 = [0; 1] is the
set of negligible �rms, and where T1 = [0; 1] is the set of negligible consumers.
These both sets include agents who behave competitively as price takers. The
second sector (the atomic sector) embodies n atoms a1; a2:::; an, with typical
element fajg, each of measure � (fajg) = 1, j = 1; :::; n. Let us denote T2 =
f1; :::; ng the �nite set of atoms (indi¤erently the large traders or the oligopolists)
who behave strategically.
There are two produced consumption goods, and one nonproduced good,

labor. Both consumption goods and labor are perfectly divisible. Let us denote
p1, p2 and w respectively the prices of good 1, of good 2; and the wage rate. We
assume that good 1 is the numéraire, so p1 = 1. As a consequence both relative
prices shall be denoted p2

p1
= p and w

p1
= w. The preferences toward consumption

goods are assumed to be represented by a Cobb-Douglas speci�cation. We thus
consider preferences that feature generalization in consumption activities4 .
The utility function of trader t 2 T1 de�ned as Ut: T1 � R3+ ! R, with

U(t; x; l) = Ut(x; l) is measurable. It is assumed to have the desired properties
(continuity, monotonicity and strict concavity). It is also assumed to be addi-
tively separable in consumption demands x(t) and leisure, and homogenous of
degree 1 in consumption of both goods5 . So we consider the following speci�ca-
tion6 for any t 2 T1:

Ut(x(t); l(t)) =

�
x1(t)

�

�� �
x2(t)

1� �

�1��
� 1

1 + "
[l(t)]

1+" , � 2 (0; 1) , " > 0, (1)

where x1(t), x2(t) and l(t) denote respectively the demand of commodities 1 and
2 and the labor supply for t 2 T1. Additionally, � 2 (0; 1) is the constant elas-
ticity of utility with respect to consumption, which also measures the strength
of the demand linkage across both sectors. Additionally, " represents the Frisch
elasticity of labor supply (constant marginal utility of wealth)7 .

4Some models assume agents do not consume the good they produce in order to circumvent
"Ford e¤ects" (Diamond (1982), Heller (1986), Roberts (1987) and Weitzman (1982)).

5The separation property simpli�es welfare comparisons.
6We can notice that for � = 0 the economy is autarkic; and for � = 1 commodity 2 is a

pure input and agents only consume good 1.
7Moreover, "� 1 is the elasticity of marginal disutility with respect to work.
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The utility function of any atom fajg, j 2 T1 de�ned as Uaj : R2+ ! R
is assumed to have the desired properties (continuity, monotonicity and strict
quasi-concavity). It is also continuous and homogenous of degree 1 in consump-
tion of both goods. It may thus be written:

Uaj (x) =

�
x1(aj)

�

���
x2(aj)

1� �

�1��
, � 2 (0; 1) for j 2 T2, (2)

where x1(aj) and x2(aj) represent the demand functions for goods 1 and 2 of
atom aj , j 2 T2.
Neither consumption good is initially possessed by any type of agents, whereas

the consumers in the atomless sector are endowed with one unit of the nonpro-
duced good, so the structure of the initial endowments is given by:

!(t) = (0; 0; 0), t 2 T0,

!(t) = (0; 0; 1), t 2 T1, (3)

!(fajg) = (0; 0; 0), j 2 T2.

Hence all producers have zero vector of initial endowments, while consumers
t 2 T1, are initially endowed with one unit of time to allocate between leisure
and labor. In addition, they receive pro�ts from �rms t 2 T0.
In addition, each �rm t 2 T0 and each atom fajg have inherited a technology

which speci�es how to produce some amounts of only one good. This assumption
features specialization in production. Let the production set of any agent t 2 T0
be Y (t) =

n
(y(t); n(t)) 2 R2+ j y(t) � 1

� [n(t)]
�
o
, where y1(t) and n(t) represent

the production of good 1 and the demand of labor. The production set is
assumed to be strictly convex, so � 2 (0; 1), where � measures the productivity
of labor. Therefore, the production function of any agent t 2 T0, is de�ned by
all vectors (y(t); n(t)) 2 supY (t), and may be written:

y(t) =
1

�
[n(t)]

� , � 2 (0; 1), t 2 T0. (4)

Let Yaj =
n
(y(aj); (z(aj)) 2 R2+ j y(aj) � 1

 z(aj)
o
be the production set of

aj 2 T2, where y(aj), z(aj) and  > 0 represent respectively the amount of out-
put 2, the demand of output 1 as an input and the inverse of the productivity8 .
Thus, the production function of �rm j is of the same type as in Gabszewicz
and Michel (1997). It is de�ned by all vectors ((y(aj); (z(aj)) 2 supYaj , and
may consequently be written:

y(aj) =
1


z(aj), j 2 T2. (5)

8We consider a constant return to scale in order to simplify the computation of the general
oligopoly equilibrium.
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The atoms have two decisions to make: which quantities yj of good 2 to
produce (which determines through (4) the amount zj of good 1 to be bought
as an input), and which amounts sj of good 2 to supply in exchange for good 1
on the market. The only strategic decision concerns the quantity sj brought to
the market. The production activities do not involve strategic interactions.
The convex strategy set of each type of traders may be written:

Saj = fs(aj) 2 R+ j 0 � s(aj) � y(aj)g , j 2 T2, (6)

St = f?g , t 2 T0. (7)

As a producer, a plan for any atom fajg is a vector (y(aj); s(aj)), whose
components are respectively an amount of production and a pure strategy, with
y(aj) 2 Yaj and s(aj) 2 Saj , j 2 T2. Hence, the pro�t of each oligopolist may be
written �aj (s(aj); y(aj)) = p2s(aj)� z(aj), 8j 2 T2. The equilibrium strategy
and equilibrium production of any oligopolist aj will be denoted respectively
~s(aj) and ~y(aj), with ~s(aj) 2 Saj and ~y(aj) 2 Yaj , 8j 2 T1. As a producer,
each agent t 2 T0 has two decisions to make: which amount y1(t) of good 1 to
produce and which quantity of labor n(t) to buy in order to produce. A plan for
a non strategic agent t 2 T0 is a pair (y(t); n(t)), with (y(t); n(t)) 2 Y (t). The
corresponding pro�t is denoted by �t, with �t (y(t); n(t)) = y(t)�wn(t), t 2 T0.
The equilibrium production and labor demand will be denoted respectively ~y(t)
and ~n(t), with (~y(t); ~n(t)) 2 Y (t), t 2 T0.
Some assumptions are made regarding the way markets perform the alloca-

tions. First, there is a complete set of markets. Second, all trades occur only at
equilibrium. Third, trade is costless and without delay. The allocations result-
ing from the exchanges on markets follow. As a consumer, trader fajg obtains
in exchange of s(aj) a quantity p2s(aj) of good 1, and �nally consumes an
amount x2(aj) = �aj of this good, and a quantity x2(aj) = y(aj) � s(aj) of
good 2 (see thereafter). The equilibrium allocation of any atom will be denoted
(~x1(aj); ~x2(aj)), 8j 2 T2. As consumers, the competitive agents have only two
types of decisions to make: which quantities of the two goods (x1(t); x2(t)) they
want to consume and which amount of labor they want to supply, taking the
price system (1; p2; w) and the pro�ts �t they received from all agents t 2 T0 as
given. The allocation (x1(t); x2(t); l(t)) of such traders satis�es x1(t)+p2x2(t) �
wl(t) +

R 1
0
�(t)�td�(t), t 2 T0, where �(t) represent the share of pro�ts dis-

tributed in the atomless sector by any �rm t 2 T0, among any negligible trader
t 2 T1, with

R 1
0
�(t)�td�(t) = 1, t 2 T1.

De�nition 1 An economy � is a collection of agents (atoms and negligible
traders), initial endowments, utility functions, production sets and strategy sets
� =

�
(!(t); S(t); Y (t))t2T0 ; (U(t); !(t);�(t))t2T1 ; (!(fajg); Uaj ; Yaj ; Saj )j2T2

	
.
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3 Cournot-Walras unemployment equilibrium

The model features an equilibrium concept which is based on a market price
mechanism which include all the traders and one games between the only atoms.
The strategies of the atoms are their supplies and the payments are the utility
levels they reach.

De�nition 2 A CWE for � is given by a vector of prices ~p =(1; ~p2(~s); ~w(~s)),
a vector of strategies ~s = (~s(a1); :::; ~s(aj); :::; ~s(an)), with ~s(aj) 2 Saj , 8aj 2
T2, and allocations (~y(t); ~n(t)) 2 IR2+ for t 2 T0, (~x1(t); ~x2(t); l(t)) 2 R3+
for t 2 T1 and (~x1(aj); ~x2(aj)) 2 IR2+ for aj 2 T2 such that: (i) ~x(aj) =
x(~s(aj);~s(a�j); ~p), 8j 2 T2, where ~s(a�j) is the vector of equilibrium strate-
gies of all traders who are di¤erent from trader j, (ii) (~y(t); ~n(t)) solves Max
�t = y(t) � wn(t), t 2 T0 and (~x1(t); ~x2(t); l(t)) solves Max U(x(t)) s.t.
x1(t) + p2x2(t) � wl(t) +

R 1
0
�(t)�(t)d�(t), t 2 T1, (iii)

R
t2T1 x1(t)d�(t) +P

j2T2 x1(aj) =
R
t2T0 y1(t)d�(t),

R
t2T1 x2(t)d�(t) =

P
j2T2 s(aj), 8s(aj) 2

Saj and
R
t2T1 n(t)d�(t) =

R
t2T0 l(t)d�(t), and (iv) Uaj (~x(~s(aj);~s(a�j); ~p)) �

Uaj (x(s(aj);~s(a�j);p)), 8s(aj) 2 Saj .

This equilibrium concept is based on a market-clearing price mechanism and
a game under complete but imperfect information. Its computation implies a
two-step procedure: the one is competitive and the other is stategic (Busetto
et ali (2008)). Therefore, the CWE depends on competitive and strategic de-
cisions. In a �rst step each trader determines his competitive plans for given
strategies. Then the relative equilibrium prices, which clear all markets are thus
determined. In a second step the atoms determine their equilibrium strategies9 .
Let us now determine the Cournot-Walras equilibrium. The program of any

trader t 2 T0 may be written:

Max
(y(t);n(t))

�t (y(t); n(t)) = y(t)� wn(t), t 2 T0 (8)

s.t. y(t) =
1

�
[n(t)]

�

with n(t) � 0, y(t) � 0.

This leads to the demand of labor and the supply of output for good 1:

n(t) =

�
1

w

� 1
1��

, t 2 T0, (9)

y(t) =
1

�

�
1

w

� �
1��

, t 2 T0. (10)

9Thus, the equilibrium prices is determined for given strategies and the equilibrium allo-
cation results from strategic interactions between reaction functions within quantity spaces.
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These functions are continuous, homogeneous of degree zero with respect to
the absolute prices and strictly decreasing with w.
The plan of any trader t 2 T1:

Max
(x1(t);x2(t);l(t))

�
x1(t)

�

�� �
x2(t)

1� �

�1��
� 1

1 + "
[l(t)]

1+" , t 2 T1, (11)

s.t. x1(t) + p2x2(t) � wl(t) +

Z
t2T0

�(t)�td�(t).

This leads to the following demand functions for goods and labor supply
function (see Appendix 1):

(x1(t); x2(t)) =

�
�
(t); (1� �)
(t)

p2

�
, (12)

l(t) = w
�
"

�
w

p2

� 1��
"

, (13)

where 
(t) = wl(t) +
R
t2T0 �(t)�td�(t), t 2 T1. These functions have the

desired properties (continuity, monotonicity and homogeneity of degree zero
with respect to prices and wage).

Given a price system (1; p2) and given (s(aj); y(aj)) the pro�t of oligopolist
fajg is de�ned by �aj (s(aj); y(aj)) = p2s(aj) � y(aj). As a consumer, atom
fajg can buy any bundle (x1(aj); x2(aj)), the value of which does not exceed
�aj (s(aj); y(aj)). Thus, for a price system (1; p2) and given (s(aj); y(aj)), atom
fajg solves the problem:

Max
(x1(aj);x2(aj))

�
x1(aj)

�

���
x2(aj) + y(aj)� s(aj)

1� �

�1��
, 8j 2 T2 (14)

subject to x1(aj) + p2x2(aj) � �aj (s(aj); y(aj))

and x1(aj) � 0, x2(aj) � 0.

Following a similar procedure as in Gabszewicz and Michel (1997), it can be
shown that the solution to (14) is given by (see Appendix 2):

(x1(aj); x2(aj)) =
�
�aj ; 0

�
, 8j 2 T2. (15)

Consequently, the utility level reached by any oligopolist fajg as a consumer
can be written as the payo¤ function:

Vaj (s(aj); y(aj)) =

�
�aj
�

���
y(aj)� s(aj)

1� �

�1��
, 8j 2 T1. (16)
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The computation of the oligopoly equilibrium needs the equilibrium rel-
ative prices to be determined. Given an n-dimensional vector of strategies
(s(a1); :::; s(aj); :::; s(an)), the market-clearing conditions may be written:

Z
t2T1

x1(t)d�(t) +
X

j2T2
�aj +

X
j2T1

z(aj) =

Z
t2T0

y1(t)d�(t)

Z
t2T1

x2(t)d�(t) =
X

j2T2
s(aj) (17)

Z
t2T1

n(t)d�(t) =

Z
t2T0

l(t)d�(t)

The equilibrium relative prices follow (see Appendix 3):

p2 =

24�1� �
�

�
1X

j2T2
s(aj)

351�� , (18)

w =

24�1� �
�

�
1X

j2T2
s(aj)

35(
1��
� )�

, (19)

where � � (1��)�
1���+" , with � < 1.

From (16), the optimal choice (~s(aj); ~y(aj)) for any atom fajg, j 2 T2 is the
solution to the problem:

Argmax
(~s(aj);~y(aj))2 �S(aj)�Y (aj)

Vaj (s(aj); y(aj)) =

�
p2s(aj)� y(aj)

�

���
y(aj)� s(aj)

1� �

�1��
.

(20)
The �rst-order conditions are given by @Vaj=@s(aj) = 0 and @Vaj=@y(aj) = 0

and lead to:

�
p2
p1
+

@p2
@s(aj)

s(aj)

��
y(aj)� s(aj)

1� �

�
� p2s(aj)� y(aj)

�
= 0, (21)

� 

1� � (y(aj)� s(aj)) +
p2s(aj)� y(aj)

�
= 0. (22)

At the symmetric general equilibrium, one has ~s(aj) = ~s(a�j) for all a�j 6=
aj , 8 � j 6= j, with

P
j2T2 s(aj) = s(aj) + (n � 1)s(a�j). From (19), one has

@p2
@s(aj)

= (1� �)
�
1��
�

�1�� �
1P

j2T2
s(aj)

�2(1��)
. Using (22)-(23) lead to the opti-

mal strategy ~s(aj) and to the optimal production ~y(aj) of trader fajg, 8j 2 T2:
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~s(aj) =

�
1� �
�n

��
1



n� (1� �)
n

� 1
1��

, (23)

~y(aj) =

�
1� �
�n

��
1



� 1
1��

�
n� �(1� �)

n

� �
n� (1� �)

n

� �
1��

. (24)

We deduce the equilibrium relative prices:

~p =
n

n� (1� �) , (25)

~w =

�
n

n� (1� �)

�( 1��� )( �
1�� )

: (26)

The level of production and the quantity of labor traded sector follow:

~n(t) =

�
1



�
n� (1� �)

n

�� 1
� (

�
1�� )

, t 2 T0, (27)

~y(t) =
1

�

�
1



�
n� (1� �)

n

�� (1��)�
1��+"

, t 2 T0. (28)

The equilibrium allocations are given by:

(~x1(t); ~x2(t)) =

�
�

�
 ;

�
1� �
�

��
1



n� (1� �)
n

�
 

�
, t 2 T1 (29)

(~x1(aj); ~x2(aj)) =

�
1� �
�n

�
(1� �) :

�
�

n
;
1� �
n

�
, j 2 T2, (30)

where  �
h
1

n�(1��)

n

i �
1��
.

The utility level reached by any type of traders may be written:

~Ut =

�
1� � + "
�(1 + ")

� �
1



n� (1� �)
n

�( 1+"� )( �
1�� )

, t 2 T1, (31)

~Uaj =

�
1� �
�n2

��
1



�( 1+"� )( �
1�� )

(1� �)
�
n� (1� �)

n

� �
1��

, j 2 T2. (32)

Proposition 1 When the number of atoms becomes arbitrarily large, the CWE
with underemployment coincides with the competitive equilibrium.
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Proof. From (25)-(26) we deduce lim
n!1

~p2 !  and lim
n!1

~w ! (
1��
� )(

�
1�� ).

Additionally, one has (~x1(aj); ~x2(aj)) = (0; 0) for j 2 T2 and (~x1(t); ~x2(t)) =�
1


� 1
1��

�
�
� ;

1��
�

�
for t 2 T1 and ~s(aj) =

�
1��
�n

��
1


� 1
1��
, 8j 2 T1, (~y(t); ~n(t)) =��

1


� 1
� (

�
1�� )

;
�
1


� �
1��
�
, t 2 T0. We now compare those equilibrium relative

prices and equilibrium allocations with those obtained at the competitive equi-
librium. Each trader fajg, j 2 T2 now behaves as a price taker. Thus, atom fajg
solves Max

�
x1(aj)
�

�� �
x2(aj)
1��

�1��
s.t. x1(aj)+p2x2(aj) � �aj , x1(aj) � 0 and

x2(aj) � 0, where �aj = y(aj) (p2 � ), 8j 2 T2. The supply correspondence is
y(aj) = f0 for p2 < , y(aj) 2 [0; �y(aj)] for p2 =  and �y(aj) for p2 > g, with
�y(aj) = max y(aj) for y(aj) 2 [0; �y(aj)], 8j 2 T2. The market equilibrium price
and the level of activity are determined by the aggregate demand function,

where the supply of good 2 is perfectly elastic, i.e. for
�
1
p2

��
=  and s�(aj) =

y�(aj) =
R
t2T1

�
1��
�n

��
1


� 1
1��

d�(t), 8j 2 T2. Moreover, one deduces the com-

petitive �rms allocations (y�(t); n�(t)) =
��

1


� 1
� (

�
1�� )

;
�
1


� �
1��
�
, t 2 T0. The

corresponding equilibrium allocations are given by (x�1(aj); x
�
2(aj)) = (0; 0),

8j 2 T2, and (x�1(t); x�2(t)) =
�
�
�

�
1


� 1
1��

;
�
1��
�

��
1


� 1
1��
�
, t 2 T1. QED.

When the number of strategic traders becomes arbitrarily large, the market
power of any atom fajg, j 2 T2 vanishes. The n atoms, each being of mass 1,
have been splitted into an atomless continuum of traders, each of measure zero.
As a corollary, imperfectly competitive behaviors create market distortions

in the allocation of resources on the labor market. The real wage at the CWE
~w is higher than the competitive equilibrium wage w�. Therefore, strategic in-
teractions on the output markets create underemployment in the labor market
since all mutually advantagenous trades are not fully exhausted10 . This cooper-
ation failure could disappear if the number of atoms became arbitrarily large or
if the oligopolists would cooperate. Therefore, the cause of underemployment in
the labor market relies on the non-cooperative behaviors sustained by strategic
interactions.

Proposition 2 The CWE is not Pareto dominated by the competitive equilib-
rium.

Proof. Consider the utility of any trader as a measure of individual welfare.
We compare the levels of welfare reached by traders at both equilibria. Little

algebra lead to ~Ut � U�t =
h
1��+"
�(1+")

i �
�


�( 1+"� )( �
1�� )

�h
n�(1��)

n

i( 1+"� )( �
1�� ) � 1

�
.

As � 2 (0; 1) and � > 0, we have 0 < 1� 1��
n < 1. Then ~Ut < U�t , 8t 2 T1. And,

10 Such unemployment might be conceived as underemployment of resources. Nevertheless,
there is no Keynesian unemployment because the labor market does feature any rationing.
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~Uaj � U�aj =
�
1��
�n2

��
1


�( 1+"� )( �
1�� )

(1� �)
h
n�(1��)

n

i �
1�� � 0, then ~Uaj > U�aj .

Finally, one deduces
�
U�t � ~Ut

�
�
�
U�aj � ~Uaj

�
> 0 and

�
~Ut � U�t

�
� ( ~Uaj �

U�aj ) < 0. QED.
The utility of the oligopolists is higher at the CWE than at the competitive

equilibrium, while the converse is true for the traders in the atomless sector. The
atoms have market power and partially in�uence the relative equilibrium relative
prices. When strategic interactions are replaced by anonymous interactions, all
traders behave as price takers and the terms of trade become more favorable
to traders in the atomless sector (the relative price decreases). In addition, the
di¤erence sign between the gains reached by both types of agents at the two
equilibria is indeterminate, so both equilibria may not be Pareto-ranked.

4 Economic policy

In order to regulate market distortions caused by strategic behaviors, consider
a taxation policy on strategic supplies as in Gabszewicz and Grazzini (1999).
We assume that when exchange takes place a per unit tax � , with � 2 (0; 1), is
levied on the supplies of good 2. After exchanges have occured, the total product
of the tax

P
j2T2 �s(aj) is transfered among all traders t 2 T1.

4.1 Tax and welfare

After little algebra, the computation of the CWE leads to (see Appendix 4):

~s(aj ; �) = (1� �)
�

1�� ~s(aj), j 2 T2, (33)

~yj(aj ; �) = (1� �)
�

1�� ~y(aj), j 2 T2. (34)

The equilibrium relative prices follow:

~p(�) =

�


1� �

��
n

n� (1� �)

�
, (35)

~w(�) =

��


1� �

��
n

n� (1� �)

��( 1��� )( �
1�� )

. (36)

We deduce:

~n(t; �) =

��
1� �


��
n� (1� �)

n

�� 1
� (

�
1�� )

, t 2 T0, (37)

~y(t; �) =
1

�

��
1� �


��
n� (1� �)

n

�� �
1��

, t 2 T0. (38)

The corresponding allocations are respectively:
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(~x1(t; �); ~x2(t; �)) = 	(�):

�
�

�
;

�
1� �
�

��
1



n� (1� �)
n

��
, t 2 T1, (39)

(~x1(aj ; �); ~x2(aj ; �)) =

�
1� �
�n

�
(1� �)	(�):

�
�

n
;
1� �
n

�
, j 2 T2, (40)

where 	(�) � (1� �) �
1�� .

The utility levels reached may be written:

~Ut(�) =
1 + "� �(1� �)1��
(1� � + ") (1� �)1�� (1� �)

( 1+"� )(
�

1�� ) ~Ut, t 2 T1, (41)

~Uaj (�) = (1� �)
�

1�� ~Uaj , j 2 T2. (42)

Proposition 3 The level of welfare of any agent t 2 T1 is higher at the CWE
with a tax than the welfare reached at the CWE without the tax for low values
� , while the converse is true for any atom fajg, j 2 T2, 8� 2 (0; 1).

Proof. First, from (41), one has to show that 1+"��(1��)1��
(1��+")(1��)1�� (1��)

( 1+"� )(
�

1�� ) >

1 for low values of � . Consider '(�) � 1+"��(1��)1��
(1��+")(1��)1�� (1��)

( 1+"� )(
�

1�� )�1. One
has lim

�!0+
'(�) > 0 and lim

�!1�
'(�) < 0. Moreover, one has @'(�)@� < 0 as � 2 (0; 1).

Then, there exists �� 2 (0; 1) such that '(��) = 0. Therefore Ût(�) > Ût, t 2 T1 for
� 2 [0; �� ]. Second, from (42), one has ~Uaj (�)� ~Uaj =

h
(1� �)

(1��)�
1��+" � 1

i
~Uaj <

0, j 2 T2, 8� 2 (0; 1). QED.
A tax on strategic supplies enhances the relative prices as given by (36)

and (37). This creates a decrease in labor demand and leads consequently to a
decrease in the quantity of good 1 brought to the market. The same mechanism
prevails for good 2. But, according to the redistribution of good 2 among the
small consumers, the consumption of good 2 by negligible traders increases. This
positive quantity e¤ect overcomes the negative e¤ect on prices, so the utility of
agents in the atomless sector increases. The e¤ect is reversed for the atoms.

4.2 Optimal tax

Let us now determine the equilibrium value of the per unit tax. Any Pareto
optimal allocation, which would follow from commodity tax � and provide any
trader t, t 2 T+0 with utility level �U , must solve the problem:

Max
f�g

X
j2T2

Uj(�) (43)

s.t.
Z
t2T1

U(t; �)d�(t) �
Z
t2T1

�Ud�(t).
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From (41)-(42), simple calculations lead to:

1

1 + "
(1� �)(

1+"
� )(

�
1�� )� 1

�
(1� �) �

1�� +

�


n

n� (1� �)

�( 1+"� )( �
1�� )

�U = 0. (44)

Consider the simple case for which11 : � = � =  = 1
2 , " = 0, so � = 1

3 .

Therefore, the optimal tax ~� is the solution to (1��)�2(1��) 12+ 1
2

�
n

n� 2
3

�
�U = 0.

Little algebra lead to:

~� = 1�
"
1�

s
1� 1

2

�
n

n� 2
3

�
�U

#2
. (45)

Proposition 4 Suppose the product of the tax is transferred among all traders
t 2 T1. The post-tax allocation does not lead to an overall-Pareto optimal allo-
cation.

Proof. Consider the marginal rates of substitution of any trader fajg, j 2 T2
and of any trader t 2 T1. Substituting the value ~� into (40) and (41) reveals that
the marginal rate of substitution between good 1 and good 2 is equal to 1

 for

the atoms and to 1

n�(1��)

n for the negligible traders. As these marginal rates
vary across all traders, the resulting allocation is not Pareto optimal. QED.
The tax scheme is not su¢ ciently powerful to eliminate the distortions caused

by the strategic behaviors between the atoms. The reason stands on the fact
that the presence of the tax on equilibrium prices mitigates the consequences of
strategic interactions, without neutralizing the market power of the atoms.

5 Comparison with the monopolistic competi-
tion framework

Consider the monopolistic competition model developed by Blanchard-Kiyotaki
(1987), and based on Dixit�Stiglitz (1977). Therefore, each atom produces a
good that is an imperfect substitutes to the others. There are three conse-
quences for the economy we consider. There are now n varieties for good 2.

The price index is p2 =
�
1
n

P
j2T1 p2(aj)

1��
� 1
1��
, where � > 1 is the constant

elasticity of substitution between goods12 . The price level p2 is homogenous
of degree 1 in p(aj), j = 1; :::; n. Good 2 is now de�ned as a consumption

index x2(:) = n
1

1��

�P
j2T1 (xj2(:))

��1
�

� �
��1
, where all goods enter the utility

functions symmetrically. All traders have a demand for all the varieties, which
re�ects a preference for diversity. Third, the atoms do not interact strategically.

11When the parameter " is equal to 1
2
, the equation has multiple solutions.

12 If � is large, all varieties are close substitutes.
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5.1 Equilibrium without tax

Atom fajg determines the price for his variety p2(aj), his demand for good 1 as
an input z(aj) and its level of production y(aj) by taking the price level for all
varieties p2 and the price of the good 1 as given, under the constraint (5) and
the objective demand which addresses to it (see Appendix 5), so its program
(15) may now be written:

Max
fp2(aj);z(aj);y(aj)g

�aj = p2(aj)y(aj)� z(aj), 8j 2 T2 (46)

s.t. y(aj) =
1


z(aj),  > 0

and y(aj) = (1� �)
�Z

t2T1


(t)

np2
d�(t) +

X
j2T2

�(aj)

np2

��
p2(aj)

p2

���
.

The equilibrium relative prices are derived from the preceding program and
according to the equilibrium on the labor market (see Appendix 6):

p̂2 = 

�
�

� � 1

�
, (47)

ŵ =

�


�
�

� � 1

��( 1��� )( �
1�� )

. (48)

We deduce:

n̂(t) =

�
1



�
� � 1
�

�� 1
� (

�
1�� )

, t 2 T0, (49)

ŷ(t) =
1

�

�
1



�
� � 1
�

�� �
1��

, t 2 T0. (50)

ŷ (aj) =

�
1� �
�

��
�

� � (1� �)

� �
1



�
� � 1
�

�� 1
1��

, j 2 T2. (51)

The equilibrium allocation are respectively:

(x̂1(t); x̂2(t)) =

�
�

�
�;

�
1� �
�

��
1



� � 1
�

�
�

�
, (52)

(x̂1(aj); x̂2(aj)) =

�
1� �
�

��
�

� � (1� �)

�
:

�
�;
(1� �)


�
� � 1
�

��
, (53)

where � �
h
1


�
��1
�

�i �
1��
.

The corresponding payments follow:
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Ût =

�
1� � + "
�(1 + ")

� �
1



�
� � 1
�

��( 1+"� )( �
1�� )

, t 2 T1, (54)

Ûaj =

�
1� �
�

��
1

� � (1� �)

� �
1



�
� � 1
�

��( 1+"� )( �
1�� )

, j 2 T2. (55)

Proposition 5 The Cournot-Walras equilibrium is not Pareto dominated by
the Chamberlin-Walras equilibrium.

Proof. We compare the utility levels reached by each trader at both equilibria.

From (31) and (56): Ût � ~Ut = �

��
��1
�

�( 1+"� )( �
1�� ) �

h
n�(1��)

n

i( 1+"� )( �
1�� )

�
,

where � �
h
1��+"
�(1+")

i �
1


�( 1+"� )( �
1�� )

. Moreover, ��1� < n�(1��)
n since 1

� > 1��
n

as � < 1. Then ~Ut > Ût, t 2 T1. Additionally, one deduces from (32) and

(57) ~Uaj � Ûaj = �

�
(1��)
n2

h
n�(1��)

n

i �
1�� � 1

��(1��)

�
��1
�

�( 1+"� )( �
1�� )

�
, where

� �
�
1��
�

��
1


�( 1+"� )( �
1�� )

. Then Ûaj > ~Uaj , 8j 2 T2. QED.
The monopolistic competition market structure makes the traders in the

atomless sector achieve low utility level compared to the utility level they reach
at the CWE. In the �rst case, the equilibrium real wage and the equilibrium
underemployment are higher (we can verify that �

��1 >
n

n�(1��) as � < 1). The
degree of competition is lower in this case because each atom exerts some local
monopoly power (when � > 1 but �nite)13 . The strategic interactions between
the atoms is thus favorable to the small traders, and therefore lead to a better
allocation for these remaining agents.

5.2 Equilibrium with tax

We assume that when exchange takes place a uniform tax � , with � 2 (0; 1), is
levied on the supplies of all varieties of good 2 sold by the monopolistic atoms.
The total product of the tax

P
j2T2 �s(aj) is redistributed at equilibrium among

all traders t 2 T1. The computation of the Chamberlin-Walras equilibrium with
a tax leads to the following equilibrium prices:

p̂2(�) =

�


1� �

��
�

� � 1

�
, (56)

ŵ(�) =

��


1� �

��
�

� � 1

��( 1��� )( �
1�� )

. (57)

We deduce:
13When � ! 1, the Chamberlin-Walras equilibrium coincides with the competitive equi-

librium.
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~n(t; �) =

��
1� �


��
� � 1
�

�� 1
� (

�
1�� )

, t 2 T0, (58)

~y(t; �) =
1

�

��
1� �


��
� � 1
�

�� �
1��

, t 2 T0. (59)

ŷ (aj ; �) = (1� �)
�

1�� ŷ (aj) , j 2 T2. (60)

The equilibrium allocation are respectively:

(x̂1(t); x̂2(t)) = �(�):

�
�

�
;

�
1� �
�

��
1� �


��
� � 1
�

��
� � (1� �)(1� �)
(1� �)[� � (1� �)]

��
,

(61)

(x̂1(aj); x̂2(aj)) =

�
1� �
�

��
�(�)

� � (1� �)

�
:

�
�;
(1� �)


�
� � 1
�

��
, (62)

where �(�) � (1� �) �
1�� �. The payments follow:

Ût(�) =
�(�)

1� � + " (1� �)
( 1+"� )(

�
1�� )Ût, t 2 T1, (63)

Ûaj (�) = (1� �)
�

1�� Ûaj , j 2 T2., t 2 T2, (64)

where � � (1+")[��(1��)(1��)]1����f[��(1��)](1��)g1��
f[��(1��)](1��)g1�� .

Proposition 6 For low taxes, the level of welfare of any agent t 2 T1 is higher
at the Chamberlin-Walras equilibrium with a tax than the welfare reached at the
Chamberlin-Walras equilibrium without the tax, while the converse is true for
any atom fajg, j 2 T2.

Proof. First, using (63), one must verify that Ût(�)
Ût

> 1, t 2 T1, i.e. �(�)
1��+" (1�

�)(
1+"
� )(

�
1�� ) > 1. This leads to show (1+")

�h
1 + (1��)�

��(1��)

i1��
(1� �) �

1�� � 1
�
+

�[1�(1��) �
1�� ] > 0. Consider �(�) � (1+")

�h
1 + (1��)�

��(1��)

i1��
(1� �) �

1�� � 1
�
+

�[1�(1��) �
1�� ]. We have lim

�!0+
�(�) > 0 and lim

�!1�
�(�) < 0. Moreover, @�(�)@� < 0

as 1+ (1��)�
��(1��) > �

1
(1��)(1��) . Then, there exists �� 2 (0; 1) such that Ût(��) > Ût,

t 2 T1. Second, Ûaj (�) � Ûaj =
h
(1� �) �

1�� � 1
i
Ûaj < 0, j 2 T2, 8� 2 (0; 1).

QED.
The tax on strategic supplies creates a decrease in labor demand (and as

a consequence in the quantity of good 1 brought to the market). The same
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happens for good 2. But a the same time, according to the redistribution of
good 2 among the small consumers, the consumption of good 2 by negligible
traders increases. This positive quantity e¤ect overcomes the negative e¤ect on
prices, so the utility of agents in the atomless sector increases. This e¤ect is
reversed for the atoms.
Consider now the determination of the equilibrium tax at the Chamberlin-

Walras equilibrium. Any Pareto optimal allocation, which would follow from
commodity tax � and provide any trader t, t 2 T1 with utility level �U , must
solve the problem Max

f�g

X
j2T2

Uj(�) s.t.
R
t2T1 U(t; �)d�(t) =

R
t2T1

�Ud�(t).

Following the same procedure as in section 4, with � = � =  = 1
2 , " = 0,

one obtains the polynom (1� �)2 � 4
9

�
4�
��1

�U � �
�
(1� �) +

�
2
3

�
��1

�U
�2
. Little

algebra lead to:

�̂ = 1�

8><>:29
�
4

�

� � 1 � �
�2641�vuut1 + 9� �U�

4�
��1

�U � �
�2
375
9>=>; : (65)

As it stands for the Cournotian competition, the tax scheme is not su¢ ciently
powerful to wipe out the distortions caused by strategic behaviors among the
atoms: the marginal rate of substitution vary across traders since it equals 1

��1
�

for the atoms and 1

��1
�

h
��(1��)(1��)
��(1��)

i
for the negligible traders.

Proposition 7 The economic policy has more impact on market distorsions at
the CWE than at the Chamberlin-Walras equilibrium.
Proof. It su¢ ces to compare the marginal rates of substitution at both equi-
libria. At the CWE, one has ~� = n�(1��)

n , while it is �̂ = ��(1��)(1��)
��(1��) at the

Chamberlin-Walras equilibrium. Then ~� < 1 and �̂ > 1, so �̂ > ~�. QED.

This result brings into light the gap between both rates is more signi�cant
in the case of the monopolistic competition, what reveals that the market dis-
tortions are more important. The main reason is that market distortions are
more favorable to the atoms when they have local monopoly power and do not
interact strategically with other competitors.

6 Conclusion

The previous model considered a mixed markets exchange economy with pro-
duction which generates underemployment in the labor market. Ine¢ ciencies on
the competitive labor market are caused by market failures. Such failures stem
from strategic interactions between many atoms. In addition, the tax policy
is not su¢ cient to eliminate market imperfections caused by strategic interac-
tions. Finally, ine¢ ciencies are more signi�cant under monopolistic competition:
the market imperfections are more favorable to the atoms who do not interact
strategically with other competitors.
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The market structure associated with the CWE concept presents two advan-
tages. First, the market demand addressed to the atoms is here made endoge-
nous, which overcomes the lack of microfoundations, which is linked to the usual
assumption of an exogenous information regarding the market demand function.
Second, the model displays di¤erent kinds of heterogeneity and throws light on
their consequences in terms of welfare. It integrates asymmetries across all
markets, which cannot be captured in a partial equilibrium analysis.

7 Appendix

7.1 Appendix 1. Optimal plans of traders t, t 2 T1

Let the Lagrangian be$(x1(t); x2(t); l(t); �) =
h
x1(t)
�

i� h
x2(t)
1��

i1��
� 1
1+" [l(t)]

1+"
+

�f�t + wl(t) � [x1(t) + p2x2(t)]g, � > 0. The �rst-order conditions may be

written
h
x1(t)
�

i��1 h
x2(t)
1��

i1��
= �,

h
x1(t)
�

i� h
x2(t)
1��

i�
= �p2 and [l(t)]

"
= �w.

The �rst two conditions lead to x2(t) =
�
1��
�

�
1
p2
x1(t). The budget constraint

gives the demand functions for both goods x1(t) = � (�t + wl(t)) and x2(t) =
(1 � �)�t+wl(t)p2

. Inserting these functions in the budget constraint leads to�
1
p2

�1��
= �. Therefore, from [l(t)]

"
= �w, one deduces l(t) = w

�
"

�
w
p2

� 1��
"

.

7.2 Appendix 2. Restrictions on the strategy sets

Following a procedure similar to that in Gabszewicz and Michel (1997), it is pos-
sible to restrict the strategy set of any atom. The program of any atom fajg,
j 2 T2, consists in solving (�) Max

(x1(aj);x2(aj))

�
x1(aj)
�

�� �
x2(aj)+y(aj)�s(aj)

1��

�1��
s.t. x1(aj) + p2x2(aj) � �aj (s(aj); y(aj)), and x1(aj) � 0 and x2(aj) � 0,
where �aj (s(aj); y(aj)) � p2y(aj) � (aj). Firstly, the positivity constraints
in pro�ts imply that �aj (s(aj); y(aj)) � 0, 8j 2 T2, which leads to s(aj) �
p2y(aj) �s¯(aj). Moreover, given y(aj), any utility level that can be reachedchoosing s(aj) � y(aj) can also be reached by determining s(aj) in such a
way that the quantity y(aj) � s(aj) kept for later consumption is at least

equal to the competitive demand of good 2, that is (1 � �)
�
1�  1

p2

�
y(aj),

in solving (�). Accordingly, we consider only strategies (s(aj); y(aj)) satisfy-
ing the constraint s(aj) �

h
�+ (1� �) 1

p2

i
y(aj) � �s(aj), 8j 2 T2. Consider

then the strategy set �Saj = fs(aj) 2 R+ j s¯(aj) � s(aj) � �s(aj)g. If s(aj) �h
�+ (1� �) 1

p2

i
y(aj), the solution to (�) in Saj coincides with the solution to

(�) in �Saj , and this latter solution is given by (x1(aj); x2(aj)) = (�j ; 0), 8j 2 T1.
If s(aj) �

h
�+ (1� �) 1

p2

i
y(aj), the solution to the problem (�) in Saj is given

by (x1(aj); x2(aj)) =
�
� (p2 � ) y(aj); s(aj)�

h
�+ (1� �) 1

p2

i
y(aj)

�
. Then

18



Uaj (x1(aj); x2(aj) + y(aj)� s(aj)) = [(p2 � )]
�
h�
1�  1

p2

�i1��
y(aj), for j 2

T2. Now consider that if s(aj) >
h
�+ (1� �) 1

p2

i
y(aj), the strategy s(aj) is

substituted by the strategy s0(aj) =
h
�+ (1� �) 1

p2

i
y(aj). Then s0(aj) 2 �Saj .

Thus, the solution to (�) in �Saj is (� (p2 � ) y(aj); 0) so Uaj (� (p2 � ) y(aj); y(aj)�

s0(aj)) = [(p2 � ) y(aj)]�
h�
1�  1

p2

�
y(aj)

i1��
, which corresponds to the util-

ity level obtained at the optimum in Sj .

7.3 Appendix 3. Market-clearing conditions

Using (12), (13) and (15), the system given by (17) may be written, after post-
multiplying equation (A2) by p2, as:

nX
j=1

p2sj+�

Z 2

1

"�
1� �
�

��
1

w

� �
1��

+ w
�+"
"

�
w

p2

� 1��
"

#
d�(t) =

1

�

Z 1

0

�
1

w

� �
1��

d�(t),

(A1)

(1� �)
Z 2

1

"�
1� �
�

��
1

w

� �
1��

+ p2w
�
"

�
w

p2

� 1��+"
"

#
d�(t) = p2

nX
j=1

sj , (A2)

Z 1

0

�
1

w

� 1
1��

d�(t) =

Z 2

1

w
�
"

�
w

p2

� 1��
"

d�(t). (A3)

From the third market-clearing equation, one deduces 1
w =

�
w
p2

� (1��)(1��)
�(1��)+"

.

Substituting 1
w from

�
w
p2

� (1��)(1��)
�(1��)+"

in (A1) and (A2) yields after rearrangement

w
p2
= p

(1��)�+�
1��+"

2 . Inserting these values of 1
w and

w
p2
in (A2) yields:

p2 =

24�1� �
�

�
1Xn

j=1
s(aj)

35
(1��)�
1��+"

, (A4)

w =

24�1� �
�

�
1Xn

j=1
s(aj)

35
(1��)(1��
1���+" )

. (A5)

Since � � (1��)�
1���+" , one deduces (18) and (19).
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7.4 Appendix 4. Market-clearing condition with a tax

The market clearing conditions now write:X
j2T2

p2(1� �)s(aj) +
Z
t2T1

x1(t)d�(t) =

Z
t2T0

y(t)d�(t) (A6)

Z
t2T1

x2(t)d�(t) = (1� �)
X

j2T2
s(aj) (A6)Z

t2T1
n(t)d�(t) =

Z
t2T0

l(t)d�(t) (A7)

Following the same procedure as in the Appendix 3 gives:

p2(�) =

24�1� �
�

��
1

1� �

�
1X

aj2T2
s(aj)

351�� (A9)

w(�) =

24�1� �
�

��
1

1� �

�
1X

aj2T2
s(aj)

35(
1��
� )�

(A10)

The atom fajg, j 2 T2 now solves:

Argmax
(~s(aj ;�);~y(aj ;�))

�
p2(1� �)s(aj)� y(aj)

�

���
y(aj)� s(aj)

1� �

�1��
. (A11)

By following the same procedure as that developed in the section 3 yields
(33) to (42).

7.5 Appendix 5. The market demand function addressed
to atom fajg

There are two types of agents who formulate a demand for the good produced
by any atom fajg, j 2 T2: the �rst emanates from the traders in the atomless
sector, and the second comes from all the atoms. In each case, the proce-
dure to derive the market demand function which addresses to the atom fajg,
j 2 T2, relies on a two-step budgeting program. First, any trader t 2 T1 solves

Max
(x1(t);x2(t);l(t))

h
x1(t)
�

i� h
x2(t)
1��

i1��
� 1

1+" [l(t)]
1+" subject to x1(t) + p2x2(t) �

wl(t) +
R 1
0
�(t)�td�(t), with p2 =

�
1
n

X
j2T1

p2(aj)
1��

� 1
1��
. This leads to

(x1(t); x2(t)) =
�
�
(t); (1� �)
(t)p2

�
and l(t) = w

�
"

�
w
p2

� 1��
"

. At the same

time, the atom fajg, j 2 T2 solves Max
(x1(aj);x2(aj))

�
x1(aj)
�

�� �
x2(aj)
1��

�1��
sub-

ject to x1(aj)+ p2x2(aj) � �aj (s(aj); y(aj)) and x1(aj) � 0, x2(aj) � 0, where
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x2(aj) = n
1

1��

�X
j2T1

(xj2(aj))
��1
�

� �
��1
, j 2 T2. This leads to (x1(aj); x2(aj)) =�

��aj ; (1� �)
�aj
p2

�
, j 2 T2. Second, the traders determine the demand for va-

riety j. Thus, any trader t 2 T1 solves Min
fxj2(t)g

X
j2T2

p2(aj)xj2(t) subject to

x2(t) � n
1

1��

�X
j2T2

(xj2(t))
��1
�

� �
��1
. At the optimum, one has [xj2(t)]

� 1
�

[xk2(t)]
� 1
�
=

p2(aj)
p2(ak)

, 8j; k. This yields [xj2(t)]
��

[xk2(t)]
�� =

�
p2(aj)
p2(ak)

���
, 8j; k. Inserting the latter

expression in x2(t) = n
1

1��

�X
j2T2

(xj2(t))
��1
�

� �
��1

and using the fact that

np1��2 =
X

j2T2
p2(aj)

1��, we �nd xk2(t) = 1
n

�
p2(aj)
p2

���
x2(t), t 2 T1. More-

over, since x2(t) = (1� �)
(t)p2
, one �nally has xk2(t) = (1� �)
(t)np2

�
p2(aj)
p2

���
,

t 2 T1. Finally, the atom fajg, j 2 T2 solves Min
fxj2(aj)g

X
j2T2

p2(aj)xj2(aj)

subject to x2(aj) � n
1

1��

�X
j2T2

(xj2(aj))
��1
�

� �
��1

(in order to simplify, it

is assumed here that any atom fajg consumes an amount of the good it pro-
duces). The same procedure as that developed before for t 2 T1 yields xk2(aj) =
(1� �)�(aj)np2

�
p2(aj)
p2

���
, j 2 T2.

7.6 Appendix 6. Monopolistic competition prices

Let y(aj) =
y
n

�
p2(aj)
p2

���
, where y =

(1��)
hR

t2T1

(t)d�(t)+

P
j2T2

�aj

i
p2

. The utlity

function of any atom fajg becomes Uaj
�
��aj ; (1� �)

�aj
p2

�
= ( 1p2 )

1���aj , so

Uaj
p2

=
�
1
p2

�2�� �aj
p2
, 8j 2 T2. The program of fajg may therefore be written

Max
fp2(aj);n(aj);y(aj)g

�aj
p2
= (1��) yn

�
p2(aj)
p2

�1��
�(1��) yn

1
p2

�
p2(aj)
p2

���
, 8j 2 T2.

The �rst-order condition
@

�
�aj
p2

�
@
�
p2(aj)

p2

� = 0 leads to the pricing rule
�
p2(aj)
p2

�
=�

��1
�

�

�
1
p2

�
, where

�
1
�

�
is the markup over constant marginal cost. At the

symmetric general equilibirium, one has p2(aj) = p2, 8j 2 T2, so
p2(aj)
p2

= 1.

Therefore p̂2 = 
�
��1
�

�
. From the market clearing condition on the labor

market, one deduces ŵ =
h

�

�
��1

�i (1��)(1��)
1��+"

.
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