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quasisupermodular games, hence the supermodular games, as a spe-

cial case. Our games retain the main property of quasisupermodular

games: the Nash set is a nonempty complete lattice. We use mono-

tonicity properties on the best reply that are weaker than those in the

literature, as well as pretty simple and linked with an intuitive idea of

complementarity. The sufficient conditions on the payoffs are weaker
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1 Introduction

What is the effect on optimal decisions of “complementarities among actions”?

Any attempt to answer this question would rest on what we mean by com-
plementarity. Our practical assesment of two activities being complements,
for example tea and lemmon, is that increasing the level of one makes “some-
how desirable” to increase the level of the other. Many writers have tried
to clarify this loose comparative static idea over the past (Samuelson, 1974,
provides for a wide account), and two main groups of definitions of com-
plementariy have arisen: those based on cross-price elesticities of demand,
in the Hicks-Allen framework, and those based on mixed second-partials of
payoffs, in the Edgeworth-Pareto approach.

In the context of a pure decision problem the first group of definitions
would not be appropriate. Markets, hence prices, can not be considered to
exist exogenously. They should be obtained as an equilibrium path in a game
where society chooses among different allocation mechanisms.

The secong group of definition is more basic, referring only to prefer-
ences, and has found a modern equivalent in the notion of supermodularity
(Topkis, 1978, but this notion is older) and quasisupermodularity, or ordinal
supermodularity (Milgrom and Shannon, 1994).

However, while preferences are certainly a basic datum to study agents,
i.e. their attitudes toward risk etc., they are not entirely basic when the
object of investigation is directly the solution set of agents’ decison problems.
Indeed, two games should be considered to be equivalent whenever, up to
identifying the strategy spaces in such a way as to take care of duplication
of strategies, these games have the same joint best reply.

Hence, to study the effect of complementarities on optimal decisions we
should not define complementarities in terms of preferences, but in terms of
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the joint best reply correspondence. Then we would need to study the effect
of such complementarities on the equilibria.

The intuitive idea of complementarity discussed above may help us to find
properties of the joint best reply that could be reasonably assumed as defining
complementarities. To introduce these properties, let us restrict the attention
for now to games against nature. For example, consider the collection of
individual decision problems maxy∈Y u (y, t), where u : Y × T → R, Y ⊆ Rn

and T ⊆ Rm. Let Bt := argmaxy∈Y u (y, t).
If, according to our intuitive idea of complementarity, every decision vari-

able yh is a complement with any other decision variable yj and with any
parameter tk, then we believe it would be reasonable to expect the solution
correspondence Bt to satisfy at least the following properties for all values
t1 ≤ t2 of the parameter:

∀s1 ∈ Bt1 ,∃s2 ∈ Bt2 : s1 ≤ s2,

∀v2 ∈ Bt2 ,∃v1 ∈ Bt1 : v1 ≤ v2.

Indeed, consider the first property. If after an increase in the the pa-
rameter from t1 to t2, there is some s1 ∈ Bt1 such that every s2 ∈ Bt2 is
either strictly less than s1 or unordered with s1 (the latter meaning that
some entries in s2 are striclty less than the corresponding entries in s1) then
we should conclude that the increase in the parameter has made somehow
desirable to decrease the level of some decision variables (of some entries in
s1), against our intuitive idea of complementarity. The second property is
justified analogously.

In this paper we take the properties above, stated on the joint best reply,
as the definition of complementarities, and investigate how far we can go with
this. A sufficient condition for the joint best reply to satisfy the properties
is that every individual best reply satisfy them. We show in Theorem 1 that
games whose joint best reply exibiths this kind of monotonicity have, under
a weak further condition, a least and a greatest Nash equilibrium.
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Upon strenghtening the monotonicity requirement on the joint best reply,
hence with a more stringent complementarity notion, we show in Theorem
2 that the Nash set is a nonempty complete lattice. We then introduce
sufficient condition on the payoffs such that the joint best reply is monotonic
in the sense required.

Relating to the existing litterature on decisions with complementarities,
in this paper we define a class of games that has the quasisupermodular
games introduced by Milgrom and Shannon (1994) as a special case. Qua-
sisupermodular games are, in turn, an ordinal extension of supermodular
games as introduced in Vives (1990) and Topkis (1979).

Our games retain the main properties of quasisupermodular games: the
Nash set is a nonempty complete lattice. Our generalization consists in
assuming on the joint best reply correspondence the monotonicity proper-
ties introduced above, which are weaker than those required to prove Zhou
(1994)’s fixpoint theorem. We also need a weaker structure on the sets of
joint best actions. As a result, the sufficient conditions on the payoffs are
weaker than those in quasisupermodular games. Our monotonicity properties
are pretty intuitive and linked with an intuitive idea of complementarity.

Another difference with the existing literature is that we separate the
conditions making the Nash set have a least and a greatest element from
those, strongher, making it be a complete lattice.

Our generalization of Zhou’s fixpoint theorem, which is in turn an exten-
sion to Traski theorem to correspondences, has a very immediate proof. In
particular, the lattice subcompleteness of the sets of joint best strategies is
completely avoided.

The paper goes as follows. Section 2 introduces the basic terminology of
posets and lattices. Section 3 present our generalization of Zhou’s fixpoint
theorem and presents fixpoint theorems for corresponences on posets. Section
4 introduces and studies our class of games with complementarities.

3



2 Background

We define here the basic objects that we need in the paper. The most im-
portant notions are those of maximal element and complete lattice.

Let X be a nonempty set. A partial order on X is a reflexive, anti-
symmetric and transitive binary relation ≤ on X. The set X togheter with
≤ is called a partially ordered set, or a poset. We define on X the binary
relation < by means of x < y iff x ≤ y and not y ≤ x, for every x, y ∈ X.
We define on X the relation “is unordered with” by means of x “is unordered
with” y iff neither x ≤ y nor y ≤ x, for every x, y ∈ X.

Take any nonempty subset S ⊆ X. An element x ∈ X is an upper

bound of S if every s ∈ S is a predecessor of x with respect to ≤; that is, if
s ≤ x for every for every s ∈ S. An element x ∈ X is a supremum of S if it
is an upper bound of S and, for any element y ∈ X which is an upper bound
of S, x ≤ y. An element x ∈ X is a greatest element of S if it is an upper
bound of S and x ∈ S. Suprema and greatest elements are unique (mod =)
by antisymmetry of ≤, and are denoted by supS and 1S respectively.

Note that supS ≤ 1s, with equality holding iff supS ∈ S.
An element x ∈ X is a maximal element of S if x ∈ S and, for every

s ∈ S, either s ≤ x or s is unordered with x. Clearly x ∈ S is a maximal
element of S if and only if for every s ∈ S, x ≤ s implies that x = s. Maximal
elements are not necessarily unique. If S has a greatest element 1S, it is the
unique maximal element of S.

The dual poset of X is the set X endowed with the partial order ≥
defined by x ≥ y iff y ≤ x, for every x, y ∈ X. Lower bounds of S, the
infimum infS, the least element 0S and the minimal elements of S are defined
dually; that is, they are respectively the upper bounds, the supremum, the
greatest element and the maximal elements of S considered as a subset of
the dual of X.

If supS exists, it is the least element of the set of upper bounds of S or,
equivalently, the infimum of the set of upper bounds of S. The supremum
and the infimum of the empty set of X, if they exist, are respectively the

4



least and the greatest element of X. They are denoted by 0 and 1.
For any subset T ⊆ S, the upper bounds of T in S are the upper bounds

of T (in X) which belong to S. The restriction of ≤ to S is still a partial
order, called the induced order on S. Thus we can define the supremum
of T in S, denoted by supST , as the least element of the set of upper bounds
of T in S. Since the set of upper bound of T is S is a subset of that of upper
bounbs of T , one has supT ≤ supST whenever both of these exist.

The closed intervals of a poset X are the sets [x, +∞) := {z ∈ X : x ≤ z},
(−∞, x] := {z ∈ X : z ≤ x}, and [x, y] := {z ∈ X : x ≤ z ≤ y}; with x, y ∈
X. If T ⊆ S ⊆ X and supT exists, then supST whenever it exists is the
least elements of S ∩ [supT, +∞).

Note that if a poset X has a 1, then [x, +∞) = [x, 1] for every x in X. If
X has a 0, then (−∞, x] = [0, x] for every x ∈ X.

If Y is a poset and for every x, y ∈ Y either x ≤ y or y ≤ x, then Y is
called a chain. A chain of a poset X is a subset S ⊆ X which is a chain in
the induced order on S. An ascending chain of X is a chain of X having a
least element. A descending chain of X is an ascending chain of the dual
of X. If x ∈ X is the least (greatest) element of an ascending (descending)
chain of X, we say that this ascending (descending) chain “starts” at x.

A poset X is a join lattice if every nonempty and finite subset of X has
a supremun. In a join lattice every subset (not necessarily finite) whose set
of lower bounds is nonempty and finite has an infimun, the latter being the
supremun of such set of lower bounds. X is a meet lattice if its dual is
a join lattice; that is, if every finite nonempty subset of X has an infimum.
X is a lattice if both X and its dual are join lattices; that is, if X has all
nonempty finite suprema and infima.

X is a join-complete lattice if every nonempty subset of X (not neces-
sarily finite) has a supremum. A join-complete lattice has a 1, the supremum
of X itself, and it has the infimum of all subsets of X whose set of lower
bounds is nonempty. X is a meet-complete lattice if its dual is a join-
complete lattice, or equivalently if every nonempty set of X has an infimum.
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A meet-complete lattice has a 0, the infimum of X itself.
X is a complete lattice if every subset of X, including the empty set,

has a supremum. A complete lattice is a join-complete lattice with a 0, which
is by definition the supremum of the empty set of X. Clearly, X is a complete
lattice iff it is both join-complete and meet-complete, or equivalenty iff every
nonempty subset of X has both a supremum and an infimum.

A subset S of a poset X is a complete lattice whenever it is so in the
induced order; that is, whenever for every nonempty subset T ⊆ S, supST ∈
S (S is join-complete) and S has a least element 0S. A subset S of a lattice X

is a sublattice of X whenever for every nonempty and finite subset T ⊆ S,
supT ∈ S. A subset S of a complete lattice X is a subcomplete sublattice

of X if for every nonempty subset T ⊆ S, not necessarily finite, supT ∈ S

and S has a least element 0S. A subcomplete sublattice of X is also called
a closed sublattice of X. If S is a subcomplete sublattice of X then it is a
complete lattice. The converse is false.

If X is a complete lattice, all of its closed intervals [x, 1], [0, x], [x, y], with
x, y ∈ X, are subcomplete sublattices of X.

Clearly the intersection of any family of subcomplete sublattices of a com-
plete lattice X is a subcomplete sublattice of X. However, the intersection
of a subcomplete sublattice of X with a subset of X which is a complete
lattice, needs not to be even a complete lattice. Take for example the sub-
complete sublattice [2, 3] ⊂ R and the complete lattice [2, 3)∪{4} ⊂ R. The
intersection is [2, 3), which lacks a greatest element.

3 Fixpoint theorems for increasing correspon-

dences.

Let X be a poset and F : x ∈ X 7→ Fx ⊆ X be a nonempty correspondence.
We associate to F the sets:

AF := {x ∈ X : Fx ∩ [x, +∞) 6= ∅} ,
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BF := {x ∈ X : Fx ∩ (−∞, x] 6= ∅} ,

EF := {x ∈ X : x ∈ Fx} .

EF is the fixpoint set of F . Our concern in this paper is to study the
nonemptiness and order structure of EF for a given, nonempty F .

AF is the set of points x ∈ X such that some y ∈ Fx is “above the
diagonal”. BF is the set of points x ∈ X such that some y ∈ Fx is “below
the diagonal”. Of course EF = AF ∩BF . Hence, if any among AF and BF is
empty F cannot have fixpoints. We thus consider, without loosing generality,
only correspondences F with nonempty AF and BF . A sufficient condition
for all nonempty F to satisfy this would be to assume that X has a 0 and a
1, respectively.

Let X be a lattice. We say that a correspondence F : X → X is Veinott-

increasing1 if for every x, y ∈ X, x ≤ y implies that for any u ∈ Fx

and any v ∈ Fy, (a) inf {u, v} ∈ Fx, called meet increasingness, and (b)
sup {u, v} ∈ Fy, called join increasingness.

We report, for the sake of completeness, Zohu (1994, Theorem 1) exten-
sion of Tarski fixpoint theorem to Veinott-increasing correspondences. Zhou’s
theorem is a crucial ingredient in the theory of supermodular games.

Theorem 0 (Zohu): Let X be a nonempty complete lattice and F :

X → X be a nonempty correspondence. If F is Veinott-increasing and Fx is
a subcomplete sublattice of X for every x ∈ X, then the fixpoint set of F is
a nonempty complete lattice.

3.1 Increasingness notions

We propose the following notion of increasingness, by which we will generalize
the existence part of Zhou’s fixpoint theorem (1994, Theorem 1, (i) and (ii))2.

Definition 1 (increasing correspondence): Let X be a poset. A
1See for example Topkis (1978) for the attribution of this notion of increasingness to

Veinott
2Suggestions for better names than those in Definitions 1 and 2 are welcomed.
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nonempty correspondence F : X → X is upper increasing if for every x, y ∈
X, x ≤ y implies that

∀s ∈ Fx,∃t ∈ Fy : s ≤ t. (1)

It is lower increasing if ∀x, y ∈ X, x ≤ y implies that

∀v ∈ Fy,∃u ∈ Fx : u ≤ v. (2)

It is increasing if it is both upper and lower increasing.

Intuitively, upper increasingness amounts to say that if x ≤ y, then for
any s ∈ Fx there is in X some ascending chain starting at s which crosses
Fy at least finitely many times; in other words we can extend any point in
Fx to at least one point of Fy throught an ascending chain. Symmetrically,
lower increasingness amounts to say that whenever x ≤ y, for any v ∈ Fy

there is some descending chain in X starting at v which crosses Fx. If F

is a function, upper increasingness and lower increasingness are equivalent
and each one of them coincides with F being increasing in the usual sense;
namely, x ≤ y implies F (x) ≤ F (y) for every x, y ∈ X.

On lattices, this notion of increasingness is clearly weaker than Veinott’s
increasingness. Indeed, if F is Veinott increasing and x ≤ y, then for any
s ∈ Fx and and v ∈ Fy, sup {s, v} is the required t in (1), hence F is upper
increasing, and inf {s, v} is the required u in (2), hence F is lower increasing.

On the other hand, a correspondence may well be increasing without
being Veinott-increasing. We give the easiest example.

Example 1: A correspondence which is increasing but not Veinott-

increasing. Take the six-point (complete) lattice:

X := {0, 1, b, c, inf {b, c} , sup {b, c}} ,

with 0 and 1 being respectively the least and greatest element. The only
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unordered elements are b, c. Take the correspondence F : X → X defined
by the identity at the points 0, c, 1; and by Finf{b,c} = {0}, Fb = {0, b}, and
Fsup{b,c} = {c, 1}. Such an F is both upper and lower increasing, but it is
neither join increasing nor meet increasing, since for b ≤ sup {b, c}, taking
b ∈ Fb and c ∈ Fsup{b,c}, sup {b, c} /∈ Fsup{b,c} and inf {b, c} /∈ Fb.

Note also that in this example any Fx is a subcomplete sublattice and
that the fixpoint set of F is {0, 1, b, c}, which is a complete lattice (albeit not
a sublattice of X). This proves that Veinott increasingness is not necessary
in Zhou’s theorem.

To generalize the “structure” part of Zhou fixpoint theorem (1994, Theo-
rem 1, (iii)), we will need to single out, for correspondences, another property
which is always satisfied by increasing functions. Definition 2 below provides
for this. We need some preliminary notation.

For a poset X and a nonempty correspondence F : X → X, for any
a ∈ X, let Ua := {x ∈ X : Fx ∩ [a, +∞) 6= ∅}. If F is a function, Ua is just
the upper contour set of F at a ∈ X.

For every a ∈ X such that Ua is nonempty, define the nonempty corre-
spondence Ga : Ua → [a, +∞) by Ga

x = Fx ∩ [a, +∞). If F is a function, Ga

is jut the restriction of F to Ua. The role of Ga is to retain, from every Fx,
just and only the elements which are greater than or equal to a, whenever
any does exist, i.e. whenever x is in Ua.

Definition 2 (strongly lower increasing correspondence): Let X

be a poset. A nonempty correspondence F : X → X is strongly lower
increasing if, for every a ∈ X such that Ua 6= ∅, the correspondence Ga is
lower increasing.

Intuitively, strong lower increasingness says that x, y ∈ X are such that
both Fx and Fy have some elements which “jumps above” some common
a ∈ X, and if x ≤ y, then for any v in Fy which is above a, we can find in X

a descending chain starting at v and crossing Fx still above a.
On setting a = −∞, one has that Ua is X and that Ga is F . Hence
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strong lower increasingness implies lower increasingness. If F is a function,
the opposite is also true, and so for functions upper increasingness, lower
increasingness and strong lower increasingness all boil down to increasingness
in the usual sense.

Example 2: A correspondence which is increasing but not strongly

lower increasing. In the previous example F is not strongly lower increas-
ing. Indeed, for any a in {0, 1, b, c, inf {b, c} , sup {b, c}}, Ua is nonempty. G0

is F , and so it is lower increasing. G1, Gb, Gsup are all increasing functions,
and so they are lower increasing. Gc coincides with the restriction of F to
U c, and so it is lower increasing. But on U inf = {b, c, sup {b, c} , 1}, we have
that Ginf

b = {b} and Ginf
sup = {c, 1}. Thus for c ∈ Ginf

sup, there is no u ∈ Ginf
b

such that u ≤ c.

Over lattices, strong lower increasingness is obviously implied by meet
increasingness, hence by Veinott increasingness. Indeed, take any a ∈ X

such that Ua is nonempty and take any x, y ∈ Ua such that x ≤ y. Pick
any z ∈ Ga

x and any v ∈ Ga
y. By meet-increasingness, inf {z, v} ∈ Fx, and

since a minorizes {z, v} in X, a ≤ inf {z, v}. Thus inf {z, v} is in Ga
x, and

it is the required u in (2). The converse is false. A corresppondence can
be strongly lower increasing without being meet increasing, as the following
examples show.

Example 3.1: A correspondence which is strongly lower increasing

but not Veinott-increasing. Take the five-point (complete) lattice:

X := {0, 1, b, c, d} ,

where d < c, b, c are unordered, b, d are unordered, 0 is the least element
and 1 is the greatest element. Note that inf {b, c} = inf {b, d} = 0, and
sup {b, c} = sup {b, d} = 1. Consider the correspondence F : X → X

definded by the identity at 0, c, d, and by Fb = {b, d}, and F1 = {c, 1}.
This correspondence is increasing but fails to be Veinott-increasing. Indeed,
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for b ≤ 1, b ∈ Fb and c ∈ F1, but inf {b, c} = 0 /∈ Fb. Hence F fails
to be meet increasing. On the other hand, F is strongly lower increasing.
In fact, for any a in {0, 1, b, c, d}, Ua is nonempty. G0 is F , and so it is
lower increasing. G1 and Gb are increasing functions, and so they are lower
increasing. Gc is the restriction of F to U c, and so it is lower increasing.
Finally, on Ud = {b, c, d, 1}, the correspondence Gd coincides with F except
at b, where Gd

b = {d}. Examining the behavior of Gd on the two chains of
Ud, namely b < 1 and d < c < 1, one sees that Gd is in fact lower increasing.
The role of the correspondences Ga has been to remove from Fb the point b,
whose presence caused F not to be meet increasing.

Example 3.2: A correspondence which is strongly lower increasing

but not Veinott-increasing. Let B be the unit square in R2 and, for any
a = (a1, a2) ∈ B, let Fa be the intersection of B with the closed triangular
region with vertices at (a1, a2), (a1 − ε, a2 + ε), (a1 + ε, a2 + ε), for a fixed
ε > 0. The correspondence F so defined maps a complete lattice into convex
compact subsets of itself (drawing some pics may help the reader).

Pick x, y in B such that the following holds: x < y, Fx and Fy are disjoint,
and y2 < x2 + ε (adjust ε if necessary and work with the corresponding
F ). The vertex of Fx with coordinates (x1 + ε, x2 + ε) is unordered with the
vertex of Fy with coordinates (y1, y2), because x1 + ε < y1 since Fx and Fy

are disjoint and y2 < x2 + ε. The infimum of these two vertices is the point
with coordinates (x1 + ε, y2), which does not belong to Fx. Thus F fails to
be meet increasing, hence to be Veinott-increasing.

On the other hand, first note that for every a ∈ B, a ∈ Ua. Furthermore,
for every z ∈ Ua, z ∈ Ga

z = Fz∩[a, 1]. Fix then any a and pick some x, y ∈ Ua

such that x < y. If Fx and Fy are disjoint, then by construction for every
v ∈ Ga

y, x ≤ v and we are done since x ∈ Ga
x. If Fx and Fy are not disjoint,

for every v ∈ Ga
y, by construction at least one among the two straight lines

throught v and parallel respectively to the orizontal and the vertical axis
intersects Ga

x. Take any u in one of these intersections. We have u ≤ v, and
we are done. Hence F is strongly lower increasing.
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3.2 Fixpoint theorems

Theorem 1 below generalizes the existence part of Zhou’s fixpoint theorem
(1994, Theorem 1, points (i) and (ii)) in two repects. First, it requires the
correspondence F to be increasing, instead of Veinott increasing. Second, it
requires for any x ∈ X that Fx has a least and a greatest element, instead of
requiring it to be a subcomplete sublattice of X.

Observe also that in Theorem 1, similarly to Tarski theorem, the com-
pleteness of the lattice X would play only the role of making supAF and
infBF exist, while in Zhou’s theorem it is a crucial ingredient in the proof.
To underscore this difference, we state Theorem 1 in the context of posets.

Similarly to Zhou’s theorem, also Theorem 1 follows from Tarski theorem
by an immediate increasing selection argument. The role of Theorem 1 is then
to extend Tarski theorem to correspondence in a similar vein as Kakutani’s
fixpoint theorem extends Brower’s.

Theorem 1: Let X be a poset and F : X → X be a nonempty corre-
spondence. (i) If F is upper increasing and Fx has a greatest element for
every x ∈ X, then supAF , whenever it exists, is the greatest fixpoint of F .
(ii) If F is lower increasing and Fx has a least element for every x ∈ X, then
infBF , whenever it exists, is the least fixpoint of F .

Proof: (i) Let x∗ := supAF . It exists by assumption. Pick any x ∈ AF .
By the definition of AF , there exists yx ∈ Fx such that x ≤ yx. Since x ≤ x∗

and yx ∈ Fx, by upper increasingness of F there exists zx ∈ Fx∗ such that
yx ≤ zx. Hence, for the greatest element 1∗ of Fx∗ , x ≤ yx ≤ zx ≤ 1∗. Since
1∗ does not depend on the chosen x, then for every x ∈ AF , x ≤ 1∗. Thus
1∗ majorizes AF and so x∗ ≤ 1∗, because x∗ is the sup of AF . Hence, by
the definition of AF and because 1∗ ∈ Fx∗ , x∗ ∈ AF . So x∗ is the greatest
element of AF .

Since x∗ ≤ 1∗ and 1∗ ∈ Fx∗ , then by upper increasingness of F there exists
some y ∈ F1∗ such that 1∗ ≤ y. Hence, by the definition of AF , 1∗ ∈ AF , and
because x∗ is the greatest element of AF , 1∗ ≤ x∗. Hence x∗ = 1∗ ∈ Fx∗ , and
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x∗ is a fixpoint of F . Since EF ⊆ AF , where EF is the fixpoint set of F , and
since x∗ is the greatest element of AF , then x∗ is indeed the greatest fixpoint
of F .

(ii) Redo the proof of (i) taking the dual of X, and dualizing the state-
ments by substituting BF for AF , lower increasingness for upper increas-
ingness, and by using the assumption that Fx has a least element for every
x ∈ X. Q.E.D

One might be interested in the existence of fixpoints for increasing corre-
spondences defined on posets more general than lattices. An interesting class
of posets suggesting possible approaches to this problem is that of Noethe-

rian posets. A poset X is Noetherian if every nonempty subset of X has a
maximal element. Birkhoff (1967, Chapter VIII) provieds for an account of
Noetherian poset. A poset X is a complete lattice if and only if it is a Noethe-
rian lattice with a least element. The following fact makes Noetherian posets
a good starting point to study fixpoints of upper increasing correspondences
defined on non-lattice posets.

Theorem 1.1: Let X be a Noetherian poset and F : X → X be a
nonempty, upper increasing correspondence. Every maximal element of AF

is a fixpoint of F .

Proof: Take any maximal element m of AF . Some such element exists
because AF is nonempty and X is Noetherian. Since m ∈ AF , there exists
some y ∈ Fm such that m ≤ y. Hence, by upper increasingness of F , there
exists some z ∈ Fy such that y ≤ z. Thus y ∈ AF , and since m is maximal
for AF , m ≤ y implies that m = y. Hence m is a fixpoint of F . Q.E.D

Theorem 1.2 below, using the Axiom of Choice, provides for sufficient
conditions for AF to have a maximal element. d’Orey (1996) presents results
in the same vein, but using a notion of increasingness for F much strongher
than upper increasingness. Theorem 1.2 can easily be turned into a general-
ization of Theorem 2 in d’Orey (1996).
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Theorem 1.2: Let X be a chain complete poset and and F : X → X

be a nonempty, upper increasing correspondence such that Fx has a greatest
element for every x ∈ X. Then F has a fixpoint.

Proof: We simply redo the argument in the first part of the proof of
Theorem 1, and then apply Theorem 1.1. Let C be any nonempty chain of
AF . Let c∗ be the sup of C. Pick any x ∈ C. Since C ⊆ AF , then by the
definition of AF there exists yx ∈ Fx such that x ≤ yx. Since x ≤ c∗, by
upper increasingness of F there exists zx ∈ Fc∗ such that yx ≤ zx. Hence,
for the greatest element 1c∗ of Fc∗ , x ≤ yx ≤ zx ≤ 1c∗ . Since 1c∗ does not
depend on the chosen x, then for every x ∈ C, x ≤ 1c∗ . Thus 1c∗ majorizes
C and so c∗ ≤ 1c∗ . Hence c∗ ∈ AF since 1c∗ ∈ Fc∗ . Because C was arbitrary,
every nonempty chain of AF has a supremun in AF . Thus, by Zorn’s Lemma,
AF has a maximal element. By Theorem 1.1, such a maximal element is a
fixpoint of F . Q.E.D

Theorem 2 below generalizes the “structure” part of Zhou’s fixpoint the-
orem (1994, Theorem 1, point (iii)) in two repects. First, it requires F to
be upper increasing and strongly lower increasing, instead of asking it to be
Veinott increasing (assumption (a)).

Second, Theorem 2 requires Fx to have greatest and least elements for
every x ∈ X (assumption (b)) and it requires, for every a ∈ X at wich Ga

is well definded (i.e. Ua is nonempty) and for every x ∈ Ua, that the set
Ga

x = Fx ∩ [a, 1] has a least element (assumption (c)). We need assumption
(c) because the least element of Fx is not necessarily retained in Ga

x. Zhou’s
theorem assumes on the other hand that Fx is a subcomplete sublattice of
X for every x ∈ X. To see that Zhou’s assumption is strongher, note that,
whenever Fx is a subcomplete sublattice of X, the set Ga

x = Fx ∩ [a, 1], if
nonempty, is a nonempty subcomplete sublattice of X, being the intersection
of two nonempty subcomplete sublattices of X, and so has a least (and a
greatest) element.

The property of Ga
x = Fx ∩ [a, 1] having a least element if nonempty

would be implied also by assuming that Fx is a complete lattice, instead of
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a subcomplete sublattice of X. Indeed, while in general the intersection of a
lattice which is a subset of X with a subcomplete sublattice of X needs not
to be a subcomplete sublattice of X, it is so when the subcomplete sublattice
has the form of a closed interval [y, 1]. This can be proved very easily.

Theorem 2: Let X be a complete lattice and F : X → X be a nonempty
correspondence. If (a) F is upper increasing and strongly lower increasing,
(b) for every x ∈ X, Fx has a greates element and a least element, and (c) for
every a ∈ X such that Ua 6= ∅ and for every x ∈ Ua, Ga

x has a least element,
then the fixpoint set of F is a nonempty complete lattice.

Proof: From Theorem 1, point (i), EF is nonempty. Take any nonempty
subset H ⊂ EF . Since X is join-complete, h∗ := supH does exist.

We want to prove that supEF
H does exist. This is equivalent to proving

that the intersection EF ∩ [h∗, 1] has a least element, where 1 is the greatest
element of X. We follow Tarski’s argument.

We first show that h∗ ∈ AF . This is the same argument as that in the
first part of the proof of Theorem 1. Take any x ∈ H. Since H ⊆ EF ⊆ AF ,
there exists yx ∈ Fx such that x ≤ yx. Furthermore, since x ≤ h∗ then by
upper increasingness of F , for any such yx ∈ Fx there exists zx ∈ Fh∗ such
that yx ≤ zx. Hence, for the greatest element 1h∗ of Fh∗ , x ≤ yx ≤ zx ≤ 1h∗ .
Thus 1h∗ majorizes H because it does not depend on the chosen x, and so
h∗ ≤ 1h∗ . Since 1h∗ ∈ Fh∗ , we are done.

h∗ ∈ AF implies that h∗ ∈ Uh∗ . We now show that (h∗, 1] ⊆ Uh∗ , hence
that the restriction Γh∗ of the correspondence Gh∗ : Uh∗ → [h∗, 1] to the
interval [h∗, 1] is well defined. This amount to show that for every x ∈ X

such that h∗ < x, Fx ∩ [h∗, 1] 6= ∅. Take indeed any x ∈ X such that h∗ < x.
Since h∗ ∈ AF , there exists some y ∈ Fh∗ such that h∗ ≤ y. By upper
increasingness of F , h∗ < x implies that for any such y ∈ Fh∗ there exists
z ∈ Fx such that y ≤ z. Hence h∗ ≤ y ≤ z, and we are done.

The restriction Γh∗ is thus a correspondence mapping elements of the
complete lattice [h∗, 1] into nonempty subsets of [h∗, 1]. By assumption Gh∗ is
lower increasing, and so Γh∗ is lower increasing. Furthermore, by assumption
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Gh∗
x has a least element for every x ∈ Uh∗ . Hence Γh∗

x has a least element for
every x ∈ [h∗, 1]. Thus, by point (ii) of Theorem 2, Γh∗ has a least fixpoint.
Because by construction the fixpoint set of Γh∗ is exactly EF ∩ [h∗, 1], then
H has a supremum in EF .

Since H has been taken arbitrarily, then EF is a nonempty join-complete
lattice. Because F is strongly lower increasing, then it is lower increasing, and
since Fx has a least element for every x ∈ X, then by point (ii) of Theorem
1, EF has a least element. Hence EF is a nonempty complete lattice. Q.E.D

4 Games with complementarities

A game in normalized form is a pair
(
I, (X i, ui)i∈I

)
; where I is a nonempty

and finite set of players and for every i ∈ I, X i is player i’s nonempty strategy
set and ui : X → R is i’s payoff function, with X :=

∏
i∈I X i.

Let T i :=
∏

j∈I,j 6=i X
j, the set of i’s opponents strategy profiles.

Player i’s best reply correspondence is:

Bi : ti ∈ T i 7→ Bi
ti := argmaxxi∈Xiui

(
xi, ti

)
⊆ X i.

The joint best reply correspondece is:

B : x ∈ X 7→ Bx :=
∏
i∈I

Bi
ti ⊆ X.

The nash equilibria of the game are the fixpoints of the joint best reply
B.

We could apply the theorems of the previous section to games in nor-
mal form on setting F = B and, for any a =

(
a1, . . . , aI

)
∈ X, Ga

x =

Bx ∩ [a, 1], the right-hand-side being equal to
{∏

i∈I Bi
ti

}
∩

{∏
i∈I [ai, 1i]

}
=∏

i∈I

{
Bi

ti ∩ [ai, 1i]
}
.

For a given reference-point of strategies a =
(
a1, . . . , aI

)
∈ X, the set Ga

x
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if nonempty is the set of strategy profiles y which are both best against x and
greater than the reference profile a. Since X has a product order, it means
that every entry yi in such a y, is both best against

(
x1, . . . , xi−1, . . . , xi+1, . . . , xI

)
and such that ai ≤ yi.

We define now our class of games with complementarities. The definition
is refereed to the normal form, but it applies to trees upon considering the
associated reduced normal form.

Definition 3 (games with complementarities): Let X be a complete
lattice. A game has complementarities if its joint best reply B is nonempty, if
it is increasing according to Definition 1, and if Bx has a least and a greatest
element for every strategy profile x ∈ X. A game has strong complemen-
tarities if it has complementarities and, furthermore, if its joint best reply
is strongly lower increasing according to Definition 2 and Ga

x has a least
elements whenever nonempty.

By Theorem 1, a game with complementarities has a least and a great-
est Nash equilibrium. By Theorem 2, the Nash set of a game with strong
complementarities is a nonempty complete lattice.

Relation with the existing literature. In the literature, the widest
known class of games with complementarities is the class where, for each
game, X is a complete lattice, the joint best reply B is nonempty and is
at least Veinott-increasing , and the best response sets Bx are subcomplete
sublattices of X for every profile x ∈ X. These games, that we call Veinott
games, are studied in Milgrom and Shannon (1994), Topkis (1979) and Vives
(1990). The latter is an instance where the monotonicity notion used for
the best replies is strongher than Veinott increasingness. The main property
of Veinott games is that, by Zhou’s fixpoint theorem, they have a Nash set
which is a nonempty complete lattice. As we have seen in Section 3, every
Veinott game is a game with strong strategic complementarities, according
to Definition 3. We have also shown in the examples of Section 3 that the
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converse is false3. Hence our games with strong complementarities have the
Veinott games as a strict subset, and so our games with complementarities,
too, have the Veinott games as a strict subset.

A bounch of work has been devoted to find sufficient conditions on the
payoffs guaranteeing that a game is a Veinott game. In terms of sufficient
condition on payoffs, the widest class of Veinott games known in the liter-
ature is that of quasisupermodular games. These games are introduced by
Milgrom and Shannon (1994), and they have as special cases the well-known
supermodular games of Topkis (1979, Section 3) and Vives (1990, Theorem
4.2).

Our goal in this section is to find sufficient condition on the payoffs guar-
anteeing that a game has complementarities accordingly to Definition 3. Not
surprisingly, these conditions turn out to be weaker than those in quasisu-
permodular games. Hence, we can define by means of properties on payoffs
a subclass of games with complementarities which is strictly wider than that
of quasisupermodular games of Milgrom and Shannon and, of course, of that
of supermodular games of Topkis and Vives.

We start in subsection 4.1 with a recap of quasisupermodular games, to
allow comparison. In section 4.2 we present our conditions on the payoffs
and the monotone comparative statices they generate. In subsection 4.3 we
extend the analysis to games.

4.1 Recap of quasisupermodular games

Milgrom and Shannon (1994) introduced the class of quasisupermodular
games. This class includes the supermodular games of Topkis (1979) and
Vives (1990) as a special case.

Quasisupermodular games are games whose payoffs are quasisupermodu-
lar and satisfy a single crossing condition. These properties express, respec-
tively, a weak form of complementarity among own strategies and among

3All this holds even if one required, in Veinott games, that sets Bx were only complete
lattices, not necessarily subcomplete sublattices of X.
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own strategies and opponents’ profiles. The relevance of qasisupermodular-
ity and the single crossing condition is that they suffice to make the joint
best reply Veinott-increasing, albeit they are not necessary, and to make the
best reponse sets sublattices of the strategy spaces.

Quasisupermodularity is an ordinal generlization of supermodularity. The
single crossing condition is an ordinal generalization of the condition of in-
creasing differences. Topkis (1998) explores this further. We report here the
definitions. Let X i be a lattice and T i be a poset.

Payoff ui (xi, ti) is quasisupermodular in xi on X i if ∀z1, z2 ∈ X i,∀t ∈ T i,

ui (inf {z1, z2} , t) ≤ ui (z1, t) ⇒ ui (z2, t) ≤ ui (sup {z1, z2} , t) ; (3)

ui (sup {z1, z2} , t) ≤ ui (z2, ti) ⇒ ui (z1, t) ≤ ui (inf {z1, z2} , t) . (4)

Payoff ui (xi, ti) satisfies the single crossing property in (xi, ti) on X i×T i

if ∀y1, y2 ∈ X i such that y1 ≤ y2, ∀t1, t2 ∈ T i such that t1 ≤ t2,

ui (y1, t1) ≤ ui (y2, t1) ⇒ ui (y1, t2) ≤ ui (y2, t2) ; (5)

ui (y2, t2) ≤ ui (y1, t2) ⇒ ui (y2, t1) ≤ ui (y1, t1) . (6)

A game in normal form is quasisupermodular if for every player i, the
payoff ui (xi, ti) is quasisupermodular on X i, and satisfies the single cross-
ing property on X i × T i. Furthermore, to make the individual best replies
nonempty, it is assumed that the strategy set X i is a lattice compat in any
topology finer than its interval topology, and the payoff is upper semicontin-
uous on X i for every t ∈ T i.

For quasisupermodular games, the monotone comparative statics of the
individual best replies makes it possible to apply Zhou’s fixpoint theorem to
show that the Nash set is a nonempty complete lattice.

In particular, Milgrom and Shannon (1994, Th. 4) shows that each indi-
vidual best reply is Veinott-increasing as opponents’ profile increases. As a
special case, each such best reply takes values in the collection of sublattices
of own strategies. If now own strategy sets are complete lattices, and payoff
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are semicontinuos in own strategies, then each individual best reply is also
compact-valued, and being a sublattice it is a subcomplete sublattice of the
set of own strategies by a theorem of Birkhoff (see Topkis, 1998, for a refined
result in finite euclidean spaces). All this is preserved under finite cartesian
products, and so Zhou’s fixpoint theorem applies and the Nash set of the
game is a nonempty complete lattice.

4.2 Monotone comparative statics over directed posets

We introduce here conditions on payoffs weaker that quasisupermodularity
and the single crossing, and making the solution correpondences increasing
in the sense of Definition 1. This section is devoted to monotone comparative
statics of individual optimization problems, and as such has a wider scope
than its application to games. We maintain the notation of our game setting
for convenience.

Our order-theoretic notion in this section is that of a directed poset. A
partially ordered set X is downward directed if any two elements x, y ∈ X

have an lower bound in X. It is upward directed if any two elements
x, y ∈ X have and upper bound in X. It is directed if it is both down-
ward and upward direcred. Clearly a lattice is a directed poset, while the
converse is false. A consumer competitive budget set is downward directed,
the common lower bound of all the pairs of consumption bundles being the
no-consumption vector (the origin).

We now introduce properties on payoffs wich are weaker than quasisuper-
modularity plus the single crossing, while still expressing a form of comple-
mentarity4.

Definition 4 (upper modular functions): Let X i be a downward
directed poset and T i be a poset. Payoff ui (xi, ti) is upper modular if for
every x1, x2 ∈ X i such that x1 � x2 there exist elements ax1x2 , bx1x2 ∈ X i,

4Suggestions for names better than those in the following definitions are welcomed.
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with a < x1 ≤ b, such that for every t ∈ T i,

ui (a, t) ≤ ui (x1, t) ⇒ ui (x2, t) ≤ ui (b, t) ; (7)

and for every t1, t2 ∈ T i such that t1 ≤ t2,

ui (a, t1) ≤ ui (x1, t1) ⇒ ui (a, t2) ≤ ui (x1, t2) . (8)

Remark. Points a and b depends on both x1 and x2. It is to remark
this, that we explicitly indexed a and b with x1, x2 in the beginning of the
definition. We removed the indexing in the rest of the definition and in
proofs below to easy notation. If x2 < x1, we know that some a in X i with
a < x1 do exists, namely x2. If, on the other hand, x1, x2 are unordered, we
know that some a, b ∈ X i such that a < x1 ≤ b do exist. For example, any
lower bound of x1, x2 will work as a, such lower bound existing because X i is
donward directed. Of course b can be x1 itself. An analogous remark applies
to the following definition.

Definition 5 (lower modular functions): Let X i be an upward di-
rected poset and T i be a poset. Payoff ui (xi, ti) is lower modular if for every
x1, x2 ∈ X i such that x1 � x2 there exist elements cx1x2 , dx1x2 ∈ X i, with
c ≤ x2 < d, such that for every t ∈ T i,

ui (d, t) ≤ ui (x2, t) ⇒ ui (x1, t) ≤ ui (c, t) ; (9)

and for every t1, t2 ∈ T i such that t1 ≤ t2,

ui (d, t2) ≤ ui (x2, t2) ⇒ ui (d, t1) ≤ ui (x2, t1) . (10)

That upper and lower modularity follows from quasisupermodularity and
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the single crossing property id obvious. Let X i be a lattice and pick x1, x2 ∈
X i such that x1 � x2. Set ax1x2 = inf {x1, x2}. Note that a < x1. Assume
the hypothesis in (7) holds. By (3), ui (x2, t) ≤ ui (sup {x1, x2} , t). Hence (7)
holds on setting bx1x2 = sup {x1, x2}, and seeing that b = x1 if x2 < x1 and
x1 < b if x1, x2 are unordered. The same reasonoing shows that (8) comes
from (5), because ax1x2 < x1. Analogously, lower modularity follows from (4)
and (6) with cx1x2 = inf {x1, x2} and dx1x2 = sup {x1, x2}.

The difference between upper modularity and quasisupermodularity is
that in the former, a is not required to be the inf and b must be greater than
x1 only. Analogously for lower modularity.

Example 4: A function which is upper modular but not quasisu-

permodular. Take the lattice X i = {x1, x2, inf {x1, x2} , sup {x1, x2}},
with x1, x2 unordered. Consider the function ui (x1) = 4, ui (x2) = 2,
ui (inf {x1, x2}) = 3, ui (sup {x1, x2}) = 1. Quasisupermodularity fails at
the pair of points (x1, x2) and holds vacuously at the pair of points (x2, x1).
Upper modularity holds at (x1, x2), on setting a = inf {x1, x2} and b = x1,
and holds vacuously at (x2, x1). The morale in this example is the possibility
to set b = x1 in the definition of upper modularity.

The following lemma describes the comparative statics of individual best
replies generated by the payoff being upper and lower modular.

Lemma 1: Let X i be a downward directed poset and T i be a poset. If
ui : X i × T i → R is upper modular, then

Bi : ti ∈ T i 7→ Bi
ti = argmaxxi∈Xiui

(
xi, ti

)
is upper increasing, if nonempty. Let X i be an upward directed poset and T i

be a poset. If ui is lower modular, then Bi is lower increasing if nonempty.

Proof: Take any two profiles t1, t2 ∈ T i such that t1 ≤ t2. The proof
amounts to properly relabeling the proof of the Monotonicity Theorem of
Milgrom and Shannon (1994, Th.4). We start with upper increasingness.
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Pick any s ∈ Bi
t1

and any x2 ∈ Bi
t2
. If s ≤ x2 we are done. So suppose s � x2.

Since s is best against t1, for every x ∈ X i we have ui (x, t1) ≤ ui (s, t1).
Hence for as,x2 ∈ X i, ui (a, t1) ≤ ui (s, t1). By (8), ui (a, t2) ≤ ui (s, t2),
and there exists some bs,x2 ∈ X i, with s ≤ b, such that according to (7),
ui (x2, t2) ≤ ui (b, t2). Hence b ∈ Bi

t2
because x2 is optimal against t2. And

we are done.
We now show that Bi is lower increasing. Take any v ∈ Bi

t2
and any

x1 ∈ Bi
t1
. For every x ∈ X i ui (x, t2) ≤ ui (v, t2). Hence for dx1,v ∈ X i,

ui (d, t2) ≤ ui (v, t2). By (10), ui (d, t1) ≤ ui (v, t1), and there exists some
cx1,v ∈ X i, with c ≤ v, such that according to (9), ui (x1, t1) ≤ ui (c, t1).
Hence c ∈ Bi

t1
because x1 is best against t1, and we are done. Q.E.D

Our monotone comparative statics says nothing about the structure of
the sets Bi

t. If we strengthen upper modularity to strong upper modulariy,
as stated in Definition 6 below, we obtain that every Bi

ti is a chain and that
Bi satisfies a form of increasingness strongher than Veinott increasingness.

In Definition 6 we strengthen upper modularity by distinguishing, for
every x1, x2 ∈ X i such that x1 � x2, the case where x1 and x2 are unordered
from the case where x2 < x1. In the first case, the generalizaed crossing
condition (8) holds as such, and (7) is strengthened to (11). In the second
case, the generalized quasisupermodularity (7) holds as such, (12) is added,
and (8) is strengthened to (13).

The notion of strong upper modulariy in Definition 6 is weaker than strong
quasisupermodularity plus strong single crossing property, as these latter are
defined in Shannon (1995). To see this just set, for every x1, x2 ∈ X i such
that x1 � x2, ax1x2 = inf {x1, x2} and bx1x2 = sup {x1, x2}. Then (11)
follows from strict quasisupermodulariy, (12) from quasisupermodulary, and
(13) from the strict single crossing property.

Lemma 2 is a generalization of the sufficiency part of Shannon (1995)’s
theorem 4 in the case where the constraint set stays put. Indeed, that the-
orem holds already for payoffs that are strictly quasisupermodular at un-
ordered x1, x2, and that satisty the strict single crossing property at pairs
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(x1, x2) such that x2 < x1.

Definition 6 (strongly upper modular functions): Let X i be a lower
directed poset and T i be a poset. Payoff ui (xi, ti) is strongly upper modular
if it is upper modular and, for every x1, x2 ∈ X i such that x1 � x2:
(a) if x1, x2 are unordered then for every t ∈ T i,

ui (a, t) ≤ ui (x1, t) ⇒ ui (x2, t) < ui (b, t) ; (11)

(b) if x2 < x1 then, for every t ∈ T i,

ui (a, t) < ui (x1, t) ⇒ ui (x2, t) < ui (b, t) ; (12)

and for every t1, t2 ∈ T i with t1 < t2,

ui (a, t1) ≤ ui (x1, t1) ⇒ ui (a, t2) < ui (x1, t2) . (13)

Lemma 2: Let X i be a downward directed poset and T i be a poset. If
ui : X i × T i → R is strongly upper modular, then for every t1, t2 ∈ T i such
that t1 < t2, for every s ∈ Bi

t1
and every v ∈ Bi

t2
, s ≤ v. Furthermore, for

every t ∈ T i, Bi
t is a chain.

Proof: Take any two profiles t1, t2 ∈ T i such that t1 < t2. Pick any
s ∈ Bi

t1
and any v ∈ Bi

t2
. Suppose s, v are unordered. Since s is best against

t1, for every x ∈ X i it holds that ui (x, t1) ≤ ui (s, t1). Hence for as,v ∈ X i,
ui (a, t1) ≤ ui (s, t1). By (8), ui (a, t2) ≤ ui (s, t2), and so there exists some
bs,v ∈ X i, with s ≤ b, such that according to (11) ui (v, t2) < ui (b, t2), a
contradiction. Hence s and v must be ordered. Suppose now that v < s.
Then by (13) (with x1 = s), for as,v ∈ X i, since ui (a, t1) ≤ ui (s, t1) then
ui (a, t2) < ui (s, t2). Hence by (12) (with x2 = v), for bs,v ∈ X i, ui (v, t2) <

ui (b, t2), a contradiction. Hence s ≤ v.
Take now s, v ∈ Bi

t, for any t ∈ T i. If they are unordered, we can use
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(11) to reach a contradiction. Hence Bi
t is a chain. Q.E.D

To say something on the structure of the sets Bi
t without generating a

too strong monotonicity of the solution correspondece Bi, we introduce now
a property on payoffs which is still weaker than quasisupermodularity plus
single crossing, but strongher than upper and lower modularity. A cardinal
version of the property has been introduced by d’Orey (1996, Definition 5).

Definition 7 (bound-modular functions): Let X i be a directed poset
and T i be a poset. Payoff ui (xi, ti) is bound- modular if for every x1, x2 ∈ X i,
there exist in X i an upper bound U and a lower bound L of {x1, x2} such
that for every t ∈ T i,

ui (L, t) ≤ ui (x1, t) ⇒ ui (x2, t) ≤ ui (U, t) ; (14)

ui (U, t) ≤ ui (x2, t) ⇒ ui (x1, t) ≤ ui (L, t) ; (15)

and for every t1, t2 ∈ T i such that t1 ≤ t2,

ui (L, t1) ≤ ui (x1, t1) ⇒ ui (L, t2) ≤ ui (x1, t2) ; (16)

ui (U, t2) ≤ ui (x2, t2) ⇒ ui (U, t1) ≤ ui (x2, t1) . (17)

The proof of the following Lemma is immediate from theorem 4 in Mil-
grom and Shannon (1994), and is omitted. Note that the monotonicity of the
solution correspondece that we generate by bound-modularity is strongher
than upper and lower increasingness.

Lemma 3: Let X i be a directed poset and T i be a poset. If ui : X i×T i →
R is bound-modular, then for every t1, t2 ∈ T i such that t1 ≤ t2, for every
x1 ∈ Bi

t1
and every x2 ∈ Bi

t2
, there are in X i a lower bound L and an upper

bound U of {x1, x2} such that L ∈ Bi
t1

and U ∈ Bi
t2
. Furthermore, for every

t ∈ T i, Bi
t is a directed poset.
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4.3 Classes of games with complementarities

The following theorem defines a subclass of games with strong complemen-
tarities. This subclass has the strictly quasisupermodular games, i.e. the
games where payoffs are striclty quasisupermodular and satisfy the strict
single crossing property, as special cases. For example the strictly supermod-
ular games studied by Vives (1990, Theorem 4.2) are special cases of the
games defined and studied in Theorem 3.

In the proof of Theorem 3 we will use Lemma 2. We point out that increas-
ingness as in Definition 1, and strong lower increasingness as in Definition 2,
are preserved under cartesian products, contrary to the increasingness notion
used for example in Vives (1990) and d’Orey (1996), see Remark 4.1 in Vives
(1990). This is why we can prove Theorem 3.

Theorem 3: Let
(
I, (X i, ui)i∈I

)
be a game in normal form where, for

every player i, X i is a lattice compact in any topology finer than its interval
topology and payoff ui : X i × T i → R is upper semicontinuous in own
strategies, lower modular and strongly upper modular. Then the game has
strong complementarities, and so its Nash set is a nonempty complete lattice.

Proof: Fix any player i ∈ I. Since X i is compact and ui is upper semi-
continuos, then Bi is nonempty and compact. By Lemma 2, for every ti ∈ T i,
Bi

ti is a chain, and being compact it has a least and a greatest element. Fur-
thermore, by Lemma 1, Bi is both upper and lower increasing (Definition
1). Is is immediate to see that upper and lower increasingness of Bi, for
every i ∈ I, implies that B = ΠiB

i is both upper and lower increasing. Fur-
thermore, since every X i is a complete lattice then X = ΠiX

i is a complete
lattice. Finally, B has a least and a greatest element because every Bi has a
least and a greatest element. Thus the game has complementarities accord-
ing to Definition 3. So, by Theorem 1, its Nash set has a least and a greatest
element.

Fix now a profile of strategies a ∈ X such that Ua is nonempty. Consider
the correspondence Ga : x ∈ Ua 7→ Ga

x = Bx ∩ [a, 1]. Note that for every x ∈

26



Ua, Ga
x = ΠiB

i
ti ∩ [ai, 1i] where 1i is the greatest element of X i. Hence every

a ∈ X with Ua 6= ∅ define card (I) nonempty correspondences ti ∈ Ua
ai 7→

Bi
ti ∩ [ai, 1i], where Ua

ai = {ti ∈ T i : (ai, ti) ∈ Ua} is the section of Ua at ai

given i ∈ I. For every i ∈ I, by Lemma 2 the correspondence ti ∈ Ua
ai 7→ Bi

ti

is Veinott increasing. Hence the correspondence ti ∈ Ua
ai 7→ Bi

ti ∩ [ai, 1i]

is also Veinott increasing, and so it is lower increasing. Thus the product
Ga

x is lower increasing on Ua, and since a was arbitrary, B is strongly lower
increasing.

Furthermore, by Lemma 2, for every ti ∈ T i, Bi
ti is a compact chain. So

for every ti ∈ Ua
ai , Bi

ti ∩ [ai, 1i] is also a compact chain, and as such it has a
least element. Hence for every a ∈ X with Ua 6= ∅, Ga

x has a least element.
Thus, according to Definition 3, the game has strong complementarities,

and by Theorem 2 its Nash set is a nonempty complete lattice. Q.E.D
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