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1 Introduction

Our objective in this paper is to explore in a systematic way how competition
affects firms’ incentives to innovate. Thereby, we aim at exploring further the
relationship between market structure and innovation incentives, which has
always been a central, and debated, issue in economics since Schumpeter’s
classic work, Capitalism, Socialism, and Democracy, in 1943.

Context. Schumpeter’s first conjecture was to stress the necessity of tol-
erating the creation of monopolies as a way to encourage the innovation
process. This argument is nothing but the economic rationale behind the
legal protection of intellectual property and is nowadays widely accepted.
Schumpeter’s second conjecture was that large firms are better equipped to
undertake R&D than smaller ones. The best way to support this conjec-
ture is probably to say that large firms have a larger capacity to undertake
R&D, insofar as they can deal more efficiently with the three market failures
observed in innovative markets, namely externalities, indivisibilities and un-
certainty.! It is not clear, however, whether large firms, because of their
monopoly power, also have larger incentives to undertake R&D.

The pioneering paper studying the effect of market structure on the
incentives for R&D is Arrow (1962). He compares the profit incentive to
innovate for monopolistic and competitive markets, concluding that perfect
competition fosters more innovation than monopoly. The intuition behind
this result is that a monopolist has less incentive to innovate because it
already makes profit before the innovation, whereas the competitive firm just
recoups its costs. This is the so called replacement effect: for the monopoly,
the innovation just “replaces” an existing profit by a larger one. In Arrow’s
words, “the preinvention monopoly power acts as a strong disincentive to
further innovation”. As the following quote illustrates it,?> Arrow’s intuition

has made its way through the economic press:

LAs far as externalities are concerned, large firms are likely to have less competitors
able to imitate their innovation. In terms of indivisibilities, large firms are more qualified
to exploit increasing returns in R&D. Finally, regarding uncertainty, large firms are more

diversified and, hence, more willing to take risks.
2Taken from “The meaning of XBox,” The Economist, November 24, 2005.



“It is surely no coincidence that Microsoft’s hidden ability to innovate
has become apparent only in a market in which it is the underdog and
faces fierce competition. Microsoft is far less innovative in its core busi-
nesses, in which it has a monopoly (in Windows) and a near monopoly
(in Office). But in the new markets of gaming, mobile devices and
television set-top boxes, Microsoft has been unable to exploit its Win-
dows monopoly other than indirectly — it has financed the company’s

expensive forays into pasture new.”

Our approach. The previous argument seems to suggest that perfect com-
petition also dominates, in terms of innovation incentives, oligopolistic mar-
ket structures in which firms have some market power. However, this con-
jecture turns out to be wrong. We argue indeed that an intermediate form of
competition may provide a higher incentive to innovate than the traditional
polar cases (either monopoly or perfect competition). More generally, we
examine how the intensity of competition affects incentives to innovate.

To this end, we consider an oligopoly model with horizontally differen-
tiated products. In this setting, we address the same question as Arrow:
how much is a firm willing to pay for a process innovation that it would
be the only one to use? We also examine under which industry structure
this willingness to pay reaches a maximum. To measure this willingness to
pay, we compute the difference between the profit the firm would get by
acquiring the innovation (and so reducing its marginal cost) and the profit
the firm would get without the innovation. That is, we suppose that if the
firm does not acquire the innovation, no other firm does. We measure thus
the pure “profit incentive” to innovate, that is the desire to increase profits
independently of the rival firms. As for the intensity of competition, our
model allows us to consider different sources: the number of firms in the
market, the degree of product differentiation and the nature of competition
(Cournot vs Bertrand).

Results. The main finding of this analysis is that different industries are
affected in qualitatively different ways by an increase in competition. The
practical consequence is that, depending on the characteristics of the indus-

try of interest, the highest profit incentive can be reached by a competitive



firm (Arrow’s claim), by a monopoly (Schumpeter’s claim) or by an inter-
mediate form of competition. We provide a rule about how to enhance firms’
incentive to innovate for any industry.

More precisely, our main results can be summarized as follows. First, re-
garding the effect of product differentiation, the profit incentive is U-shaped
whatever the nature of competition, the innovation size and the number of
firms. Second, the effect of the number of firms depends on the other pa-
rameters. Under Cournot competition, the profit incentive either decreases
with the number of firms or has a U-inverted shape. Under Bertrand com-
petition, the profit incentive either decreases or increases with the number
of firms. In both cases, for the second option to occur, the innovation and
the degree of product substitutability must be large enough. Third, in both
natures of competition, there exist ranges of parameters for which the profit
incentive is affected in opposite ways by different measures of competition (it
decreases with the number of firms and increases with the degree of product
substitutability). Fourth, Arrow’s result is no longer valid when products are
sufficiently differentiated and/or the innovation is not too large; monopoly
is then the optimal market structure in terms of profit incentive to innovate,
which supports Schumpeter’s second conjecture.

Related literature. Our framework is directly linked to a vast 10 liter-
ature which, in line with Arrow, assumes that there is only one innovator
which cannot be imitated by competitors.? Bester and Petrakis (1993) con-
trast the profit incentive in Cournot and Bertrand duopolies for different
degrees of horizontal product differentation. Bonanno and Haworth (1998)
address the same question as Bester and Petrakis (1993) but under a model
of vertical product differentiation. Yi (1999) examines the effect of the num-
ber of firms on the profit incentive to innovate in Cournot oligopolies with a
homogeneous product. Delbono and Denicolo (1990) compare and contrast
static and dynamic efficiency in oligopolies producing a homogeneous prod-
uct for different number of firms. As Bester and Petrakis (1993), they use

the nature of competition to measure the intensity of competition. They

3This literature as well as our paper abstract from the questions related to patent race.
Our creative environment is characterized by what Scotchmer (2004) calls “scarce ideas”

to distinguish them from ideas which are common knowledge.



measure the incentive to innovate by the profit incentive as well as by the
“competitive threat”, i.e., the difference between the profit a firm gets with
the innovation and the profit it would get if a rival firm found the innova-
tion. The competitive threat comes from the recognition that there might
be rival firms in the market competing to get the innovation. Here, the in-
centive depends on two sources of change of the profit: the profit incentive
and the loss the firm would face in case any rival firm got the cost reduc-
tion. Hence, the value of the innovation increases because firms want to
pay more in order to protect their position. Boone (2001) also studies the
competitive threat but in a framework of asymmetric firms where he follows
an axiomatic approach by defining as measure of competition a parameter
satisfying particular conditions.*

One important conclusion that can be drawn from this literature is that
different dimensions of competition may affect firms’ investment in R&D
in non-monotonic and potentially different ways. Our contribution to this
literature is to provide a unified framework where different sources of com-
petition interact and determine firms’ incentives to innovate. We not only
confirm the results gathered in the previous literature, but we also extend
some of them and, more importantly, we provide new results about the
interaction between different measures of competition.

Our analysis can be related to two other strands of the literature on
innovation. First, the incentives to innovate can be computed by including
the revenue the innovator could raise through licensing the innovation. Ad-
ditional issues arise then about the form the license should take (royalty per
unit of output, fixed fee, ...) and about the number of licenses to be granted.
Moreover, in an oligopoly setting, the identity of the innovator also matters
(does the innovator compete on the product market or not?). Kamien (1992)
surveys this literature and Kamien and Tauman (2002) extend it.

Second, another important question is how much firms are willing to
invest in cost-reducing R&D (and not just how much they are willing to

pay for an innovation of a given size), especially when all firms have the

4 As pointed out in our conclusion, the study of the competitive threat in our framework
constitutes one of our proposals for future research. However preliminary results do not

show any qualitative difference with the profit incentive approach.



simultaneous opportunity to achieve competing innovations. It must then
be recognized that R&D is like any form of investment in that it precedes
the production stage. As a result, strategic considerations and the extent of
knowledge spillovers play a central role in determining which market struc-
ture provides firms with the highest incentives to undertake R&D. The idea
that R&D generates incentives for firms to behave strategically has been
first examined by Brander and Spencer (1983), assuming no R&D spillovers
between firms and Cournot competition on the product market. Spence
(1984), Okuno-Fujiwara and Suzumura (1990), and Qiu (1997) extended
this analysis by considering, respectively, positive spillovers, Bertrand com-
petition, and differentiated products. In these models, as opposed to our
approach, each firm can obtain some cost reduction by investing in R&D.
In this symmetric setting, Cournot competition (with strategic substitutes)
always results in higher cost reductions than Bertrand competition (with
strategic complements), whereas in our framework, Bertrand competition
leads to larger R&D investments than Cournot competition when product
are close substitutes (as shown by Bester and Petrakis (1993) for the duopoly
case). Regarding R&D cooperation, d’Aspremont and Jacquemin (1988)
presented a seminal analysis, which was then extended by, e.g, Kamien et
al. (1992), and generalized by Amir et al. (2003).

The remainder of the paper is structured as follows. In Section 2, we
set up the model. In Sections 3 and 4, we examine in turn Cournot and
Bertrand competition. In Section 5, we define the optimal market structure

in terms of incentives to innovate. We conclude in Section 6.

2 Model

There are n firms (indexed by ¢ = 1...n) competing in the market. Each
firm ¢ incurs a constant marginal cost equal to ¢; and produces a differ-
entiated product, g;, sold at price p;. The demand system is obtained
from the optimization problem of a representative consumer. We assume a
quadratic utility function which generates the linear inverse demand sched-
ulep;, =a—qi—y>, j£i 4G in the region of quantities where prices are positive.

The parameter « is an inverse measure of product differentiation: the lower



~ the more products are differentiated; in the limit if v = 1 products are
perfect substitutes, if v = 0 products are perfectly differentiated and as a

result demands are independent. The demand schedule, for v # 1, is then
given by ¢; = a — Op; + (52].#]9]-, with

a 14+~v(n—2) v
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Under Cournot competition, the equilibrium quantity and profit for firm

i are easily found as:
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We can also compute the equilibrium price, quantity and profit under

(1)

Bertrand competition:

s (28+8)a+B(28—8(n—2))ci+68, ¢ o)
b = (26+6) (26— 8(n —1)) ’

o = Bf —c)y 7 =0 —a)=01/0)a) (3)

Initially, all firms produce at cost ¢; = ¢. A new process innovation
allows firms to reduce the constant marginal cost of production from ¢ to
c1 = c—x (with 0 < x < ¢). We assume that the innovation is nondrastic. A
sufficient condition is that the monopoly price corresponding to ¢ is larger
than the initial cost ¢; that is, (a +c¢—x) /2 > c. Equivalently, assuming
without loss of generality that the difference a — ¢ is equal to unity, we
assume:

Assumption 1. z <a—c=15
In line with Arrow’s question, we want to find out how much a firm is

willing to pay for acquiring the innovation and being its single user.5 As a

®As shown by Zanchettin (2004) in the duopoly case, this condition is sufficient but
not necessary for values of v < 1. We also assume that ¢ > 1, so that Assumption 1

guarantees that the innovator still has a positive marginal cost.
5We discuss in the conclusion the role of the identity of the innovator (either incumbent

or outside research lab).



consequence, we concentrate on the profit incentive that can be seen as
the “pure” incentive to innovate. We denote by my the profit accruing to
the innovator (the ‘winner’), and by 7 the current (pre-innovation) profit.
For future reference, we also define 7, as the profit accruing to the rivals of
the innovator (the ‘losers’). Based on these definitions, we formally define

our measure of firms’ incentives to innovate as follows:
Definition 1 The Profit Incentive is defined as PI = my — .

We derive below the exact value of the profit incentive under Cournot
and Bertrand competition, respectively noted Plg (n,~y) and Plg(n,).
The profit incentive is clearly increasing in the innovation size, x. It also
depends on the number of firms in the market (n) and on the degree of

product differentiation () in ways we will now analyse. Finally, note that

PIc (1.7) = Plg (n,0) = PIy (1.7) = PIs (n,0) = 22
which corresponds to the profit incentive for a monopoly (either because
there is a single firm, n = 1, or because products are independent, v = 0).

We want to study how the profit incentive changes with the intensity of
competition. We consider three measures of the strength of competition:
the degree of product substitutability (), the number of firms in the market
(n), and the nature of competition (Cournot vs Bertrand).

As far as v is concerned, we know that as v decreases, firms’ market
power increases because products become more independent of each other.
In the limit, when -y is zero, we are in the presence of local monopolies. On
the contrary as « approaches 1, profit tends to zero under Bertrand com-
petition because we turn to perfect competition and decreases to a positive
constant under Cournot competition with symmetric firms. Therefore, we
study the effect of a change in the degree of product differentiation on the

incentive to innovate.”

"A change in v can also be seen as a form of product innovation. Lin and Saggi (2002)
distinguish the effects of such product innovation from those of a process innovation (like
the one we consider here and which is usually modeled as a reduction in the marginal cost

of production).



The number of firms in the market is a measure of competition as long as
firms are symmetric: in fact, as pointed out by Boone (2001), with asymmet-
ric firms, an increase in competition, may force inefficient firms out of the
market. As a result, a more competitive product market may imply a lower
number of firms. In other words, when firms differ in their marginal costs, a
lower n does not necessarily mean a milder competition; note however that,
on the other hand, a higher n always means a tougher competition. In our
framework, where firms are ex-ante symmetric, it can be easily shown that
the current, the losers’ and the winner’s profits are decreasing in n. We then
take n as another measure of the strength of competition.

Finally, as for the nature of competition, from Singh and Vives (1984),
we know that going from a Cournot to a Bertrand market structure implies

an increase in competition.

3 Cournot Competition

In this section, we study how the incentives to innovate change with respect
to the intensity of competition in a Cournot framework. We consider in
turn the degree of product substitutability and the number of firms; we then
examine the extent to which the effects of the two measures of competition
converge or diverge.

Using expression (1), we find:

BRI ERC R TUEr PR
W= Tty ) W
qf _ (2_7)_71' C_(q€)2, (6)

77TL -
2-72+y(n—-1))
where Assumption 1 is used to guarantee that all equilibrium quantities
(especially qg) are always positive. Applying Definition 1, we compute the

value of the profit incentive, as

_C __C _ (2+v(n=2))22—7)+(2+v(n—2))z)
PIC (n7 fY) - ﬂ-W ™ =T (2_,},)2(2_’_,},(”_1))2 . (7)

In order to analyse how PIc (n,v) depends on v and n, we can get

some intuition by first studying its separate components, ﬂ% and 7¢. We



summarize our results in the following lemma, where ' (n) = 1/ (n + 2) and

A (n,x) =2 <:r +1—z(z+ n)) /(1 —x (n —2)). The proof of this lemma
and all subsequent proofs are relegated to the appendix.

Lemma 2 (i) The winner’s and current profits both decrease with the num-
ber of firms in the market. (ii) The current profit decreases with the degree
of product substitutability. (iii). The winner’s profit increases with the de-
gree of product substitutability if this degree and the size of the innovation

are large enough (i.e., if x > T (n) and v > 4 (n,x)); it decreases otherwise.

It is worth stressing the third result in Lemma 2. In general profits are
decreasing in y. Nevertheless, if the innovation is large enough, the innovator
may gain from an increase of . In particular, W%'V is first decreasing in -y
(because as soon as vy becomes positive the firm is no longer a monopolist
and remember that the innovation is non-drastic which implies that the
innovation does not allow the innovator to become a monopolist) and then
increasing in 7 (as soon as products are sufficiently substitutable, the cost
advantage of the innovator becomes more important because the innovation
becomes a sort of substitute for the product differentiation). This means
that our two measures of competition have contrasting effects on the winner’s
profit. Note that Z (n) and 4 (n,z) decrease with n. Therefore,the higher
the number of firms in the market, the larger the range of parameters where

the winner’s profit is increasing with ~.

3.1 Effect of product substitutability

As we show in the next proposition, Plo first decreases with v and then
increases. Whether the largest incentive is reached for v = 0 or v = 1

depends on the other parameters (n and ).

Proposition 3 Under Cournot competition, (i) the profit incentive is U-
shaped with respect to . (ii) The highest profit incentive is reached under
independent products (v = 0) if the innovation size is below some threshold
(comprised beween 2/7 and 2/3), and under homogeneous products (y =1)

otherwise.
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The proposition is formally stated and proved in the appendix. While
the proof is technical, we now give the intuition behind the U-shaped form.
First, it is useful to consider an infinitesimal reduction in cost (x — 0) and
use calculus. Indeed, the profit incentive can be seen as the discrete version
of the sensitivity of i’s profits to a reduction in its own cost (i.e., —97¢/dc;

evaluated at ¢; = ¢). Decomposing the latter derivative, we have:

or¢ c
== = 24 (7)-F(), (8)

861'
_8qu B 2+7(n—-2)
a> “eyerrmo1)

To explain the U-shape, we are interested in establishing the sign of

with F'(y) = (

0*r¢ oq¢
a0 28—7F(W) +25-a (7).

From Lemma 2, we know that dg¢ /07y is negative. We can also easily
show that, in contrast, 0F/0v is positive for v > 0 and is equal to zero
for v = 0. This means that as products become closer substitutes, there
are two contrasting effects: the equilibrium quantity decreases but becomes
more sensitive to a reduction in the firm’s own marginal cost. In other words,
comparing two situations, y; > 7,5, we have that a cost reduction produces
a larger change in quantity under ~; than under 7,, but this change also
applies to a smaller quantity. The net effect is thus ambiguous. However, we
have clear cut results for the extreme values of v. When v = 0, the second
effect disappears and so, the marginal return of a cost reduction decreases
with 7. At the other extreme (7 = 1), it can be shown that the second effect
dominates the first effect and so, the marginal return of a cost reduction
increases with . There is thus an intermediate value of -, for which the
two effects just compensate and where —07¢ /Jc; reaches a minimum.

Let us now extend the previous argument to the discrete case. We can

rewrite the profit incentive as
Plo = fy -7 = (4f)" = (¢°)" = (afy +4°) (afi =) ()

Comparing expressions (8) and (9), we can say that 2¢¢ (v) approximates

(¢ + ¢°), and F () approximates (g, — ¢©). Naturally, in the discrete

11



case, the way these terms change with v depends on the value of the cost
reduction. As far as (q% - qc) is concerned, we can show that it behaves
like F'(y) in the sense that it increases with v whatever the innovation
size. However, (q‘(;;, +qC) might behave differently than 2¢¢ (v): if the
cost reduction and the degree of product substitutability are large enough,
(ql(;;, + qc) increases with 7. (This is because of the effect of the winner’s
quantity, as explained in Lemma 2.) It thus means that for large values of
~ the two effects are positive, which just reinforces the conclusion we drew
from the infinitesimal case.

The fact that larger values of v lead to a larger profit incentive to inno-
vate can be seen as a form of substitutability between product innovation
(modeled as a reduction of ) and process innovation (measured by z): the
weaker the product innovation, the higher the willingness to pay for a given

process innovation.

3.2 Effect of the number of firms

The increase in the number of firms has two opposite effects on the incentive
to innovate. On the one hand, there is a competition effect: a larger number
of firms reduces firm i’s profit if either it gets the innovation or it does not.
On the other hand, there is a competitive advantage: the higher n, the
higher the number of rival firms producing in a less efficient way. This in
turn implies that, in some cases, the effect of the number of firms on the

profit incentive is also non-monotonic.

Proposition 4 (i) The profit incentive is a single-peaked function of n.
(i) If the innovation size and the degree of product substitutability are large
enough, then the maximum value of PI is reached for n > 1 (competition);

otherwise, the mazximum value of PI is reached for n =1 (monopoly).

Again, we formally state and prove the proposition in the appendix.®

The interesting result is that when x and  are large enough, the profit in-

8This result complements and extends Yi (1999) who focuses on homogeneous product
markets. For an infinitesimal innovation, Yi shows that the profit incentive decreases with
n for a fairly large class of demand functions. He also considers arbitrary innovations

under linear demand and finds the same threshold value for the innovation size as we do.
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centive to innovate first increases and then decreases with n: for a sufficiently
low number of firms, the competitive advantage dominates the competition
effect; that is, an extra firm in the market implies a larger gain from getting
the innovation because one more firm faces a higher marginal cost; clearly,
this gain is larger the less differentiated are the products and the larger
is the innovation size. In contrast, when the number of firms in the market
reaches a certain threshold, the overall effect on the profit incentive becomes
negative. We check the presence of these two effects by deriving expression

(9) with respect to n:

9 _ Oaw+d®) o ¢
%PIC(%TL) = T o (aw —q%)

competition effect (-)
9 (giv —a°)

on
N——

competitive advantage (+)

+ (q% + qc) .

Performing a similar infinitesimal analysis as above, we confirm that
for small values of x (x — 0), the competition effect always dominates the
competitive advantage, and the profit incentive decreases with n; indeed, we
compute:

O*r¢

" Oc;0n <0.

At the other extreme, we can show that when v and z tend to one (i.e.,
towards homogeneous product and drastic innovation), the profit incentive

is always increasing with the number of firms.

3.3 Cross-effects

We want now to contrast the ways the two measures of competition affect the
profit incentive. According to Proposition 4, the profit incentive increases
with the number of firms provided that the innovation size and the degree of

product substitutability are large enough. Let us make this statement more

13



precise. Considering n as a continuous variable, it is readily shown that

n—x—4+\/(n+w)2—4(n—1)

0
—PI, S>3 =

on

)

(10)

where 7 (n,x) > 0 for all admissible n and z, and 5 (n,x) < 1 if and only if
x> (n—1)/n.

From Proposition 3, we know that the profit incentive is U-shaped with
respect to 7. Let 4 (n,z) denote the value of « for which the profit incentive
reaches its minimum (we proved that 0 < 4 (n,z) < 1 for all admissible n
and z). We find that 5 (n,z) > 4 (n,z) for all admissible n and x, which

allows us to state the following proposition.

Proposition 5 (i) The two measures of competition affect the profit incen-
tive in converging ways either if products are sufficiently differentiated (for
v < 4 (n,x), the profit incentive decreases with vy and n), or if the innovation
is large enough and products are sufficiently substitutes (for x > (n—1) /n
and v > 7y (n,x), the profit incentive increases with v and n). (ii) There
always exists a range of parameter values for which the two measures of
competition affect the profit incentive in diverging ways (for 7 (n,x) < v <

min{¥ (n,x), 1}, the profit incentive increases with v and decreases with n ).

The results of Proposition 5 gives us a rule about how to enhance the
incentives to innovate for any innovation size x and any industry (n,~y). For
instance, it tells us for which industries, a merger of two firms (decrease in
n) or the introduction of a product innovation (decrease in ) increase or
decrease the incentive to invest in a process innovation.

Another implication of Proposition 5 is that the same level of profit in-
centive can be achieved in different industries. In this respect, an instructive
thought experiment is to fix the innovation size x and examine which indus-
tries give firms the same level of profit incentive as a monopoly (n = 1 and/or
v = 0). We know from Proposition 3 that for x < 2/7, the monopoly gives
a higher profit incentive than any other industry. So, we take for example
x = 1/2 and we compute that the following industries (n,~y) are equivalent
to a monopoly in terms of profit incentive: (2,0.89), (3,0.94), (4,0.98), and

14



(5,1).2 We observe that to maintain the profit incentive at the monopoly
level, an increase in the number of firms has to be compensated by an in-
crease in product substitutability. In particular, we observe that five firms
producing a homogeneous product are willing to pay the same amount than
a monopoly for a process innovation that decreases the marginal cost of

production by x = 1/2.

4 Bertrand Competition

The derivation of the profit incentive is slightly more involved under Bertrand
competition. Indeed, in contrast with Cournot competition, Assumption 1
is not sufficient to ensure that the non-innovating firms (the ‘losers’) are all
active on the market after the innovation. In fact, if firm i is less efficient
than firm j (because of the innovation x > 0), it sets a price larger than its
marginal cost ¢ (and thus produces a positive quantity) as long as its prod-
uct is sufficiently different from j ’s product. We need thus to consider the
possibility of corner equilibria in which a number of losers are constrained
to price at marginal cost. The following lemma characterises the Bertrand-
Nash equilibrium of the post-innovation game for all values of x, n, and ~.
Define

1= @m-3v+2)

75 (,7) = v (L+9n —279)

Lemma 6 The Nash equilibrium of the post-innovation price game is such
that (i) for x < xp (n,7), all firms price above their marginal cost, and (ii)

forx > xp(n,v), the winner is the only firm pricing above its marginal cost.

Note that the threshold separating the two cases, zp (n,7), decreases
with n and tends, for n — oo, to 2 (1 — ) /=, which is greater than unity for
v < 2/3. Therefore, the corner solution can only be observed for sufficiently

large values of x and ~.

9The larger z, the more “equivalent” industries can be found. At the limit, when the

innovation becomes drastic (z = 1), there is an infinity of “equivalent” industries.
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We can now define the profit incentive. First, from expressions (2) and

(3), we derive the current profit:

B 14 ~(n—2) 1—~ 2
”B(”’”)‘uv)(lw(n1>><v<n3>+2>' )

Next, using the proof of Lemma 6, we compute the winner’s profit at the

Nash equilibrium of the post-innovation game:

¢

(e ]
for x < zp(n,v), (12)
T (v) = (1—%4—30)%
L for x > zp (n,7v).

Finally, combining (11) and(12), we can express the profit incentive un-

der Bertrand competition as

PIg (n,y) = { PIg(n,9)=nfy (n,7) =% (n,7) for v <ap(n,7),
) -7 B (y) — 7B (n,7) for x > zp(n,y).
(13)

We can now examine how the profit incentive evolves with the two mea-
sures of competition. Starting with product substitutability, we observe that

its effect is non-monotonic, as described in the following proposition.

Proposition 7 Under Bertrand competition, (i) the profit incentive first
decreases with 7y, then reaches a minimum, and finally increases with ~y. (ii)
The highest profit incentive is reached under homogeneous products (y=1)

for all m and x.

We observe thus that the degree of product substitutability affects PIp
and Plc in qualitatively similar ways. Bester and Petrakis (1993) compare
PlIp and Plc in a duopoly model by restricting the range of v to values
such that all firms stay on the market (i.e., x < x5 (2,7)). They show that
there exists a cutoff value of v such that PIo > PlIg for « below the cutoff
and PIg > Pl for v above the cutoff. Using our derivation of PIg (2,7),

we can show that Bester and Petrakis’ conclusion extends to larger values of
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7 (i.e., those for which an ex post monopoly obtains).' Moreover, we show
that under Bertrand competition, the profit incentive reaches its maximum
for homogeneous products independently of the other parameters (n and x).

On the other hand, the effect of the number of firms on the profit in-
centive under Bertrand competition is monotone. As we show in the next
proposition, Plp is either decreasing or increasing with n depending on
the innovation size and the degree of product differentiation. We show in
Appendix 7.7 that there is a unique positive value of x, Z (n,7y), such that
0PIy (n,vy)/0On =0, and that z (n,v) < xp (n,7) for all n and . Therefore,

we can state:

Proposition 8 Under Bertrand competition, the profit incentive decreases
with the number of firms for x < Z (n,7y), and increases otherwise. A nec-

essary condition for the latter possibility (T (n,v) < 1) is v > 0.65.

Let us now provide some intuition for these results. As for Cournot,
we first proceed with the infinitesimal analysis. The profit incentive can be
seen as the discrete version of the sensitivity of i’s profits to a reduction in

its own cost (i.e., —9m2/dc;). Decomposing the latter derivative, we have:

ory af
. . 0 (1+’y(n72))(2+3’yn76’y+72n27572n+572)
with G (y,n) = <_a_ciqi) = TP @R =) O
B
% _ B . __ 1—7
and 5 - (pi” — ) D ——

To explain the effect of competition on —GWIB /0c;, we are interested in

establishing the sign of

3 (aart) = 2 0P 2lP e g6

D () = 20 ) #2060 ) G
where

%(pf —¢) = —m < 0,and %G(%n) >0,

8%@5 Ce) = ﬁ <0 and (%G(fy,n) - 0.

10Gimulations indicate that these results still hold for n > 2.

17



Therefore, as competition becomes fiercer, that is as v and n increase,
two opposite forces are involved: on the one hand competition has a negative
effect on the price cost margin, on the other hand it has a positive effect on
profits’ sensitivity to cost. However, in contrast with Cournot competition,
when = — 0 the negative effect always overcompensates the positive one; in
fact:

0 0 B 0 0 B
8_7 <8—Cz7rl ) < 0 for anyy, and n <8_Q7TZ ) < 0 for any n.

Let us now extend the previous argument to the discrete case. We can
rewrite the profit incentive as

1
PIg =nfy — 7% = = (aff + d°) (gt — d7)

8

where (qiw + q) /3 approximates 2¢” /3 and (g — q) approximates G (v, n).
We first study how these components change with +. From Appendix 7.6,
we can see that they behave like their corresponding infinitesimal terms.

On the other hand, the discrete analysis with respect to n, changes with
the innovation size. In particular, we show that (qﬁ, —q¢B ) behaves like
G (7y,n), that is it increases with n whatever the innovation size; however,
(qﬁ/ + 4B ) /B might behave differently than 2¢”/3: if the cost reduction and
the degree of product substitutability are large enough, (qﬁ/ + 4B ) increases
with n.

As far as the cross effects of the two measures of competition are con-
cerned, the picture is similar to the one we described for Cournot competi-
tion. Defining x(n, ) as the positive value of x such that 0PI (n,v) /0y =
0, we can show that z(n,v) < Z (n,7), meaning that there are up to three
possible situations: (i) for = <z(n,7), the profit incentive decreases with
both n and ~; (ii) for z(n,y) < & < & (n,7), the profit incentive decreases
with n but increases with ~; (iii) for x > Z (n,7), the profit incentive in-
creases with both n and . As for Cournot competition, it is impossible to

have the profit incentive increase with n while decreasing with ~.
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5 Optimal Market Structure

After studying how different sources of competition affect the profit incen-
tive to innovate, we can proceed to investigate what is the optimal market
structure in terms of profit incentives to innovate. Notice that we are not
looking for the welfare maximizing industry, nor for the “welfare incentive”
to innovate. In contrast, starting from the idea that a process innovation is
welfare enhancing (it implies an increase in total industry profits as well as
an increase in consumer surplus), we compared how much a firm is willing to
pay for a process innovation.under different market structures (perfect com-
petition, oligopolies, monopoly). We now wonder under which conditions
this willingness to pay is maximised.

Arrow (1962)’s argument about the optimal market structure in terms
of profit incentive was based on Bertrand competition in a homogeneous
market. We check indeed that with a homogeneous product, the profit in-
centive under Bertrand competition is defined as PIg (n,1), which increases
in n and reaches thus its maximum at PIg (co,1) = z. It is easily checked
that PIg (00,1) = 2 > PIg(1,1) = (z + 2) x/4, which establishes Arrow’s
result.

Now, Proposition 4 tells us that the previous argument does not hold un-
der Cournot competition. Indeed, letting the number of firms going to infin-
ity never leads to the highest profit incentive. Also, Proposition 8 shows that
as soon as products are differentiated, the profit incentive under Bertrand
competition might be decreasing in n if the innovation is small enough,
meaning that the monopoly gives higher incentives to innovate.

Combining our previous results, we are in a position to complement
Arrow’s analysis in a useful way by solving the following exercise: for a
given degree of product differentiation and a given innovation size, what is
the combination of competition mode and number of firms that yields the
highest profit incentive to innovate? As shown in the following proposition,

the answer is very simple to state.

Proposition 9 For sufficiently large values of © and 7y, Bertrand compe-
tition with an infinite number of firms yields the highest profit incentive.

Otherwise, (Bertrand or Cournot) monopoly does.
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More formally (as proved in Appendix 7.8), for x > 2 (1 — ) /v (which
supposes v > 2/3), the best structure under Bertrand competition (that
is, the optimal number of firms nj; — oo) yields a higher profit incentive
than the best structure under Cournot competition (i.e., njy, = 1 or ng is
(the integer closest to) 7 (z,7) depending on the value of z). On the other
hand, for z < 2 (1 — ) /7, the optimal market structure is monopoly, which
independently of the nature of competition provides a profit incentive given
by (z +2) x/4.

6 Conclusion

We have provided a unified framework where different sources of competition
interact and determine firms’ incentives to invest in a process innovation.

Our results are twofold: on the one hand, we confirm the existence of a
non-monotone and non-unique relationship between the intensity of compe-
tition and the incentives to innovate in a general framework; in particular,
we extend the analysis of the profit incentive to innovate under Bertrand
competition with linear demand and horizontally differentiated products by
considering any number of firms and any degree of product differentiation.
On the other hand, we show that different sources of competition can have
diverging effects on the innovation incentives; we characterize the conditions
under which this occurs, thus providing a rule about how to enhance firms’
incentives to innovate.

In the spirit of Arrow (1962), we focus our attention on the profit in-
centive as a measure of firms’ innovation incentives. This strategy allows
us to extend and complement Arrow’s analysis; in contrast, we do not con-
sider the incentive which comes from the recognition that there exist rival
firms competing to be the first to innovate, that is the competitive threat.
The analysis of the competitive threat in such a framework constitutes a first
possible extension of our model. Nevertheless, preliminary results show that
the different sources of competition considered here affect the competitive
threat and the profit incentive in qualitatively similar ways.

A second linked research area we propose to work on deals with the iden-

tity of the innovator. Our profit incentive may correspond to either of the
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following two scenarios. We can think first that some outside research lab
has discovered the innovation and auctions a single license to the highest
bidder; our question was to evaluate what the highest bid would be. Al-
ternatively, we can imagine that the innovator is an incumbent firm, which
either manages to keep its innovation secret, or which is granted a broad
patent of infinite duration and which does not license the innovation to rival
firms; our question was then to assess how much this incumbent is willing to
invest in R&D. Nevertheless, our approach does not take into account the
incentive of the innovator to license his cost-reducing innovation. In particu-
lar, Kamien and Tauman (2002) demonstrate that an outside innovator finds
it profitable to auction more than one license, and that an inside innovator
also has incentives to license the innovation to its rivals. Their approach is
an alternative measure of firms’ incentives to innovate, that is the innova-
tor’s profit coming from the mode of licensing and the number of licenses
auctioned off. We leave it to future research to investigate whether their
results still hold in the presence of product differentiation. Studying the
behavior of the innovator in our framework would allow us to have a more

complete picture of firms’ innovation incentives in oligopolistic settings.

7 Appendix

7.1 Proof of Lemma 2

(i) It is obvious from (6) and (5) that both 7¢ and 7¢ decrease with the
number of firms. As for the winner’s profit, we consider the number of firms
as a continuous variable. We compute the sign of the first-order derivative
of the equilibrium profit with respect to n. It is readily seen that 67‘(% /on
is negative if and only if v < 2/ (x + 1), which is clearly satisfied as v,z < 1.

(ii) It is obvious from (5) that 7€ decreases with 5. As for the loser’s

profit, we compute the first-order derivative with respect to ~:

B 2= 4+4)z+2-72* n-1
= ) <0

(iii) We compute the first-order derivative of the winner’s profit with
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respect to y:
(=1 (v(r(n=2) + )z~ (2—7))

2-7)?@2+m—7)
The derivative has the same sign has the following second-degree polynomial

0
8_,Y7T€V = (2%(7;/)

iny: (n—2)x —1)y?+4(z +1)y—4. This polynomial has two real roots:
_Zw—i—l—l—\/w(n—i-w) _290—1-1— z(n+x)
= 1—x(n—2) 2= l—-xz(n—2)

We need to distinguish between two cases. First, if > 1/(n —2), it is

easily checked that 7; < 0 < 75 < 1. Therefore, the polynomial is positive
for v € [y, 1]. Second, for x < 1/ (n — 2), two sub-cases must be considered.
(A)If1/(n+2) <z < 1/(n—2), then one checks that 0 < 75 < 1 < 7
and the polynomial is positive for v € [y,,1]. (B) If < 1/(n + 2), then
one checks that 1 < 75 < ; and the polynomial is negative for all v € [0, 1].

We can summarize the previous results as follows. Let 7 = 1/ (n+2)
z+1—+/z(z+n)
1—z(n—2)
x > T, the winner’s profit decreases with~y as long as v < 4; otherwise (for

and 4 = 2 . For x < I, the winner’s profit decreases with ~. For
4 < v < 1), it increases with the degree of product substitutability. Note
that both T and 4 decrease with n, meaning that as the number of firm
increases, the range of parameters over which the winner’s profit increases

with v enlarges.

7.2 Proof of Proposition 3

Proposition 3 is stated formally as follows.

(i) For all x € [0,1] and all n > 2, there exists 7o € (0,1) such that
OPI/0y < 0 for v < Yo, OPI/0y = 0 for v = 4, and OPI/0y > 0 for
v > 7. (ii) The highest profit incentive is reached under independent prod-
ucts (v =0) if x < Te(n) =2(n—1)/(3n+ 1) and under homogeneous
products (v = 1) if x > ZT¢ (n); Te (n) increases in n, is comprised beween
2/7 and 2/3.

(Proof) (i) Computing the first-order derivative of the profit incentive
with respect to v yields
2z (n—1)
(2= 2+~ (n-1)°

0
—Plc (na’Y) =

N (A(n,v)z + B (n,7)),
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where

Aln,y) = 7Y@+ —=2)7) 2+ (n—2)7),
2(2-7) ((n=2)y" = (n—=5)7y - 2).

&
Sl
2

I

The derivative has the same sign as A(n,y)x+ B (n,7). It is readily observed

that A(n,~) is positive and increasing in 7 for all n and 7. We also note
that A(n,0) =0and A(n,1) =n(n+2) > 0.

yet,

The sign of B (n,7) changes. B (n,7) is a polynomial of degree 3 in ~;

as (2 —) > 0 can be factored out, we need to analyse the sign of the

second-degree polynomial 3(n,7) = (n —2)y2 — (n —5)y — 2. It is easily

checked that (3 (n,7) admits two real roots, v; and 74, which can be ranked

as follows: v; <0 <7y < 1. As B(n,0) = —8 and B (n, 1) = 2, we conclude
that B (n,~) has only one root in the interval [0, 1] and that B (n,v) > 0 iff

Y > Yo

Collecting the previous results, we have that A(n,~v)x + B (n,v) (and,

hence, the derivative 0PI /07) is negative in 7 = 0, positive in v = 1, and

we can state there is only one root between zero and one, say 7 (> v5) such

that %PIC (n,v) >0& v >7.

(ii) We compute

Plg (n,0) = Plc (n,1) = 96(964?r 2 nffjlr)zn) >0
2(n—1)

(Bn+1)"

—2n+3xzn+2+2x < 0 < z<Tc(n)

We check that T,y (n) > 0, T4 (n) < 0and T¢ (2) = 2/7 and limy, o0 T (n) =

2/3.

7.3 Proof of Proposition 4

Proposition 4 is formally stated as follows.

Define
R 2=z +(By—=2)(2-9)
nor = Y@2—v-a7) ’
2= (P27 +49)
1o = AACERE) '
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(i) Taking n as a continuous variable, the profit incentive reaches a max-
imum for n = 7 (y).!! (ii) Taking into account that n is an integer, the
maximum is reached for n > 1 if and only if > & (), which supposes that
v > 0.711.

(Proof) (i) We compute

0 —4+8’y+2’yz—3’yz—272a:—2'yn+’yzn+z’yzn
gnt o) = e (—27) (2 (n-1))° =0

2y =y)z+(By-2)(2-19)

n <
Y(2—v—xv)

i (y).

(ii) This is clearly impossible if 72 (y) < 1, which is equivalent to z <
2(1—7)/vy. As z < 1, the latter condition is always satisfied if v < 2/3.
Therefore, to have Plc (n,7) reaching a maximum at a value of n strictly
larger than one, we need v > 2/3 and = > 2 (1 — ) /. However, recalling
that n is an integer, it might the case that 1 < 7 () < 2 while PI¢ (1,7) <
Plc (2,7). To exclude this case, we note that Plo (2,v) > Pl (1,7) <~

2(2—7) (-7 = 2v+4)
v(8—7?)

which supposes that v > 0.711. In sum, the maximum value of PI is reached

xr >

= (7),

for n =1 (monopoly) if x < z (y) (which is always true for v < 0.711).

7.4 Proof of Proposition 5

Let us first prove Expression (10):

(ntazn—3—2x)y>+(8+2x—2n)y—4 >0

9
an Dle () = e s a1y

on
if and only if, for v > 0, (n+an —3 —2x)y% + (8 +2x —2n)y — 4 > 0.

This quadratic form in + has one negative and one positive root, ¥ (n,x).
Therefore, 0PIc (n,v) /On > 0 if and only if

n—x—4+\/(n+w)2—4(n—1)

>_ ) - M
7> (2) n—3+nr—2x

which supposes that > (n — 1) /n (otherwise, ¥ (n,x) > 1).

" Computing 7 () at v = 1, we find that the profit incentive decreases with n as long

as n > 1/ (1 — z); this is equivalent to z < (n — 1) /n, the condition given by Yi (1999).
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Second, we compute a lower bound on 7 (n, ). As ¥ (n, z) decreases with
x, we evaluate ¥ (n,z) at x = 1 and we obtain

n—=5+vVn2-2n+5
B 2n—5 ’

7 (n,1)

which is an increasing function of n. The lowest value is therefore reached
for n = 2; that is 5 (2,1) = 3 — /5 = 0.764, which is our lower bound.

Third, we evaluate OPI¢ (n,v) /0y at the lower bound we have just
found. We have

9 bl (m) o e, 618 11269n — 4078
oy OV 191 (618 + 191n2) (118 + 191n)

~ 1000

But, by assumption, > (n — 1) /n and
n—1 618 11269n — 40788

n 191 (618 + 191n) (118 + 191n)
12285 452n + 129179030 + 6967871n° — 13928484 > 0.

0 —

The latter expression increases in n. Evaluated at n = 2, it is equal to
118057 000, meaning that the expression is positive for all n > 2.

We conclude that OPI¢ (n,y) /07y is positive at 7 (n, z) for all n and =z,
which implies that 4 (n,z) > 4 (n,z) (as PIc (n,v) is U-shaped in v) and

completes the proof.

7.5 Proof of Lemma 6

The post-innovation price game is played by one winner (indexed by W)
and a set L of (n — 1) losers indexed by i. A typical loser i’s maximization

program writes as

max (a—fBpi+6pw +6 > pj | (i—o) st.opi>ec
m JELg#i

From the FOC, we find that the interior solution to this problem is given by

1
pi:% a+(5pw+5‘z 'pj+ﬂc
JEL,j#i
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This solution holds as long as p; > ¢, which is equivalent to

a+opw + 0 Z p; > Be. (14)
JEL,j#1
We can thus write loser 7’s best response function as follows
j#) _ % <a+6pw+§zj€L7j¢ipj+ﬂc> if (14) is met,

R; (PW7 (pj)jtL ,
c otherwise.

(15)

As for the winner, the maximization program writes as

rgax(a—ﬁpw—i-é E pz‘> (pw —c+x) s.t. pw > c—x.
124
icL

From the FOC, we find that the interior solution to this problem is given by

PW ((pi)ieL) = % (a+52pi+ﬂ(cx)> . (16)

€L
We show that this value is always larger than c—x. Indeed, the lowest of p,,,

noted py, is reached when p; = ¢ Vi € L. After substitutions, we compute

1(1—=7v)+x(14+~yn—2y)
—(c—x) == > 0.
pw —(c—1) =3 1+ yn— 2y

Let us first characterize the interior Nash equilibrium. Solving the system

of equations given by (16) and by the top row of (15) taken (n — 1) times,
we get equilibrium prices for the winner and the losers respectively given by

p{/gv and pf. We have that

B _ (=)@ =3rv+2)—7(Q+m—2y)=

pL —c¢ =0

(24+9n —37)(2+2yn — 3y) -
(1-=9)@2yn =3y +2)
Y1+ —2y)

Suppose now that condition (17) is not met. The equilibrium must then

<— z<uzp(n) = (17)

be such that some losers set p; = ¢, while the other losers set a price pr, > c.
Suppose that k losers price above marginal cost, with 0 < k£ < (n —1).
Condition (14) must be satisfied for those k losers and violated for the other
(n —k —1) ones. That is,
at+opw +6((n—k—-1c+(k—-1)pL) = Pe,
a+épw +6((n—k—2)c+kpr) < pBe.
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As pr, > ¢, it is easily seen that these two inequalities cannot be met simul-
taneously. We therefore conclude that the only corner equilibrium involves
k=n-—1.

Now, the winner prices its good at the maximum level leaving the losers
with zero demand at their lowest possible price, i.e., p; = ¢ Vi € L. That is,

ph, is such that
g =a—(B—8(n—1)c+bpw =0.

After substituting for the values of o, 8, and 8, one gets

_B

b = CL*—(CL*C),

W v

_ _ 1

qﬁ, = a—pﬁ;z;(a—c)>0

Accordingly, the winner’s profit is computed as (recalling that we set a—c =

):
7B (y) = <1%+x> %

One checks that when 7 tends to 1, pjj; tends to ¢ (the loser’s marginal cost)
and 7?5[, tends to . Note also that in the corner solution, the winner’s profit

becomes independent of n.

7.6 Proof of Proposition 7

(i) Consider first the case where all firms stay on the market after the inno-
vation. This is so as long as < xp (n,~y), which is equivalent to v < vg (n),

with

’yB(n):m <2nx5+\/x(x+4n6)+(2n1)2>

Notice that vg (n) is decreasing in n, and so minvyg (n) = 2/ (z +2). The
profit incentive is then computed as follows: Plg (n,vy) = mw (n,v)—m (n,7)
and, recalling from (3) that 78 = (1/8)(¢?)?,

S PIa(07) = 5 (% (aw + q>) (aw =)+ 5 aw 0 (% (aw + q>) |
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Developping, we have that:

0 (1 _ A (3v(n—2)+4)z+2(2+7(2n—3))2
Oy (B (aw + q)) = —(n-1 iz s s
0 0 .
8_7 (gw —q) = x- G_VG(% n) > 0, with
B (1+yn—27) (2+72n2—6’y+5'y2—572n+3'yn)
Gnn) = oms e

Therefore, as  increases two opposite forces are at work. Computing
OPIg (n,v) /0y at the extreme values (y = 0 and 7 = min~yg), we find
that OPIg (n,0) /0y < 0 and OPIg (n,2/(2+x)) /0y > 0. Given the op-
posite forces involved and given that the profit incentive is first decreasing

and then increasing in ~, we can conclude that the PI has a U-shape w.r.t.

7‘12

(ii) Second, for x > xp (n,7), which is equivalent to v > vz (n), the
profit incentive is defined as PIpg (n,v) = 7% () — 7 (n,7). As it can be
easily shown that 75 (v) increases with v and 7 (n,v) decreases with v, we
can safely conclude that PIp (n,7) is an increasing function of .

Now, we can compute the limit of PIg (n,) for v — 1:
lim PIg (n,7y) = z.
y—1

Comparing the latter expression to PIg (n,0), we have that PIg(n,v) —
PIg(n,0) = 2(2—2)/4 > 0. (by the way, PIg(n,v) as v approaches
one is the profit incentive for a perfectly competitive firm and is, as we
know from Arrow, larger than the profit incentive for a monopolist, i.e.,
PIp (n,0) = Plp(1,7)).

7.7 Proof of Proposition 8

We first note that the profit incentive is independent of n for v = 0 (as firms
are local monopolists). For v > 0, we distinguish between two cases.
(i) Consider first the case where x < zp (n,v) and all firms stay on the

market after the innovation. The profit incentive is given by Plg (n,vy) =

121f P I /0y is negative in v = 0 and positive in min vy, given the two opposite forces,
it means that in min~yg the derivative has already changed its sign and this is sufficient

to prove that it is increasing also for any v > min~yp.
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78 (n,7)—nB (n,7). Computing the derivative with respect to n and solving

for x, we obtain:'?

8P)IB (TZ, f}/)

o >0 < >z (n,7).

We now show that Z (n,7) < xp (n, 7). Computing the difference z (n, v)—
xp (n,v), we find

_ 1—7)(2yn—374+2) (A575+Asvi+Azy3 4+ Aoy2+ A1 y+4
x(m’Y)—wB(n,’y):—( 7)(@2ym—37+2)(Asy S Ty Ty A )7

where

As = 3n° —27nt 410103 —195n% + 191n — 75 >0 <= n >3,
Ay = —106n> +206 + 312n? — 414n + 14n* > 0,

A3 = —163n%2 —224+332n 42703 >0 < n > 2,

Ay = 122+28n% —118n > 0 for all n # 2,

A = 16n—34>0 < n >3,

B > 0.

We thus have that z (n,v) — 2 (n,v) < 0 for n > 3. To complete the
proof, we compute the value of As (n)v°+ A4 (n) ¥4+ A3 (n) ¥3+ Az (n) v2 +
Aj (n) y+4 at n = 1 and n = 2 and we find, respectively, 2(2 — ) (y — 1)* >
0 and 4 — % +29* + 493 — 292 — 2y > 0.

So, for 0 < & < & (n,7), OPIp(n,7v)/0n < 0, and for Z (n,y) < z <
xg (n,7), OPIp (n,v) /On > 0. Simulations show that a necessary condition
for T (n,v) < 1isy > 0.65.

(ii) If = > xp(n,7), the profit incentive is defined as PIg (n,y) =
78 (v) =7 (n,7). In this case, it is easily shown that PIg (n,) is increasing

B

in n, because 7y, (7) is independent of n and 7 (n,y) decreases with n. At

the extreme case of v = 1, PIg (n,1) = z, which is independent of n.

13The long expressions are not reproduced here but are available from the authors upon

request.
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7.8 Proof of Proposition 9

Under Cournot competition, we know from Proposition 4 that the optimal

number of firms ng, and the corresponding profit incentives are
forz<i(r), nh=1  Plo(1,y)=4@+2)m,
forx >z (y), ng=n(y), Plc(n(z,v),y)= m,
with
27(A=—7)r+By-2)(2-7)

Rl = v(2—7y—av) ’
sy~ 22N (-2 +d)
o) = 7(8—=17?) '

Under Bertrand competition, we know from Proposition 8 that the profit
incentive decreases with the number of firms for + < Z (n,7), and increases
otherwise. So, for z < Z(n,v), ny = 1 and PIg(1,7) = (v +2)z/4. On
the other hand, for x > Z (n,7), nz = co. The level of the profit incentive
depends then on whether x is below or above zp (n,7). Computing Z (n,~)
and xp (n,vy) for n — oo, we find that they both tend to the same value,

ie., 2(1 —~)/vy. Summarizing, we have

forxﬁ@, ng=1 Plg(l,y)=1(z+2)x,
forx>%1,y_—72, np = 00, ﬁB(oo,fy):(l—l+x>%.

We establish that

which implies that there are three cases to consider:

o for z < %17_—72, ng = np = 1 and monopoly should prevail;

e for @ < x < & (), Bertrand competition should prevail because

1 2(1— 2—-zx
PIB(oo,'y)—PIC(l,*y):Z <w— ( 5 ’Y)) st > 0;

e for x > % (), Bertrand competition should prevail because

2(17)) 2—xy—1
v Y3 (4 —xy—27)

PIB(oo,'y)—PIC(ﬁ(x,'y),’y):<w— > 0.
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