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1 Introduction

The topic of replacement investment and capital depreciation has always been a concern for

economic theorists and practitioners. This concern comes principally from the feeling that

the assumption of a constant depreciation rate (and therefore an assumption of a constant

replacement investment to capital ratio) is barely incorrect. This assumption is for exam-

ple strongly challenged by Feldstein and Rotschild (1974) and Nickell (1975) in pioneering

theoretical contributions. An early empirical assessment of this issue is due to Griliches

(1960) who studied the replacement of farm tractors and proposed a way to measure capital

depreciation in this context.

An obvious alternative to the constant depreciation rate assumption is the well-known

depreciation-in-use assumption. Typically, capital depreciation is varying over time depend-

ing for example on the pace of economic activity. A higher level of economic activity is

generally associated with a higher rate of capital utilization, which accelerates the depreci-

ation of capital. This endogenous view of depreciation, often referred to as the depreciation

in use hypothesis, has been put forward by Epstein and Denny (1980) and Bischoff and

Kokkelenberg (1987).1 While this approach is certainly worthwhile, it does not seem to

be completely satisfactory: It assigns a residual role to capital depreciation, and it is quite

mechanically computed from the rate of capital utilization optimal paths once the optimal

investment plan of the representative Þrms is characterized.

In this paper we develop a theory of capital depreciation based in the existence of mainte-

nance costs. McGrattan and Schmitz (1999) have highlighted the quantitative importance

1Real business cycles models incorporating depreciation in use have been also built up and simulated
in order to assess the cyclical implications of this hypothesis. Among others, the seminal contributions of
Greenwood, Hercowitz and Huffman (1988) and Burnside and Eichenbaum (1996).
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of the maintenance and repair costs. These authors have found in Canada for the period

1961-1993, that up to 6% of gross national product was devoted to repair and maintenance

activities, which is approximately half expenditure made on the acquisition of new capital

goods. At the Þrm level, there exists a large microeconomic literature on the importance

of maintenance and repair of cars (see for example, Hamilton and Macauley, 1998). At this

level, depreciation is no longer a residual variable: It is an important control variable, as

important as investment itself, and the rate of utilization of capital. Typically, Þrms choose

an optimal operation and maintenance policy together with their investment plan (see for ex-

ample Boucekkine and Ruiz-Tamarit, 2003). Apart from these quite obvious microeconomic

considerations, there is now a growing view that depreciation is a crucial and nontrivial eco-

nomic phenomenon when accounting for the economic performances at the aggregate level.

An early contribution highlighting the role of replacement investment is in Gylafson and

Zoega (2001): using a World Bank data, they show that average depreciation of Þxed capital

during the period 1970-1998, measured as a proportion of GDP, is directly related to initial

GNP per capita across 85 countries as well as to the average growth rate of output per

capita.

Our paper builds on Whelan�s (2002) contribution. As this author, we consider a vintage

capital model with endogenous capital goods� lifetime. A particular vintage is scrapped

when its proÞtability is not enough to compensate the corresponding maintenance costs.

Whelan assumes that this maintenance cost is Þxed. In contrast to Whelan, in our model

the maintenance costs are twofold, a Þxed and a variable cost. The variable cost depends

on an indicator of the utilization of the vintages. No endogenous utilization indicator is

considered by Whelan, and we believe it plays an important role in both the investment and
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maintenance decisions, and in the resulting depreciation. Thanks to this difference, we are

able to distinguish between an endogenous use-related depreciation rate (depending mostly

on the variation in the utilization variable) and an endogenous scrapping rate (depending

mostly on the lifetime of capital goods). It is worth pointing out here that our concept of

use-related depreciation is due to the decline of the optimal utilization of capital when new

and more productive capital goods arrive, and old capital goods become obsolete. Therefore,

the use-related depreciation is linked to the age of capital, and it is substantially different

from the depreciation in use framework described above, which merely reßects the increasing

deterioration of capital goods (independently of their age) in times of larger rates of capital

utilization.

In this framework, we study the relationship between the rates of embodied and disembodied

technical progress and the depreciation rate of capital. First, it is analytically shown that

the lifetime of capital is an increasing (resp. decreasing) function of the rate of disembodied

(resp. embodied) technical progress. Second, we show that both the use-related depreciation

rate and the scrapping rate increase when embodied technical progress (or the obsolescence

rate) accelerates. In contrast, the latter drops when disembodied technical progress acceler-

ates while the former remains unaffected. In contrast to the Whelan�s contribution, which

is mainly empirical, we produce a full analytical characterization, which is far from a simple

task as it will appear clearly along the way. The reason why the analytical characterization

is quite hard in this kind of models is mentioned in Boucekkine et al. (1998): A technological

acceleration induces on one hand an incentive to scrap the machines earlier in order to proÞt

from the increasing efficiency of new vintages, but on the other hand, a rising rate of tech-

nological progress pushes the interest rate upward,2 which tends to reduce the proÞtability

2This is a standard property in optimal growth models with exogenous technical progress, it is typically
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of investment and requires a bigger lifetime service of equipment in order to equalize the

marginal proÞtability and marginal cost of investment. This ambiguity gives rise to a real

analytical problem.

Our framework allows us to re-examine several empirical issues, from Whelan�s productivity

analysis focus to Geske, Ramey and Shapiro�s 2004 paper on the decomposition of non-

Þnancial user cost of personal computers in the recent years in the US. Section 2 is precisely

devoted to highlight these issues and to give a ßavor of the achievements of our work in this

respect. Section 3 presents the model, and identiÞes neatly the corresponding use-related

depreciation rate and the scrapping rate. Section 4 studies the balanced growth paths of the

model, including the existence-uniqueness issue. Section 5 is devoted to characterize how

the lifetime of capital goods, the rate of use-related depreciation and the rate of scrapping

move under embodied Vs disembodied technical progress accelerations. In this section, we

discuss the relationship between the age-related depreciation rate and the obsolescence rate.

Section 6 concludes.

2 Some key preliminary empirical observations

Some stylized facts on depreciation

On US data, the available evidence seems to suggest on one hand that the depreciation rate

of capital has not been constant in the recent period, and on the other hand, that it was

quite reactive to technological evolutions. Indeed, using a data on capital depreciation built

up by BEA, it can be neatly shown that the depreciation rate of US non-residential private

Þxed equipment and software has increased from 1960.3 This increase in the depreciation

reßected in the so-called Fisher equation.
3The relative price of equipment is the ratio �NIPA price index of private nonresidential equipment
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rate has been accompanied by an increase in the decline rate of the NIPA relative price

of non residential private Þxed equipment and software (see Figure 1). The relative price

of investment can be seen as a proxy of the embodied technical progress (see Greenwood,

Hercowitz and Krusell, 1997). Therefore, Figure 1 suggests a positive relationship between

the depreciation rate of capital and the rate of embodied technical progress.

This fundamental property can also be recovered using a cross-section analysis based on

Table 1, which is reported in the Appendix. This table summarizes the magnitudes currently

considered by BEA: It gives the depreciation rate, the service lifetime in years, and the decline

rate of the relative price of equipment and software by equipment types. Figure 2 and 3

illustrate the main regularities entailed in Table 1. Figure 2 shows that there is a positive

correlation between the depreciation rates of the categories of equipment and software used

by BEA and the decline rate of their corresponding relative prices. Analogously Figure 3

shows that the service lifetime of the different types of non-residential private equipment and

software is negatively correlated with the decline rate of their relative prices.

Measuring capital depreciation and productivity growth

As pointed out by Fraumeni (1997), �There are two possible sources of the price change: the

Þrst being a change in the price of an asset because it has aged and the second being a change

in the price of an asset because it is a different time period�. The Þrst change rate can be

referred to as age-related depreciation rate, and the second one may be called time-related

and software� over �NIPA price index of non-durables consumption and services�. The depreciation rate is
calculated as follows. Both the chain-type quantity index for the net stock of private nonresidential equipment
and software, and the chain-type quantity index for depreciation of private nonresidential equipment and
software are multiplied by their respective historical cost in year 1996. The depreciation rate is calculated
dividing the chain-dollar series of depreciation by the chain-dollar series of the net stock of equipment and
software.
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depreciation rate.4 The neoclassical growth model assumes an exogenous and constant age-

related depreciation rate of capital,5 and time-related depreciation rate of capital is equal

to the obsolescence rate, which is in turn equal to the rate of embodied technical progress.

Usually the sum of both rates is called the economic depreciation rate.

BEA uses used-assets prices unadjusted for quality to estimate the depreciation rates of

the different types of capital goods. Therefore, the BEA depreciation rates include both

types of depreciation (age-related and time-related). So it is little surprising that capital

economic depreciation, as measured by BEA, increases when the relative price of new capi-

tal equipment decreases at a faster rate, thus speeding up obsolescence. Our analysis allows

for a deeper analysis of this phenomenon. In particular, we point out that obsolescence af-

fects the economic depreciation of capital through additional indirect channels. Indeed, our

models predicts that an acceleration in embodied technical progress induces a faster decline

in the capital utilization of aging capital goods and a shorter capital lifetime. Therefore,

in contrast to the neoclassical growth model, the age-related depreciation rate depends on

the obsolescence rate, which seems rather consistent with the data as we shall see in Section

5. If this effect of the obsolescence rate on the age-related depreciation rate is not taken

into account, then the growth rate of capital accumulation can be overestimated and this

may yield misleading estimation of total factor productivity growth. Whelan (2002) has

clearly illustrated this point when measuring the usage effect of computers on US produc-

tivity.6 Moreover, we shall also show that this dependence of the age-related depreciation

rate on the obsolescence rate allows to explain the Geske, Ramey and Shapiro Þnding. Re-

4The former is called depreciation by Fraumeni (1997), and the latter is called revaluation by the same
author.

5It is often called the physical depreciation rate.
6More recently, Musso (2004) obtains the same kind of results when simulating a computable general

equilibrium model à la Whelan.
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cently, Geske, Ramey and Shapiro (2004) have studied the decomposition of non-Þnancial

user cost of personal computers in the recent years in the US. They explicitly distinguish

between obsolescence and age-related depreciation (or deterioration). Applied to the recent

US experience, they Þnd that the role of age-related depreciation is quite negligible while

obsolescence turns out to be a major source of change in the user cost of computers. Our

framework gives a neat rationale to this Þnding.

Some critical implications of a Þnite capital lifetime

It is worth pointing out that BEA assumes constant depreciation rates for all categories of

non-residential private equipment and software except computing equipment and autos.7 As

Whelan (2002) has already mentioned, the depreciation rates for computing equipment have

actually increased over time. Our model predicts that if the lifetime of the capital goods is

Þnite, then their depreciation schedules cannot be geometric (or equivalently, depreciation

rates cannot be constant). Moreover, we also show that the difference between the true

depreciation schedule and a geometric depreciation schedule is higher as the lifetime of a

capital good gets shorter, which use to happen when embodied technical progress accelerates.

In such a circumstance, the assumption of a constant depreciation rate becomes even less

appropriate.

We Þnally point at another critical implication of the Þnite capital lifetime property. BEA

uses used-asset prices to estimate the depreciation rate of the different types of capital, and

these estimated depreciation rates are later employed to build the stocks of capital. This is of

course correct under the assumptions of the standard neoclassical growth model. However, if

7Therefore, the increase of the depreciation rate of non residential private equipment and software is
mainly due to a composition effect, with the sharply rising weight of computers and autos in the stock of
non-residential private equipment and software.
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the lifetime of capital is Þnite, then the decline rates of used-asset prices need not be equal to

the depreciation rates of the corresponding capital stocks. We show this neatly in Section 5.

The rationale behind this is pretty clear: if the lifetime of capital is Þnite, the depreciation

due to scrapping does depend on the amount of capital invested in the past, and not only

on the price change of a unit of capital.

3 The model

New plants are built in each period. Each plant at time z is built with a unit of capital. The

production function at time t of a plant built at time z (hereafter, a plant of vintage z) is

Cobb-Douglas,

Yz,t = Aeγt
¡
eλzUz,t

¢α
L1−αz,t ,

where 0 < α < 1, Yz,t is output of a plant of vintage z at time t, Lz,t is labor employed in

an plant of vintage z at time t, A > 0 is the level of disembodied technical knowledge which

grows at the rate γ ≥ 0, eλz is the state of embodied technical knowledge in vintage z and

Uz,t is an index of utilization of capital of the plant of vintage z at time t.

The maintenance cost of vintage z at time t, say Mz,t, depends mainly on its utilization.

More speciÞcally, we assume that the maintenance costs function,Mz,t (Uz,t), does satisfy the

following properties: (i) it is an increasing and convex function of utilization: M 0(U) > 0,

M 00(U) > 0 for all positive U , (ii) M (0) > 0 which reßects the existence of a support cost.

Hereafter, the following function of maintenance costs is assumed in order to get analytical

results:

Mz,t (Uz,t) = βeχ(t−z)U
µ
z,t + η, (1)
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where β > 0 , η > 0 and µ > 1. The following parametric assumption must be hold:

χ > 0 and/or λ > 0. (2)

The existence of the Þxed cost, η > 0, together with assumption (2) are needed to have a

Þnite optimal lifetime of the vintage, as it will be clear later. Note that we assume that the

maintenance costs can increase over time. Among other acceptable reasons, this might be

attributed to the fact that old machines become less compatible with new ones.

The optimization problem of a plant

ProÞt of vintage z at time t are:

πz,t = Aeγt
¡
eλzUz,t

¢α
L1−αz,t −WtLz,t − βeχ(t−z)Uµz,t − η, (3)

where Wt is wage at time t. Vintage z chooses Uz,t and Lz,t in order to maximize its proÞts:

Wt = (1− α)Ae(1−α)gt
¡
e−λ(t−z)Uz,t

¢α
L−αz,t , (4)

αAe(1−α)gte−αλ(t−z)Uα−1z,t L
1−α
z,t = βµeχ(t−z)Uµ−1z,t , (5)

where g = αλ+γ
1−α . Equation (4) states that the marginal productivity of labor equals wage

in each period. Equation (5) states that the optimal utilization of a vintage is such that its

marginal productivity equals its marginal cost. From equation (4) it follows that marginal

productivity of labor is equal across vintages and then:

Lz,t =
Uz,t
Ut,t

e−λ(t−z)Lt,t, (6)

which states that employment in a plant of age t−z equals employment in a new plant times

its relative utilization. Evaluating (4) in z = t, it follows that employment in a new plant is

given by:

Lt,t =

µ
Wt

A (1− α)e
−gt
¶− 1

α

e−gtUt,t. (7)
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From equations (4) and (5), and after a little some straightforward algebra, one might

conclude that capital utilization of a vintage is a decreasing function of its age:

Uz,t = Ut,te−δ(t−z) (8)

where δ = χ+λ
µ−1 and the initial utilization of a new plant, Ut,t, is a decreasing function of

wage,

Ut,t =

µ
αA

µβ

¶ 1
µ−1
µ

Wt

A (1− α)e
−gt
¶− θ

µα

, (9)

with θ = µ(1−α)
µ−1 . Both utilization and employment of the plant fall when it becomes older.

The decline rates of employment and utilization are increasing functions of the rate of em-

bodied technical progress. This is the obsolescence effect of embodied technical progress.

Substituting (4) and (5) into (3) yields: πz,t =
µ−1
µ

α
1−αWtLz,te−(δ+λ)(t−z)−η. And substituting

from (6), (7), (8) and (9) into previous equation, one Þnally gets:

πz,t = Ω

µ
Wt

A (1− α)e
−gt
¶− θ

α

e−(δ+λ)(t−z) − η. (10)

where Ω = µ−1
µ
αA

³
αA
βµ

´ 1
µ−1
. It is clear from the previous equation that when the plant

becomes older, its proÞts go down because its utilization and employment decay due to

obsolescence.

A vintage is scrapped in period z + Jz when it becomes unproÞtable, πz,z+Jz = 0,

Ωe−(δ+λ)Jz
µ

Wz+Jz

A (1− α)e
−g(z+Jz)

¶− θ
α

= η. (11)

And it must be hold that the lifetime of vintage z equals the scrapping time at time z + Jz:

Jz = Tz+Jz . (12)

There is free entry and exit of plants and the number of plants of a vintage is determined
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by a zero proÞts condition:Z z+Jz

z

e−
R t
z
rsds

Ã
Ωe−(δ+λ)(t−z)

µ
Wt

A (1− α)e
−gt
¶− θ

α

− η
!
dt = 1, (13)

where rs is the interest rate at time s, and which states that the discounted sum of proÞts

of a plant must be equal to the cost of a unit of capital.

Aggregating

The aggregate production at time t, Yt, is the sum of output of all plants surviving at time

t,

Yt =

Z t

t−Tt
IzAeγt

¡
eλzUz,t

¢α
L1−αz,t dz (14)

where Tt is the age of the oldest plants still in use at time t and Iz is the number of plants

of vintage z (and aggregate investment at time z). Aggregate employment is the sum of

employment of all plants surviving at time t,

Lt =

Z t

t−Tt
IzLz,tdz, (15)

Substituting from (4) into (15) after a little of algebra yields:

Wt = (1− α)Ae(1−α)gtKα
t L

−α
t (16)

where

Kt =

Z t

t−Tt
Uz,tIzeλ(z−t)dz, (17)

is the replacement value of capital, and it is the theoretical counterpart of the NIPA real-

cost net stock of capital (see BEA(2003)).8 Differentiating previous equation and after some

algebra, we obtain the evolution law of the replacement value of capital,

d Kt

d t
= Ut,tIt − (δt + ξt + λ)Kt, (18)

8The quality-unadjusted relative price of investment is 1 for all t, but the quality-adjusted relative price
of investment at time t is e−λt.
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where

δt =
−1
Kt

Z t

t−Tt
eλ(z−t)Uz,tIz

d Uz,t
dt

1

Uz,t
dz (19)

is the use-related depreciation rate, which captures the decline of utilization of capital when

its age increases, while

ξt =

µ
1− dTt

d t

¶
e−λTtUt−Tt,tIt−Tt

Kt
(20)

is the fraction of capital scrapped at time t because it is not proÞtable, and it is called the

scrapping rate. The obsolescence rate is λ, which is equal to the rate of embodied technical

progress.9 Under our Cobb-Douglas assumption aggregate output is a function of aggregate

capital and aggregate employment:

Yt = Ae
(1−α)gtKα

t L
1−α
t . (21)

Equation (21) has been obtained substituting (4) into (14) and using (16).

Closing the model

The aggregate operation cost is given by:

Mt =

Z t

t−Tt
Iz
¡
βeχ(t−z)Uµz,t + η

¢
dz, (22)

which corresponds actually to fraction of aggregate output plus the sum of surviving invest-

ments times the Þxed cost η:

Mt =
α

µ
Yt + η

Z t

t−Tt
Izdz (23)

Equation (23) is obtained by substituting (5) into (22).

The representative household is composed of Lt individuals at time t. At any period t,

Lt grows at the constant rate n ≥ 0. The utility function of the representative household

9It is also equal to the decline rate of the quality-adjusted relative price of investment.
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is Ut =
R∞
0
Lte

−ρt C1−σt

1−σ dt, where Ct is consumption per capita, σ > 0 is the intertemporal

elasticity of substitution and ρ > 0 is the discounted parameter The Euler condition of the

maximization problem of the representative household is:

d Ct
d t

Ct
=
1

σ
(rt − ρ) (24)

Finally, the resource constraint is

Yt = CtLt + It +Mt,

which states that output equals the sum of consumption, investment and operation costs.

4 Balanced Growth Path

In this section, we study the existence and uniqueness of balanced growth paths. We shall

deÞne a balanced growth path (BGP hereafter) as follows:

DeÞnition 1 Along a BGP, the lifetime of vintages, T = J, is constant. Consumption per
capita, production per capita, investment per capita and operation costs per capita grow at
the same constant (steady state) rate g.

We now study whether our model admits such a solution. As usual in this class of models

(see for example, Boucekkine et al., 1998), this question turns out to be whether the BGP

restrictions stated above imply a unique solution for the lifetime variable, the stationary

levels of the other variables being trivially computable when the value of capital�s lifetime is

available. Before moving to this mathematical issue, we will characterize the main economic

properties of the BGP of our model.

First of all, notice that under our deÞnition, the capital stock grows at the rate g, which

implies that both the use-related depreciation rate and the scrapping rate are constant
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along a BGP. The steady state growth rate g can be therefore readily computed from the

Cobb-Douglas production function (21), g = γ+λα
1−α . Hereafter a lower case, x, denotes the

corresponding variable denoted by an upper case detrended and in terms per capita. We

shall impose the following condition:(1− σ) g < ρ, which guarantees that the intertemporal

utility is bounded. We now look at some properties of the per vintage distributions in the

BGPs.

Utilization per vintage

Along a BGP endogenous utilization of a vintage evolves according to:

Uz,t = U0e−δ(t−z) for all t− z ∈ [0, T ] , (25)

where

U0 = Ut,t =

µ
αA

βµ

¶ 1
µ−1
k−

1
µ
θ, (26)

is the initial utilization of a vintage and it is constant along a BGP because the aggregate

capital-labor ratio grows at the constant rate g along a BGP. Equation (26) follows from

substituting (16) into (9). Equation (25) shows that the utilization of a vintage decreases

with its age at the rate δ = λ+χ
µ−1 due to obsolescence: when a vintage goes away from the

technological frontier, the Þrm optimally decides to devote less resources to operate it.

The long run depreciation rates

The use-related depreciation rate is given by equation (19). As explained just above, the

decline rate of utilization of a vintage is constant in the BGP and equal to

δ =
λ+ χ

µ− 1 (27)

The use-related depreciation rate equals the rate at which utilization of capital declines

when it becomes older. The scrapping rate is given by equation (20), which along a BGP is
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constant and given by

ξ = U0
i

k
e−(δ+g+n+λ)T (28)

It follows from the evolution law of capital (18) that along a BGP investment is such that

capital per capita grows at the constant rate λ+ g,

U0i

k
= (δ + ξ + n+ λ+ g) , (29)

Using (28) and (29), the scrapping rate can be written as:

ξ =
δ + n+ λ+ g

e(δ+n+λ+g)T − 1 . (30)

Characterizing a BGP

A BGP is characterized by the following set of equations together with (26), (27), (29) and

(30):

w = (1− α)Akα (31)

Ωe−(δ+λ)Tk−θ = η (32)

Ωk−θ − η = r + δ + λ+ (δ + λ) η
r

¡
1− e−rT¢ (33)

m =
α

µ
Akα +

η

g
i
¡
1− e−(g+n)T¢ (34)

r = σg + ρ (35)

Akα = c+ i+m. (36)

Equation (31) states that marginal productivity of labor equals wage. Equation (32) is the

scrapping condition, and it states that a vintage will be scrapped when its proÞtability is

zero. Equation (33) states that the marginal productivity of capital equals its user cost, and

it has been obtained, using (31), by differentiating the zero proÞts condition (13) under the
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assumptions characterizing a BGP. The user cost of capital is the sum of the interest rate,

r, the use-related depreciation rate, δ, the obsolescence rate, λ, and a last term depending

on the Þxed operation cost, (δ+λ)η
r

¡
1− e−rT¢.10 Equation (34) gives the aggregate operation

costs as a function of output, investment and the optimal lifetime of capital. Equations (35)

and (36) show the Euler condition and the resource constraint.

The steady state value for the lifetime of capital

The following proposition states that there is a lifetime of capital strictly positive and it is

unique.

Proposition 2 T > 0 exists and is unique.

Proof: Using (31), (32) and (35) the zero proÞts condition (13) along a BGP becomes:

Z T

0

¡
e−(δ+λ)(a−T ) − 1¢ e−(σg+ρ)ada = 1

η
(37)

The left hand side of (37) is a continuous and strictly increasing function of T , and its limit

when T goes to zero is 0 and when T goes to inÞnity is∞. The right hand side is a positive

constant. Proposition 1 follows from the theorem of the intermediate value.¤

Hence, our model admits a unique BGP. We are now ready to make our point and in partic-

ular to study how the age-related and scrapping rates move under exogenous technological

accelerations. The next section is therefore exclusively devoted to the analysis of the com-

parative statics of the depreciation variables (including scrapping time) with respect to the

rates of embodied and disembodied technological progress. Some more comparative statics

are added to better assess the properties of the BGP of our model.

10The scrapping costs are not in equation (33) because the optimal choice of Uz,t implies that proÞtability
of a vintage is zero when it is T years old.

16



5 Technical progress and depreciation

Since T is by construction a crucial determinant of depreciation, we start with the former

variable. We then study how the two forms of technical progress affect the rates of use-related

depreciation and scrapping.

5.1 Embodied Vs disembodied technical progress and the lifetime
of capital

The following proposition states some properties of static comparative of the lifetime of

capital:

Proposition 3 The lifetime of capital is an increasing function of σ, ρ and µ, a decreasing
function of χ and η, and it does not depend on A, β and n.

Proof: Equation (37) does not depend on β, A and n, therefore ∂T
∂β
= 0, ∂T

∂A
= 0,

∂T
∂n
= 0. From (37) follows that any parametric change increasing (resp. decreasing) B (a) =¡

e(δ+λ)(T−a) − 1¢e−(σg+ρ)a for all for all a ∈ [0, T ) implies a lower T . Differentiating B (a),
∂B

∂ (δ + λ)
= (T − a) e(δ+λ)(T−a)e−(σg+ρ)a > 0,

∂B

∂σ
= −ga ¡e(δ+λ)(T−a) − 1¢ e−(σg+ρ)a < 0,

∂B

∂ρ
= −a ¡e(δ+λ)(T−a) − 1¢ e−(σg+ρ)a < 0,

for all a ∈ [0, T ), and δ is a decreasing function of µ and an increasing function of χ. Then

it follows that ∂T
∂µ
> 0, ∂T

∂χ
< 0, ∂T

∂σ
> 0 and ∂T

∂ρ
> 0. The right hand side of (37) is decreasing

with η, then it follows from (37) that ∂T
∂η
< 0.¤

Since the population growth rate does not affect the marginal proÞtability of vintages, it does

not inßuence the lifetime of capital. The disembodied level of productivity, A, and the level
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of the variable operation costs given the utilization level, β, do not show up in the stationary

value for the lifetime of capital because changes in these parameters have two opposite effects

on this variable, which just offset. Actually, an increase in A (resp. a decrease of β) rises the

marginal proÞtability of any vintage, which tends to increase T , but this higher proÞtability

stimulates investment, which ultimately induces a drop in the marginal proÞtability of the

vintage because wages increase, and hence a lower T . Both effects just offset.

A lower elasticity of the variable operation costs with respect to the utilization level, µ, or a

higher growth rate of the variable operation costs with the age of the vintage, χ, both imply

a lower lifetime of capital. The reason is that both parametric changes accelerate the decline

of the utilization of capital with the age of the vintage. A higher σ or ρ implies a higher

interest rate which reduces the present value of proÞts, and requires a higher T to equalize

the marginal proÞtability and the marginal cost of investment and to restore the optimal

rule given by equation (37).

We now turn to the analysis of the more important relationship between scrapping and

technological progress. The integral equation (37) makes it clear that this relationship might

not be easy to characterize. We Þrst state the easier results.

Proposition 4 The lifetime of capital is an increasing function of the rate of disembodied
technical progress, γ. Moreover, the product λ T is an increasing function of the rate of
embodied technical progress, λ.

Proof: To ease the exposition, we shall call F (T, λ) the integral function appearing in

the left hand side of equation (37). Since g = γ+λα
1−α , g is an increasing function of γ and

B (a) =
¡
e(δ+λ)(T−a) − 1¢e−(σg+ρ)a is a decreasing function of γ, then the left hand side of (37)

is a decreasing function of γ for all a ∈ [0, T ), it follows from (37) that ∂T
∂γ
> 0. Unfortunately,

the relationship between T and λ is much more complex. However, we can prove that
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the product λ T is an increasing function of λ. Indeed, ∂(λT )
∂λ

= T − λ ¡∂F
∂λ
/∂F
∂T

¢
,which

implies: ∂F
∂T

∂(λT )
∂λ

= T ∂F
∂T
− λ∂F

∂λ
. Given that ∂F

∂T
> 0, λT is increasing with λ if and only if

∆(T, λ) = T ∂F
∂T
− λ∂F

∂λ
> 0. Using the exact expressions of the involved partial derivatives of

function F , we Þnd:

∆(T, λ) = (δ + λ)e(δ+λ)T
Z T

0

Te−(σg+ρ+δ+λ)ada− λµ

µ− 1e
(δ+λ)T

Z T

0

(T − a)e−(σg+ρ+δ+λ)ada+

+
σλα

1− α
Z T

0

ae−(σg+ρ)a
¡
e(δ+λ)(T−a) − 1¢ da.

Now, a quick look at the Þrst two terms of the expression above is sufficient to see that the

positivity of ∆(T, λ) is ensured if δ + λ − λ µ
µ−1 > 0. The latter property is clear because

δ + λ− λ µ
µ−1 =

χ
µ−1 > 0. ¤

An increase in the rate of disembodied technical change γ has the same two effects as an

increase in A on the lifetime value T . As for the parameter A, these two effects just offset.

A third effect additionally arises: A higher γ implies a higher interest rate which reduces

the present value of proÞts. A higher T is needed to equalize the marginal proÞtability and

the marginal cost of investment, so that the optimal rule (37) is re-established. An increase

in the embodied technical progress has an ambiguous effect on the lifetime of capital. There

are two opposite effects of a change in the rate of embodied technical progress on the lifetime

of capital. An increase of λ accelerates the decline rate of the vintage utilization and vintage

employment (with the age of the vintage), which implies a lower lifetime of capital. However,

a rise of λ increases the interest rate which reduces the present value of proÞts, and would

require as before a higher T to equalize the marginal proÞtability and the marginal cost of

investment. Whether the Þrst or the second effect dominates is not clear at all.

However, the proposition states that even if T drops under an acceleration in the rate of

embodied technical progress, the size of this drop cannot be bigger than the size of the
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acceleration. The next proposition exhibits a sufficient condition under which the lifetime T

is indeed a decreasing function of the rate of embodied technical progress. As we shall see

afterwards, this should be the case when the parameters of the model take the values usually

considered in the literature.

Proposition 5 T is a decreasing function of λ provided T ≤ κ
δ+λ
, where κ = 1−α

α σ
µ
µ−1 .

A necessary and sufficient condition on the parameters for the latter inequality to hold is:
1
η
≤ F ( κ

δ+λ
, λ).

Proof: The second part of the proposition is a direct consequence of the monotonicity of

function F (T, λ) with respect to the Þrst argument, and equation (37). The Þrst part can

be handled using the fact that function F (T, λ) can be rewritten as:

F (T, λ) = e(δ+λ)T
Z T

0

Z T

z

(δ + λ)e−rz−(δ+λ)xdxdz,

where r = σg + ρ. Differentiating F (T, λ) with respect to λ, one can readily see that the

sign of this derivative entirely depends on the sign of:

Z T

0

Z T

z

·
(δ + λ)

µT

µ− 1 +
µ

µ− 1 + (δ + λ)
µ
−∂r
∂λ
z − µ

µ− 1x
¶¸
e−rz−(δ+λ)xdxdz,

which, using ∂r
∂λ
= σα

1−α , corresponds to the sign ofZ T

0

Z T

z

·
(δ + λ)

µT

µ− 1 +
µ

µ− 1 − (δ + λ)
µx

µ− 1 −
(δ + λ)σα

1− α z

¸
e−rz−(δ+λ)xdxdz.

Since x ≤ T , the Þrst term of the expression between brackets is bigger than its third term.

For the whole term to be positive, it is enough to impose the following condition of the

remaining terms, given that z ≤ T : µ
µ−1 ≥ (δ+λ)σα

1−α T ,which gives the condition on T stated

in the proposition. Under this condition ∂F
∂λ
> 0. Since ∂F

∂T
> 0, and ∂T

∂λ
= − ∂F

∂λ
∂F
∂T

, we get our

result. ¤

20



The sufficient condition T ≤ κ
δ+λ

covers by far the usual parameterizations considered in the

literature. Indeed, the typical values for α and σ imply a parameter κ = 1−α
α σ

µ
µ−1 generally

bigger than 1, and since δ + λ is a relatively small number, our sufficient condition turns

out to be far from binding in practice. For example, if the variable operation cost term is

quadratic in the efficiency and utilization index U , µ = 2, σ = 1 as in the usual calibrations

in macroeconomic models (see Beaudry andWincoop, 1996, for an econometric justiÞcation),

and for a capital share α = 1
3
, then our sufficient condition restricts T to be lower than 66

years when δ + λ = 6%, and around 33 years if δ + λ = 12%. This is not restricting at

all if one has in mind the average lifetime of private nonresidential equipment and software

estimated by BEA for the US economy, which goes from 3 years for software to 33 years for

electrical transmission, distribution and industrial apparatus.

Therefore, the capital lifetime T is a decreasing function of the rate of the embodied tech-

nical progress for any economically admissible calibration of our model. This deserves two

comments. At Þrst, we have to mention that the latter property is indeed consistent with

all the recent empirical and theoretical contributions connecting embodied technical change

and investment, including the timing of replacement of obsolete goods (see Boucekkine et

al., 1998, for a theoretical inspection, and Whelan, 2002, for a more empirical perspective).

Second, it seems already clear that the two forms of technical progress have quite distinct

economic implications: while the capital lifetime rises when disembodied technical progress

accelerates in order to compensate the loss in proÞtability resulting from the increase in the

interest rate, the latter effect is dominated by the increasing efficiency of new vintages under

an accelerating embodied technical progress, which on contrary leads to shortening the capi-

tal lifetime. The next section highlights more differences concerning use-related depreciation
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and scrapping.

5.2 The Depreciation Rates

We shall Þrst state a proposition summarizing the comparative statics of both the use-related

depreciation rate and the scrapping rate with respect to the two rates of technical progress,

γ and λ. We will comment on these properties just after.

Proposition 6 The use-related depreciation rate δ is an increasing function of the rate
of embodied technical progress λ and does not depend on the rate of disembodied technical
progress, γ. The scrapping rate ξ is a decreasing function of γ. In contrast, it is an increasing
function of λ if T ≤Min

³
κ
δ+λ
, X0

δ+λ+n+g

´
, where κ = 1−α

α σ
µ
µ−1 and X

0 a well-deÞned strictly
positive number depending on the parameters of the model.

Proof: The comparative statics for the use-related depreciation rate are trivial, given equa-

tion (27). From (30) it follows that ξ = H(T,Ψ) = Ψ
eΨT−1 , Ψ = δ + n+ λ+ g and

∂H

∂T
=
−Ψ2e(δ+g)T
[eΨT − 1]2 < 0,

∂H

∂Ψ
=
eΨT − 1−ΨTeΨT

[eΨT − 1]2 < 0.

∂H
∂Ψ
is negative since ex − 1− xex is a decreasing function which tends to zero when x tends

to 0 and is negative for all x > 0. Using logarithmic differentiation of ξ = H(T,Ψ), one gets:

∂ξ
∂z

ξ
=

∂Ψ
∂z

Ψ
−

∂(eΨT−1)
∂z

eΨT−1 , which yields after some algebra:
∂ξ
∂z

ξ
=

∂Ψ
∂z

Ψ
[1− Φ(ΨT )]− ξeΨT ∂T

∂z
, where

Φ(X) = XeX

eX−1 , and z = λ, γ. Notice that when z = γ, we know that the second term is

negative by Proposition 4. Since Ψ is increasing in γ and function Φ(X) is strictly increasing

from 1 for X ≥ 0, it follows that the scrapping rate is a decreasing function of γ. Things

are much more complicated for λ. Because ∂T
∂λ
< 0 under the conditions of Proposition

4, we have a priori an ambiguous outcome. Notice however that since function Φ(X) is

strictly increasing from 1, the total effect should be positive, that it is the second term of the

logarithmic differentiation should dominate, if X = ΨT is small enough. This puts another
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upper bound on T : There exists a cut-off value X0 > 0 so that ξ is an increasing function

of λ if ΨT ≤ X0 or T ≤ X0

Ψ
. Then the last part of the proposition follows using Proposition

4. ¤

As in Proposition 4, the property of an increasing scrapping rate with λ relies on a sufficient

condition on the value of T . Although it is less clear here compared to Proposition 4, this

condition is again consistent by far with the economically admissible parameterizations of

the model.11

The use-related depreciation rate and the scrapping rate respond quite differently to techno-

logical accelerations. For all the economically admissible parameterizations, both scrapping

and use-related depreciation rate increase when the rate of embodied technical change rises:

when equipment becomes increasingly efficient, the lifetime of machines is shortened, push-

ing scrappage upward, and raising the decline rate of utilization of the capital goods, by

equation (20), which increases use-related depreciation. However, while the latter does not

depend on disembodied technical change, the scrapping rate is shown to fall down when

disembodied technical progress accelerates. And this happens because an increase in γ leads

to lengthen the capital lifetime.

As pointed above, our model has additionally the remarkable property that both rates in-

crease when embodied technical progress accelerate. This has a critical implication for

growth accounting: If the total rate of depreciation (δ + ξ) is not correctly adjusted in such

a case, then the growth rate of the capital stock will be over-estimated, which ultimately

would deliver a misleading Þgure for total factor productivity growth, and explain part of

11We check the sufficient condition for the following wide range of reasonable parameter values: α = 1/3,
σ = 1, µ = 2, ρ = 0.04, n = 0.012 , γ ∈ [0.05, 0.03], χ ∈ [0.05, 0.12], and η ∈ [0.001, 015]. We also obtain the
same results on several alternative parameterizations.
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the productivity slowdown puzzle.

Non geometric depreciation schedules

BEA estimates the depreciation rates of the capital goods using used-asset prices unadjusted

for quality. The relative price of a unit of capital of vintage z at time t (a capital good t− z

years old) equals the discounted sum of its future returns. In our model:

ePz,t = Z z+T

t

e−r(s−t)η
¡
e−(δ+λ)(s−z)e(δ+λ)T − 1¢ds, for all z ∈ (t− T, t] .

The relative price of a unit of capital of vintage t at time t (a new capital good) is

ePt,t = Z t+T

t

e−r(s−t)η
¡
e−(δ+λ)(s−t)e(δ+λ)T − 1¢ds.

After some trivial algebra, one can extract the relationship between the relative prices of old

and new capital goods,

ePz,t = e−(δ+λ)(t−z) h ePt,t − ηH (T, r, λ, δ, t− z)i , (38)

where:12

H (T, r, λ, δ, t− z) = ¡e(δ+λ)(t−z) − 1¢ Z z+T

t

e−r(s−t)ds+
Z t+T

z+T

e−r(s−t)
¡
e−(δ+λ)(s−t−T ) − 1¢ ds.

Normalizing ePt,t = 1, one gets ePz,t =e−(δ+λ)(t−z) [1− ηH (T, r, λ, δ, t− z)]. We can deÞne a
sequence

neφsos=a
s=0

such that

eqa = e−(δ+λ)a [1− ηH (T, r, λ, δ, a)] = e− R a0 eφsds (39)

where eqa = ePz,t/ ePt,t and a = t − z, and eφa is a function of the rate of embodied technical
progress and of the age of the vintage, eφa = eΦ (λ, a). eφa is the depreciation rate estimated
by BEA, which includes the obsolescence rate because BEA uses quality-unadjusted asset

12Using (37), it is easy to prove that 0 < H (T, r, λ, δ, t− z) < 1
η for all z ∈ (t− T, t).
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prices (see Fraumeni,1997). The obsolescence rate is the decline rate of the quality-adjusted

relative price of the new capital goods, λ in our model. If η > 0 and T is Þnite, then eφa is
not constant for all a and the depreciation schedule is not geometric.

As pointed out in Section 2, BEA assumes geometric depreciation schedules for most equip-

ment goods excepting computer equipment and autos. Our analysis suggests that if the

lifetime of an asset is large, then the geometric schedule is a good approach because the

value of H (·) is not very large, but if the lifetime is short, there might be a marked differ-

ence between the true depreciation schedule and the geometric depreciation schedule.

The age-related depreciation rate

If the relative prices of capital goods are adjusted for quality, then we can calculate the age-

related depreciation rate. If we deÞne the adjusted-quality relative prices as Pz,t = ePz,te−λz
and Pt,t = ePt,te−λt, equation (38) becomes Pz,t

Pt,t
=e−δ(t−z) [1− ηH (T, r, λ, δ, t− z)]. We can

then deÞne a sequence {φs}s=as=0 such that

qa = e−δa [1− ηH (T, r, λ, δ, a)] = e−
R a
0 φsds

where qa = Pz,t/Pt,t, a = t−z, and φa is the age-related depreciation rate, which is a function

of the rate of embodied technical progress and of the age of the vintage, φa = Φ (λ, a). φa

is a function of λ because (i) the lifetime is Þnite and/or because (ii) utilization of capital

declines faster (δ is an increasing function of λ). Assuming that T is a decreasing function

of λ, φa is an increasing function of λ. Therefore, age-related depreciation rate depends on

the obsolescence rate in our set-up, and it generally increases as the latter rises.

In the standard neoclassical growth model, the economic depreciation rate of capital is

∆ = δ + λ where δ is the age-related depreciation rate, which is assumed constant and
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exogenous, and λ is the obsolescence rate. Accordingly, this theory would be consistent

with the data if the estimated slopes of the relationships between the economic depreciation

rates and the decline rates of the corresponding relative prices were close to unity. We have

tested this property of the standard neoclassical growth model using the BEA Þgures for the

depreciation rates of equipment and software and their relative prices. Figure 2 is crystal

clear: the slope are markedly larger than one, which is much more consistent with the theory

of depreciation developed in this paper.

The Geske, Ramey and Shapiro (GRS) Þnding

GRS estimate the following relationship ln qa = −
R a
0
φsds obtaining that the estimated φs

are high. In a second step, they estimate the modiÞed equation

ln qa = −
Z a

0

(φs − λs+ κ lnXs) ds

where κ lnXa is a proxy of λa, and is therefore a proxy of the obsolescence rate, while Xa

represents a vector of characteristics of the computers of age a and can be consequently

viewed as an index of their quality. GRS Þnd that the estimated φs− λ are near zero for all

s, which is hardly surprising because φs is an increasing function of λ as pointed out above.

If η = 0, the lifetime of capital is inÞnite. In such a case, qa =e−δa, and the GRS Þnding is

even clearer. The latter relationship can be expressed in logarithms as ln qa = −δa. Taking

into account that κ lnXa = λa, it can be rewritten as

ln qa = − (δ − λ) a− κ (lnXt − lnXz) .

If the equation above is to be estimated, then the estimated age-related depreciation rate is

necessarily bδ = δ−λ = λ+χ
µ−1 −λ, which is clearly near zero if µ close to 2, and χ is near zero.

Also bκ = λ. Our model is therefore fully compatible with the GRS Þnding. This is far from
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surprising because obsolescence is the main determinant of the depreciation of capital in our

set-up.

Capital depreciation and used-asset prices

BEA estimates the depreciation rates using used-asset prices unadjusted for quality and

builds the series of capital stocks using these estimates. However, our model show that

if the lifetime of capital is Þnite the decline rate of the used-asset prices is not equal to

the depreciation rate of capital. The economic depreciation rate of capital in our model is

δ+λ+ξ and the decline rate of the used-asset prices is eφa which is deÞned by (38); it is clear
that the economic depreciation rate of capital and the decline rate of the used-asset prices

are equal only if the lifetime of capital is inÞnite. In this case ξ is zero and eφa = δ+λ for all
a. As we have mentioned above, this is due to the fact that when the lifetime of capital is

Þnite, the depreciation resulting from scrapping depends on the amount of capital previously

invested, and not only on the price change of a unit of capital.

6 Conclusions

In this model, we build a vintage capital model à la Whelan, which incorporates endogenous

maintenance costs. In contrast to Whelan, we have a Þxed and a variable cost, and more

importantly, the variable cost depends on an indicator of the utilization of the vintages.

Thanks to this difference, we are able to distinguish between an use-related depreciation

rate and a scrapping rate. We characterize the balanced growth paths of the model and

put forward many important properties, mostly consistent with the stylized facts. First, the

lifetime of capital goods is increasing (resp. decreasing) with the rate of disembodied (resp.

embodied) technical progress. Second, the model has the remarkable property that both the
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use-related depreciation and the scrapping rate do rise when embodied technical progress

accelerates. In contrast, the latter drops when disembodied technical progress accelerates

while the former remains unaffected.

In contrast to the neoclassical growth model in which the age-related depreciation rate is by

assumption independent of the obsolescence rate, in our model the former depends on the

latter. The age-related depreciation rate increases as the obsolescence accelerates because

the lifetime of capital shorts and utilization of capital decline faster. We have tested this

implication of our model using the depreciation rates of equipment and software used by

BEA and the decline rates of their corresponding relative prices. The observed relationship

between these variables is consistent with the theory of depreciation developed in this paper.

Dependence of the age-related depreciation rate on the obsolescence rate also allows to

explain the empirical Þndings recently put forward by Geske, Ramey and Shapiro.

Last we point out some important implications of Þnite lived capital goods. BEA assumes

geometric depreciation schedules for most of capital goods. However, our analysis implies

that as embodied technical progress accelerates, the assumption of a constant depreciation

rate becomes less appropriate because the lifetime of capital gets shorter in such a circum-

stance. Moreover, if the lifetime of capital is Þnite, the depreciation rate of capital is no

longer equal to the price change of the capital goods because the scrapping depreciation rate

depends on the amount of scrapped capital, and not only on the price change of a unit of

capital.
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Table 1: Depreciation rate, service lifetime (years) and decline rate of the relative price (annual

average 1959-2003) of equipment and software by types

Category Depreciation rate Service lifetime Decline rate
Computers and peripheral equipment 0.203
Software 0.4 4.33 0.049
Communication equipment 0.13 13 0.028
Medical equipment and instruments 0.135 12 0.012
Photocopy and related equipment 0.18 9 0.036
Office and accounting equipment 0.312 7 0.031
Fabricated metal products 0.092 18 0.006
Engines and turbines 0.129 20 0.001
Metalworking machinery 0.18 16 -0.001
Special industry machinery 0.103 16 -0.003
General industrial, equipment 0.107 16 0.002
Electrical transm., industrial apparatus 0.05 33 0.014
Trucks, buses and truck trailers 0.163 16.5 0.007
Autos 0.28 10 0.024
Aircraft 0.096 17.5 -0.002
Ships and boats 0.061 27 -0.001
Railroad equipment 0.059 28 0.003
Furniture and Þxtures 0.138 12 0.006
Agricultural and machinery 0.118 14 -0.002
Construction machinery 0.155 10 -0.004
Mining and oilÞeld machinery 0.15 11 -0.004
Service industry machinery 0.158 10.5 0.010
Electrical equipment 0.183 9 0.018
Other 0.147 11 0.010

Source: Department of Commerce, Bureau of Economic Analysis.
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Figure 1: Depreciation rate and relative price of private nonresidential equipment and software,
1929-2001
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Figure 2: Depreciation rate and decline rate of the relative price of private nonresidential equipment
by types
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Figure 3: Service lifetime and decline rate of the relative price of private equipment and software
by types
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