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Abstract

When future human capital cannot be alienated, households are allowed to
borrow up to the point where it is in their own interest not to default. In such a
framework, endogenous borrowing limits arise as the outcome of individual ra-
tionality constraint. In a model where education is the engine of growth, we show
that endogenous borrowing constraints imply global indeterminacy. Comparing
outcomes across the various equilibria we show that the relation between growth
and yields is hump-shaped. Maximum growth can arise in an equilibrium with
binding borrowing constraints, specially if the elasticity of human capital to edu-
cation spending is large. Deepening financial markets promotes long-run growth
in the case of a poverty trap, but not necessarily otherwise.
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Introduction

The framework proposed by Kehoe and Levine (1993) to model imperfect credit mar-
kets is becoming the benchmark to treat borrowing limits and has replaced the old-
styled set-ups where an ad-hoc liquidity constraint was imposed on the agents. In
their model, default is associated to a penalty consisting in the seizure of the tan-
gible assets of the person who has defaulted. As a consequence, this person will
be excluded from financial markets for the time during which his/her assets can be
seized.1

Defaulting has thus a benefit, – not reimbursing the loan –, and a cost, – being ex-
cluded from financial markets. There is in this context a borrowing limit below which
it is in the interest of the households to reimburse. Lending more than this limit
would inevitably lead to default. The borrowing limit depends on endogenous vari-
ables, including current and future yields. Since endogenous borrowing limits arise
as the outcome of individual rationality constraints which prevent individuals from
defaulting at equilibrium, enforcement of loan contracts is left to the self-interest of
borrowers.

So far, the Kehoe and Levine (1993) concept was mostly used in pure exchange frame-
works where savings finance consumption by other agents. For example Azariadis
and Lambertini (2003) study an overlapping generations model in which endow-
ments (which can be seen as labor income) are inalienable. Middle-aged households
borrow from old-aged households to finance their consumption flow. In their set-up,
changes in current and future rates of interest affect the borrowing constraints. This
mechanism leads to multiple steady states, and to indeterminacy. They also show
that such complex dynamics are consistent with endogenous debt limits but not with
exogenous liquidity constraints.

The implications of endogenous borrowing limits for education funding have not yet
been analyzed in general equilibrium, and this is the subject of this paper. We aim at
modelling carefully credit market imperfections and deriving their role on education
funding. This is obviously an important issue, since education is a key factor deter-
mining the ability of poor countries to grow, but it is often constrained by current
resources, given the inability of students to borrow against future human capital.
So far, investment in education subject to exogenous liquidity constraints has been
studied by De Gregorio (1996), Buiter and Kletzer (1995), and Azariadis and de la
Croix (2001). A first attempt to introduce endogenous constraints is made by An-
dolfatto and Gervais (2003), but they do so in an small open economy, where prices
(wages and interest rates) are exogenous. They show that the usual policy scheme

1The length of exclusion from financial markets is exogenous in Kehoe and Levine (1993). Bond
and Krishnamurthy (2004) go a step further by determining the level of exclusion which is required to
sustain active credit markets.
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involving education subsidies, income taxes and pensions is welfare reducing, be-
cause pensions make borrowing constraints more binding. This is because pensions
make savings for old age less useful, thereby reducing the incentive to reimburse the
student loan. A richer model with four-period life agents is developed by Lochner
and Monge (2002) to quantitatively assess the importance of having endogenous bor-
rowing constraints instead of exogenous ones in the face of policy changes for the US
economy. They conclude that the role of initial wealth and government subsidies is
more important when borrowing constraints are endogenous.

On the empirical side, several authors have estimated the importance of borrowing
constraints on education decisions. For the US, none of the methods proposed by
Cameron and Taber (2004) produces evidence that borrowing constraints generate
inefficiencies in the market for schooling. For developing countries, the picture is
quite different. Glewwe and Jacoby (2000) show that borrowing constraints are para-
mount as far as private schooling expenditures are concerned (Vietnam, 1993-98).
Jacoby (1994) provides some evidence of borrowing constraints in Peru. Additional
references are provided by Andolfatto and Gervais (2003).

The study of education funding in a Kehoe and Levine (1993) framework gives rise to
interesting questions. Having in mind a small open economy, the effect of the exoge-
nous interest rate on education and growth is no longer straightforward, because of
its complex effect on the incentive to reimburse the loan. We show that too low inter-
est rates are bad for growth because they lead people to stay away from assets market
and not reimburse their loan. Too high interest rates are bad too, because they make
credit expensive. In a closed economy where total savings fund education spending,
imperfect credit markets are responsible for indeterminacy of the balanced growth
paths. The equilibrium where education is set at its individually optimal level may
coexist with equilibria where households are credit constrained. Surprisingly, the
maximum growth rate is not necessarily achieved in the situation where education is
unconstrained.

In a first section we present the model. The study of the incentive constraints is pro-
vided in Section 2. The optimal education level is determined in Section 3. The above
results have implications for the relationship between the interest rate and growth
which are examined in Section 4. Endogenizing the interest rate, equilibrium steady
states and dynamics are studied in sections 5 and 6. A last section concludes.

1 The model

Each generation is composed by a continuum of agents of measure one. Population
is stationary. The typical household lives for 3 periods. An agent born in t− 1 draws
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utility from consumption when middle-aged ct and old dt+1:

u (ct, dt+1) (1)

We assume that u(.) is increasing in its arguments and concave; it is homogeneous of
degree one (homothetic preferences) and satisfies the Inada conditions.

Individuals borrow bt−1 amount of good when young to build up their human capital
for the next two periods. The workers enjoy ht unit of human capital when middle-
aged and δht when old. The parameter δ defines the income growth ability over life,
and is determined by different factors: health when old, determining the old-age
endowment in efficient labor; retirement age ; effect of experience on human capital.

Human capital depends on individual investment bt−1 and on the human capital of
the previous generation ht−1. This latter effect may reflect either the influence of
parents or the society as a whole on education. For analytical tractability we assume
a Cobb-Douglas function:

ht = A bλ
t−1 h1−λ

t−1 (2)

where A is a productivity parameter and 0 < λ < 1 is the elasticity of human capital
to investment in education. The function is assumed homogeneous of degree one
to be consistent with balanced growth. Defining the ratio et−1 = bt−1/ht−1, human
capital growth is given by:

ht

ht−1
= A eλ

t−1.

In the above framework, bt−1 is understood as a spending on education good. One
can alternatively interpret bt−1 as a spending on physical capital: in that case, young
households build their own firm by investing bt−1 in it, and the production of this
firm at time t is given by ht, and δht at time t + 1. The externality then reflects the
influence on past production on the productivity of current capital. In the sequel we
shall always interpret bt−1 as investment in education, although an interpretation in
terms of investment in physical capital is also perfectly valid.

When adult (middle-aged), an agent may choose to repay his load bt−1 or not. If he
defaults, he is kept out of the credit market for the remaining period of his life. The
budget constraints in case of repayment are

ct = ht − st − Rt−1bt−1 (3)
dt+1 = Rtst + δht (4)

ht and δht represent income from labor, where the wage per unit of human capital is
constant and equal to 1. Rt−1 and Rt represents interest factors.
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In case of default, the agent is excluded from credit markets, and the budget con-
straints are

ct = ht

dt+1 = δht

The problem of the consumer born in t− 1 is to maximize its utility (1) subject to the
human capital accumulation technology (2), the budget constraints (3)-(4) and the
following individual rationality constraints:

1. IRC old-age: The middle-age agent are not allowed to borrow because they
would never reimburse their debt when old. Hence savings should be non-
negative:

st ≥ 0 (5)

2. IRC middle-age: The utility of repaying the debt and saving should be larger
than the utility obtained from consuming labor income in each periods. This
constraint can be written:

max
s

u(ht − s− Rt−1bt−1, Rts + δht) ≥ u(ht, δht) (6)

with ht given by (2).

The two conditions (5) and (6) are equivalent to the following condition bearing on
bt−1:

max
s≥0

u(ht − s− Rt−1bt−1, Rts + δht) ≥ u(ht, δht) (IC)

In this constraint, Rt−1 is observed, while Rt is anticipated.

Firms produce a quantity Qt of physical goods by using efficient labor Lt as the only
input. The production function is linear: Qt = Lt. The productivity of efficient labor
is normalized to 1, without loss of generality given the assumptions made on technol-
ogy and preferences. Perfect competition implies that marginal productivity is equal
to marginal cost. The labor market equilibrium requires

Lt = ht + δht−1

The assets market equilibrium requires

bt−1 = st−1, (7)

which determines an endogenous level for the interest rate Rt−1.
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2 Education choices under incentive constraints

In this section we analyze the incentive constraints in order to determine an upper
bound on borrowing which will constrain – or not – the education choice. We tem-
porarily take the interest rates Rt−1 and Rt as given. In a first step, we analyze the
constraint of non-negative savings (5) for given incomes, which amounts to study
the indirect utility function. We define the value function of an unconstrained agent
(indirect utility function):

V(ω1, ω2, R) = max
s

u (ω1 − s, ω2 + Rs) (8)

where ω1 is the first period income, and ω2 is the second period income. We also
define the value function taking the constraint (5) into account:

V+(ω1, ω2, R) = max
s≥0

u (ω1 − s, ω2 + Rs) (9)

The following Lemma characterizes the (unconstrained) life-cycle arbitrage condi-
tions under the assumptions made on utility.

Lemma 1
The life-cycle arbitrage condition

u′1(c, d) = Ru′2(c, d)

is equivalent to
d/c = µ(R),

where µ is an increasing, differentiable, function from R++ onto R++: µ(0) = 0, µ(+∞) =
+∞ and µ′ > 0.

Proof: The life-cycle arbitrage conditions writes

u′1(1, ρ) = Ru′2(1, ρ),

with ρ = d/c (from homogeneity of degree 0 of the first-order derivatives of u). The marginal
rate of substitution

MRS(ρ) =
u′1(1, ρ)
u′2(1, ρ)

=
u′1(1/ρ, 1)

u′2(1, ρ)

is increasing in ρ (since u′′11 < 0 and u′′22 < 0). The Inada conditions imply MRS(0) = 0 and
MRS(+∞) = +∞. The inverse function µ(.) of MRS(.) satisfies the properties of Lemma 1.
¥

We can now characterize the function V+ as follows.
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Proposition 1
If ω2/ω1 > µ(R), the constraint s ≥ 0 is binding and V+(ω1, ω2, R) = u(ω1, ω2).
If ω2/ω1 ≤ µ(R), savings are given by

s? =
µ(R)ω1 −ω2

R + µ(R)
≥ 0,

and the function V+(ω1, ω2, R) = V(ω1, ω2, R) is increasing in R in the set {µ(R) >
ω2/ω1}.

Proof: Optimal savings (maximizing V) can be obtained by solving for s the following
identity:

ω2 + Rs
ω1 − s

=
d
c

= µ(R).

We obtain

s? =
µ(R)ω1 −ω2

R + µ(R)
.

the constraint s ≥ 0 in the definition of V+ will not bind when ω1/ω2 > µ(R). The function
V+ = V is increasing in R in the set {µ(R) > ω2/ω1} because s? > 0, and from the envelope
theorem ∂V/∂R = s?u′2. ¥

Corollary 1 With the solution c? = ω1 − s?, d? = ω2 + Rs? maximizing V, we have:

V(ω1, ω2, R) = (Rω1 + ω2)u′2. (10)

Proof: Using the homogeneity of u

V(ω1, ω2, R) = u(c?, d?) = c?u′1 + d?u′2 = (Rc? + d?)u′2 = (Rω1 + ω2)u′2.

¥

Given ω1 and ω2, Proposition 1 determines a threshold for the interest rate below
which constrained savings are zero (unconstrained savings are negative or nil). The
Corollary gives a useful link between V and u′2.

We now turn on attention to the incentive constraint (IC) by making incomes ω1 and
ω2 explicit: ω1 = ht − Rt−1bt−1 and ω2 = δht. Defining the debt repayment as a share
of income as:

xt =
Rt−1bt−1

ht
=

Rt−1

A
e1−λ

t−1 , (11)

we have ω1 = ht(1− xt) and the constraint (IC) can be written as:

V+(ht(1− xt), δht, Rt) ≥ u(ht, δht)

which is equivalent to
V+(1− xt, δ, Rt) ≥ u(1, δ). (12)
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Proposition 2
The constraint (IC) is equivalent to an upper bound x̄t on the income share of debt repayment
xt, given by

x̄t = 1− g(Rt) with g(Rt) =
[

u(1, δ)
u′2(1, µ(Rt))

− δ

]
1
Rt

.

This upper bound is a function of the future interest factor Rt. It is equal to zero for low values
of Rt – satisfying Rt ≤ Rmin – and it is positive for large values – satisfying Rt > Rmin –, with
Rmin such that

µ(Rmin) = δ.

The function g(.) and the threshold Rmin only depend on preferences and δ.

Proof: Applying Proposition 1 to V+(1− xt, δ, Rt) we observe the following.

If µ(Rt) ≤ δ, then δ/(1− xt) > µ(Rt) for all xt > 0, and we have V+ = u(1− xt, δ) < u(1, δ).
Hence the borrowing constraint (IC) defines a maximum borrowing level of x̄t = 0, implying
xt = 0.

In the opposite case, when µ(Rt) > δ, there are positive borrowing levels xt such that δ/(1−
xt) < µ(Rt), and thus V+ = V. The incentive constraint (12) will determine a borrowing limit
x̄t. We rewrite equation (12) using the result (10):

V = (Rt(1− xt) + δ)u′2(1, µ(Rt)) ≥ u(1, δ).

This can be expressed as a condition on xt:

(1− xt) ≥
[

u(1, δ)
u′2(1, µ(Rt))

− δ

]
1
Rt
≡ g(Rt). (13)

The function g(.) allows to compute the borrowing limit:

xt ≤ 1− g(Rt) ≡ x̄t.

It remains to show that the condition x ≤ 1 − g = x̄ is always more restrictive than the
condition 1 − x > δ/µ for which V+ = V. It is straightforward to prove that at x̄ this latter
condition holds: Indeed, since u(1, µ) = (µ + R)u′2(1, µ), with µ = µ(Rt) and R = Rt,

Rg + δ =
u(1, δ)
u(1, µ)

(µ + R).

Since for δ < µ we have
u(1, δ)
u(1, µ)

=
δu(1/δ, 1)
µu(1/µ, 1)

>
δ

µ

we have Rg + δ > (µ + R)δ/µ which leads to g > δ/µ, and thus V+ = V. ¥

Proposition 2 provides an interesting link between the borrowing constraint and the
future interest rate. Small interest rates exclude borrowing and, hence, education
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spending. Indeed, for small interest rates, households optimal consumption profile
will be flatter than their income profile (condition δ > µ(Rt)), implying that their
optimal level of saving is non positive. In this case, it would be optimal for them not
to reimburse their education loan. As a consequence, they will not be granted access
to borrowing.

According to the chosen education technology, no education spending leads to zero
human capital. We could of course consider that there is a positive minimum level h
of human capital reached even if households don’t educate themselves, assuming for
example that the human capital production function is given by:

ht = max
[

h, Aeλ
t−1ht−1

]
.

Since g(.) and Rmin do not depend on the education technology, Proposition 2 would
still hold.

Using the link between xt and et−1 given by Equation (11), the borrowing limit x̄ can
be translated in terms of education spending ē through

ēt−1 =
(

A
Rt−1

x̄t

) 1
1−λ

. (14)

Notice that x̄t is independent from the education technology while ēt−1 is not.

Let us study the function linking the borrowing limit to the interest rate for large
interest rate, x̄(R) = 1− g(R).

Proposition 3
The borrowing limit function x̄(R) = 1− g(R) is increasing from 0 to 1 when R goes from
Rmin to +∞. Its slope at Rmin is equal to 0. For given R > Rmin, x̄(R) decreases with respect to
δ.

Proof: x̄(R) is defined by

V(1− x̄, δ, R) ≡ u(1− x̄− s?, δ + Rs?) = u(1, δ)

We can show that x̄ is increasing in R, i.e. g(R) is decreasing in R:

dx̄
dR

=
s̄?u′2
u′1

=
s̄?

R
> 0,

using the envelope theorem for ∂s̄?. When R → Rmin, we have x̄(Rmin) = 0 and s?(Rmin) = 0.
As a consequence of the latter expression,

dx̄(Rmin)
dR

= 0.
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To compute the limit of x̄ when R → +∞, we use the fact that the function g is bounded above
by the following expression:

g <
u(1, δ)

Ru′2(1, µ(R))
=

u(1, δ)
u′1(1, µ(R))

=
u(1, δ)

u′1(1/µ(R), 1)

using the life-cycle arbitrage condition and the homogeneity of degree zero of the marginal
utility. Since µ(+∞) = +∞ and u′1(0, 1) = +∞, we conclude that g goes to zero when R goes
to infinity, and

lim
R→∞

x̄(R) = 1.

Moreover, given R > Rmin, g(R) is increasing with respect to δ, i.e.

∂g(R)
∂δ

=
1
R

[
u′2(1, δ)

u′2(1, µ(R))
− 1

]
> 0,

since δ < µ(R) and u′2(1, δ) > u′2(1, µ(R)). We also have g(R) ≥ 0 and g(R) < 1 since
(R + δ)u′2(1, µ) = V(1, δ, R) > u(1, δ) thanks to the incentive constraint, which implies

R >
u(1, δ)

u′2(1, µ)
− δ.

¥

From this proposition we conclude that the borrowing limit decreases with the steep-
ness of the labor income profile over time: when future labor income prospects are
high, δ is high, households can borrow less.

3 The optimal education level

The unconstrained optimal level of education maximizes life-time income. Using the
notation in de-trended terms et−1 = bt−1/ht−1, the maximization problem can be
written:

max
et−1

(
1 +

δ

Rt

)
Aeλ

t−1 − Rt−1 et−1

The optimal education is solution to the first order condition:

Aλ(e?
t−1)

λ−1 =
Rt−1

1 + δ/Rt
. (15)

This equation determines education spending as depending negatively on both inter-
est rates Rt−1 and Rt.
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Knowing the optimal level of education spending e?
t−1 we can compute the corre-

sponding level of reimbursement as a share of income:

x?
t =

Rt−1
(
e?

t−1
)1−λ

A
= λ

(
1 +

δ

Rt

)
≡ x?(Rt). (16)

x?
t is simply proportional to the factor (1 + δ/Rt) which transforms human capital

into life-cycle income.

To determine the constrained optimal level of education, it is sufficient to compare
x?

t to x̄t to determine whether the unconstrained solution prevails or not. Both x?
t =

x?(Rt) and x̄t = x̄(Rt) depend on the next period interest rate. If x?
t ≤ x̄t, we have

necessarily
δ

1− x?
t
≤ δ

1− x̄t
< µ(Rt).

In this case savings are positive, V+ = V and the optimum satisfies both incentive
constraints. On the contrary, if x?

t > x̄t, the constrained optimal level is x̄t ≥ 0.

Accordingly, we can write the constrained optimal level of xt as

xt = min {x?(Rt), x̄(Rt)} ≡ x(Rt). (17)

The corresponding growth factor of the economy is:

ht

ht−1
= A eλ

t−1 with et−1 = min
{

e?
t−1, ēt−1

}
.

Proposition 4
The constrained optimal level of borrowing is given by (17). There exists a unique level

R̂ > Rmin equalizing the optimal income share of borrowing to the borrowing limit, i.e.

x̄(R̂) = x?(R̂) ≡ x̂. (18)

The borrowing constraint restricts the education choice of households if and only if R < R̂.

Proof: From Proposition 3, the function describing the borrowing limit function x̄(R) is
increasing from Rmin to +∞. The function x?(R) given by (16) decreases from +∞ to λ when
R goes from 0 to +∞. The decreasing function x?(R) cuts only once the increasing function
x̄(R) at some point R̂ > Rmin. ¥

The two functions x̄(R) and x?(R) are plotted in Figure 1.
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Figure 1: The functions x̄(R) and x?(R)

4 The effect of the interest rate on growth

Proposition 4 characterizes the share of first-period income devoted to the reimburse-
ment of the student loan. In particular, it shows that this share is increasing in Rt in
the interval [Rmin, R̂] and does not depend on the education technology. Constrained
education itself is related to both Rt−1 and Rt through (from equation (14)):

ēt−1 =
(

A x̄(Rt)
Rt−1

) 1
1−λ

.

To study the effect of interest rate on growth, we consider the case of a constant inter-
est rate Rt = R ∀t.2 This leads to:

ē =
(

A x̄(R)
R

) 1
1−λ

.

The effect of R on ē is of the same sign as the effect of R on x̄(R)/R. This function
admits the limit 0 both for R → Rmin and for R → +∞. Thus it reaches a maximum at
some point R̄ > Rmin. R̄ only depends on preferences and δ (since this is the case for
x̄).

2We can see this case as the one of a small open economy.
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Let us now consider the constrained growth rate of the economy and look at the value
of the interest rate that maximizes growth. We already know that too low interest
rates (< Rmin) will go together with economic stagnation because they are incompati-
ble with borrowing.

The maximum of the constrained growth rate cannot be reached for R > R̂, i.e. in the
interior of the unconstrained regime, because

e? =
(

λA(1 + δ/R)
R

) 1
1−λ

=
(

Ax?(R)
R

) 1
1−λ

is decreasing in R. Hence, high interest rates are detrimental to growth because they
depress optimal education investment. As a consequence, the growth maximizing
interest rate is either equal to R̂ (optimal investment coincides with the borrowing
limit and the borrowing limit reaches a maximum at R̄ ≥ R̂, left panel of Figure 2), or
it belongs to the interval ]Rmin, R̂[, and equals R̄ (right panel of Figure 2). The general
result can be stated as follows.

Proposition 5
The maximum growth rate cannot be reached in the interior of the unconstrained regime. It
is attained in the interior of the constrained regime if and only if the elasticity of earnings to
education, λ, is large enough. The lower bound on λ only depends on preferences and δ.

Proof: Notice first that R̄ is independent from λ, since it corresponds to the maximum of
x̄(R)/R, itself independent from λ. The condition R̄ < R̂ is equivalent to

x̄(R̄) < x?(R̄) = λ

(
1 +

δ

R̄

)
.

This condition is equivalent to a lower bound on λ, which only depends on preferences and
δ. ¥

The higher the value of the elasticity, the larger the optimal education, and the more
likely is the maximum of the borrowing limit to be binding.

Earnings Profile and Growth

Let us now consider the effect of another important parameter which determines the
slope of the earnings over life, δ. As we already mentionned above, the parameter δ,
which defines the income growth ability over life, depends on by health, retirement
age, and on the effect of age and experience on human capital. Most of the empirical
literature devoted to estimate the impact of education of wages finds that age is an
important factor (see Psacharopoulos (1994) for a survey).
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Figure 2: The maximum growth rate

If δ increases, optimal investment x?
t increases at given Rt (equation (16)):

∂x?
t

∂δ
=

λ

Rt
> 0.

According to Proposition 3, when δ is higher, households can borrow less, i.e. ra-
tioning will be more likely/severe:

∂x̄t

∂δ
= −∂g(R)

∂δ
< 0.

The effect of δ on growth is therefore uncertain. If the economy is credit-constrained,
growth will be hampered by a rise in δ, while if the constraint is not binding, growth
will be enhanced by higher δ.

This result may lead to interesting policy implications. For example, a policy de-
signed to postpone the legal retirement age increases the labor endowment during
the second period of life, and thereby increases δ. The effect of such of policy is
nonetheless uncertain, depending on the extent of borrowing constraints. Indeed, for
the households who are credit-constrained, rising the retirement age would further
increase the severity of the constraints, because they will be less incited to reimburse
their loans if they work longer. Indeed, the penalty of being excluded from finan-
cial markets harms them less in that case. In the economy as a whole, if households
are credit-constrained, long-run growth can be negatively affected by postponed re-
tirement. This analysis can be enriched if we assume an heterogeneous population
of households with different δ as in De Gregorio and Kim (2000) and Azariadis and
de la Croix (2001).
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5 The Steady State Curve

In the previous sections we have concentrated our attention on the household deci-
sion problem, keeping the interest rate exogenous. We now consider the equilibrium
condition on financial markets and look at the implied dynamics. We express the
dynamics in terms of the variable Rt starting from the definition of µ:

dt+1 = µ(Rt)ct.

Using the budget constraints (3)-(4) and the equilibrium condition (7) we get:

Rtbt + δht = µ(Rt) ((1− xt)ht − bt) .

Dividing by ht and rearranging, we obtain:

bt

ht
= et =

µ(Rt)
Rt + µ(Rt)

(
1− xt − δ

µ(Rt)

)
.

Using the relationship between e and x given by (11) and the definition of the effective
education spending (17), the dynamics of the interest rate are described by:

x(Rt+1) =
Rt

A

(
µ(Rt)

Rt + µ(Rt)

[
1− x(Rt)− δ

µ(Rt)

])1−λ

≡ 1
A

φ(Rt, x(xt)). (19)

This relationship holds for all t ≥ 0. The dynamics of the economy are thus described
by a first-order difference equation. Rt is a current variable and Rt+1 is a forward
looking variable. There is no pre-determined variable.3 Any path satisfying (19) is an
equilibrium. There is no requirement in terms of initial condition(s). Hence, steady
states are always equilibria.

Any steady state x of equation (19) should satisfy:

x =
Rλ

A

(
µ(R)R

R + µ(R)

[
1− x− δ

µ(R)

])1−λ

=
1
A

φ(R, x). (20)

This relationship implicitly defines a function x̃(R), for R ≥ Rmin (i.e. µ(R) ≥ δ).
which describes the combinations R, x compatible with a steady state. Let us study
this function.

Lemma 2
The steady state function x̃(R) is increasing from 0 to 1 when R goes from Rmin to +∞ and

its derivatives satisfies: dx̃(Rmin)/dR > 0.

3This simplication arises because there is no first-period consumption in the model, i.e., children
do not decide separately from their parents how much to consume.
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Proof: The left hand side of (20) is increasing in x, while the right hand side is decreasing in
x. Hence x̃(R) is increasing. We also have x̃(Rmin) = 0 and x̃(+∞) = 1.
To evaluate the slope at Rmin we rewrite equation (20) as:

x
1

1−λ + xN(R) = D(R)

with

N(R) =
R

λ
1−λ

A
1

1−λ

Rµ(R)
R + µ(R)

D(R) = N(R)
(

1− δ

µ(R)

)
.

Differentiating the function we obtain:
(

1
1− λ

x
1

1−λ−1 + N(R)
)

dx =
(

D′(R)− xN′(R)
)

dR

Evaluating this expression at R = Rmin, this simplifies to (since x = 0):

N(Rmin)dx = D′(Rmin)dR with D′(Rmin) = N(Rmin)
δµ′(Rmin)
µ(Rmin)2 .

This finally leads to (with µ(Rmin) = δ)

dx̃(Rmin)
dR

=
µ′(Rmin)

δ
> 0.

¥

We can then analyze graphically the existence of steady states by reporting the func-
tions x̃(R), x̄(R) and x?(R) on the same figure, see Figure 3. The increasing function
x̃(R) meets the decreasing function x?(R) at a unique point Ru. This point is an equi-
librium steady state if and only if Ru > R̂ ⇔ x̃(R̂) < x̂. The right panel of Figure 3
represents a case with Ru > R̂; the left panel represents a situation with Ru < R̂.
When the condition Ru > R̂ holds, there also necessarily exists a steady state Rc with
Rmin < Rc < R̂ because the slope of x̃(R) at Rmin is positive (Lemma 2) while the
slope of x̄ is zero (Proposition 3). One can distinguish the two cases of Figure 3 by a
condition on the parameters, as it will be clear in the next section.

6 Equilibrium dynamics

Dynamics in the poverty trap

We first concentrate on the simple case where the equilibrium interest rate is below
Rmin, implying that savings and investment in education are both zero.
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Figure 3: The steady state curve x̃

Proposition 6
If at date 0 all newborn households anticipate an interest factor R1 ≤ Rmin, their constrained
investment will be nil, and the equilibrium R1 is self-fulfilled.

Proof: At date 0, old households consume their income, d0 = R−1s−1 + δh−1, where s−1 and
h−1 are part of the initial conditions. Middle-aged households have a given net income h0 −
R−1s−1 where human capital h0 and borrowing b−1 are also part of the initial conditions. They
choose s0, c0, and d1 observing R0. Young people chose their borrowing level b0 observing R0

(cost of borrowing) and anticipating R1 (return on their future savings). If they anticipate any
R1 ≤ Rmin, they will borrow b0 = 0. As a consequence, R0 will ensure s0 = b0 = 0. For the
future, incomes are 0, and R1 ≤ Rmin is an equilibrium. ¥

Dynamics in the unconstrained regime

We now turn our attention to the case with positive savings, and study the two dy-
namics separely. This will allow us to characterize the local stability of the poten-
tial steady states, and to derive a condition on the parameters under which we have
Ru > R̂, ensuring the existence of non-trivial steady states. To keep the analysis
tractable we do not consider dynamics with regime shifts.

From Equation (19), the dynamics in the unconstrained regime are given by:

x?(Rt+1) =
1
A

φ(Rt, x?(Rt)) (21)
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Equation (21) defines a function

Rt+1 = ψ?(Rt) with ψ?(R) = x?−1
(

1
A

φ(R, x?(R))
)

.

provided that x?(.) can be inversed. Since x? is inversible on the interval ]λ, +∞[, the
necessary and sufficient condition is

1
A

φ(Rt, x?(Rt)) > λ.

This conditions says that if either A or λ are too large, the dynamics do not stay in the
unconstrained regime and there will be a shift of regime.

Proposition 7 The function ψ?(R) is defined on [R̂, +∞[ if and only if

A <
1
λ

φ(R̂, x̂) ≡ Aλ. (22)

ψ?(R) is decreasing. At R̂, ψ?(R̂) is larger than, equal to, or small than R̂, if A is respectively
larger than, equal to, or smaller than Â with

Â =
φ(R̂, x̂)

x̂
,

with x̂ given by Equation (18). A unique steady state Ru > R̂ exists if and only if A > Â.
This steady state is unstable.

Proof: The function φ(R, x?(R)) is defined if

D(R) ≡ 1− x?(R)− δ

µ(R)
= 1− λ

(
1 +

δ

R

)
− δ

µ(R)
> 0.

This inequality holds for R ≥ R̂. Indeed D(R̂) = 1− x̄(R̂)− δ/µ(R) > 0, since g(R̂) > δ/µ(R̂)
by Proposition 2.
Let us study the derivative of φ(R, x?(R)).

1
φ

dφ

dR
=

1
R

+ (1− λ)
(

µ′(R)
µ(R)

− 1 + µ′(R)
R + µ(R)

+
D′(R)
D(R)

)
.

D′(R)/R is positive and
µ′(R)
µ(R)

− 1 + µ′(R)
R + µ(R)

> − 1
R + µ

since µ′(R) > 0 and µ(R) > 0. Hence

1
φ

dφ

dR
>

1
R
− 1

R + µ(R)
=

µ(R)
R(R + µ(R)

.
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The function φ(R, x?(R)) is thus increasing in [R̂, +∞).
The condition under which ψ? is defined in [R̂, +∞) can be written:

1
A

φ(R̂, x̂) > λ, i.e. A < Aλ.

Morevover, since x?(R) is decreasing and φ(R, x?(R)) is increasing, ψ?(R) is decreasing.
At the point R̂ we have

x?(ψ?(R̂)) =
1
A

φ(R̂, x̂) =
Â
A

x̂ =
Â
A

x?(R̂).

Hence,
ψ?(R̂) R R̂ ⇔ x?(ψ(R̂)) Q x?(R̂) ⇔ A R Â.

The steady state Ru > R̂ exists if ψ?(R̂) > R̂, i.e. A > Â.
We now study the local stability of Ru. Linearizing Equation (21), we get

1
x?(Ru)

dx?

dR
(Ru)dRt+1 =

1
φ

dφ

dR
(Ru, x?(Ru))dRt.

Since we have
1
x?

dx?

dR
=

−δ/R2

1 + δ/R
= − δ

R(R + δ)
and

1
φ

dφ

dR
>

µ

R(R + µ)
we obtain ∣∣∣∣

dRt+1

dRt

∣∣∣∣ >
µ(Ru + δ)
(Ru + µ)δ

> 1

thanks to µ(Ru) > δ. ¥

Dynamics in the constrained regime

We now turn our attention to the dynamics in the constrained regime. They are given
by:

x̄(Rt+1) =
1
A

φ(Rt, x̄(Rt)) (23)

Equation (23) defines a function

Rt+1 = ψ̄(Rt)

if and only if
1
A

φ(Rt, x̄(Rt)) < 1,

since x̄ is inversible on the interval ]0, 1[. The function ψ̄ is given by:

ψ̄(R) = x̄−1
(

1
A

φ(R, x̄(R))
)

.
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Proposition 8 The function ψ̄(R) is defined on [Rmin, R̂] if and only if

A > φ(R̂, x̂) ≡ A1. (24)

ψ̄(R) is increasing. It satisfies ψ̄(Rmin) = Rmin and ψ̄(R) > R for R near Rmin. At R̂, ψ̄(R̂)
is larger than, equal to, or small than R̂, if A is respectively smaller than, equal to, or larger
than Â. A largest steady state Rc < R̂ exists if A > Â. This steady state is stable.

Proof: We have that

g(R) =
[

u(1, δ)
u(1, µ)

(R + µ)− δ

]

is defined for R ≥ Rmin from Proposition 2. We deduce from

µR
R + µ

(
g(R)− δ

µ

)
=

µu(1, δ)
u(1, µ)

− δ =
u(1, δ)

u(1/µ, 1)
− δ

that

φ(R, x̄(R)) = Rλ

(
u(1, δ)

u(1/µ(R), 1)
− δ

)1−λ

.

The function φ(R, x̄(R)) is thus increasing in [Rmin, R̂] and φ(Rmin, x̄(Rmin)) = 0. The function
ψ̄ is thus defined and increasing in [Rmin, R̂] if and only if

1
A

< φ(R̂, x̂) < 1, i.e. A > Â.

In a neighborhood of Rmin, for R > Rmin, we have x̃(R) > x̄(R) by Lemma 2. We deduce that

x̄(ψ(R)) =
1
A

φ(R, x̄(R)) >
1
A

φ(R, x̃(R)) = x̃(R) > x̄(R),

since φ(R, x) is increasing with respect to x. Hence ψ(R) > R. For A > Â the increasing curve
ψ̄(R) starts from Rmin with ψ(R) > R and ends at ψ(R̂) < R̂. Hence, it crosses the 45 degrees
line at least once. At the largest intersection point, Rc, the slope is smaller than 1. Hence, Rmin

is locally unstable, and Rc is locally stable. ¥

Interpretation

Propositions 7 and 8 define a threshold value for the productivity of education Â.
Actual productivity can be either above or below. Figure 4 illustrates the two cases
A > Â and A < Â. In this Figure we assume that the conditions (22) and (24) are met.
Otherwise, the functions are not defined for interest rates close to R̂.

When A < Â, (right panel), the productivity of education is weak, and there is no
non-trivial steady state. The economy does not grow. This is the standard inescapable
poverty trap result, see for example de la Croix and Michel (2002).
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In the case on the left, the productivity index of the learning technology A is large
and there are two non-trivial steady states. Rc is in the constrained regime and it is
locally stable, implying that there is an infinite number of trajectories converging to it
(local indeterminacy). In addition to this steady state, there is Ru at which investment
is unconstrained. Ru is locally unstable, hence there is a unique trajectory leading to
it, the one amounting to select Ru from the initial period onward. On the whole,
there is global indeterminacy since the equilibrium can either be any R < Rmin or any
trajectory leading to Rc, or Ru from date 0 onward.

Comparing outcomes across the various equilibria we can use the results derived in
section 4 and show that the relation between growth and the interest rate is hump-
shaped. According to Proposition 5, maximum growth can be observed in an equi-
librium where borrowing constraints are binding, specially if the elasticity of human
capital to education is large.

We can now investigate what would happen if financial markets are suddenly made
perfect and there is no longer borrowing constraints. Looking at Figure 3, this exper-
iment amount to remove the curve x̄ from the picture. Then, using Lemma 2, It is
straightforward to show that there is one point for which x̃ = x?. This steady state
is by Proposition 7 unstable. This implies that when there are no borrowing limits,
there is a unique equilibrium converging instantaneously to the steady state. At this
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“perfect market” steady state, growth is higher than in the poverty trap, but not nec-
essarily than in the “imperfect market” constrained steady state. Considering the two
cases of Figure 3 and the condition on A that separates them (Propositions 7 and 8),
it appears that moving towards perfect markets promotes growth for sure in the case
on the left (poverty trap, A low enough), while not necessarily in the case on the right
(global inderterminacy).

Conclusion

We have introduced endogenous borrowing limits à la Kehoe and Levine (1993) in a
otherwise standard OLG model with human capital. With respect to the small litera-
ture on the subject who assumes exogenous prices (Andolfatto and Gervais 2003) or
solves numerically for the equilibrium (Lochner and Monge 2002), we have derived
a set of useful analytical results.

If the productivity index of the learning technology is low, the economy can be catched
in an inescapable poverty trap. In this case, implementing perfect credit markets
makes the economy escape from stagnation.

On the contrary, if the productivity index of the learning technology is high enough,
we find the same result as in Azariadis and Lambertini (2003) where multiple steady
states and global indeterminacy arise as a consequence of endogenous debt limits.

Comparing outcomes across the various equilibria we show that the relation between
growth and the interest rate is hump-shaped. When interest rates are low, people stay
away from assets market and would not reimburse their loan. This is why banks do
not lend to them, and there is no investment. With high interest rates, credit is expen-
sive, and investment is low too. With interest rates in a medium range, households
are credit constrained, but still invest positive quantities.

If the elasticity of human capital to education is high enough, maximum growth is
achieved in an equilibrium where borrowing constraints are binding. In this situa-
tion, implementing a financial reform leading to perfect credit markets would reduce
economic growth.

When assessing the effect of financial deepening on growth, the way borrowing con-
straints are modelled is key. This is the main message of the paper. The literature
based on exogenous borrowing limits (see for example Aghion, Howitt, and Mayer-
Foulkes (2004)) defends the view that there is a monotonic relationship between fi-
nancial depth and long-term economic growth. This is consistent with the fact that
there is a set of countries with little financial depth and slow or no growth (Africa)
and another set with much better financial markets and sustained growth (OECD).
Still, there is a group a countries such as China and Thailand with relatively weak

22



financial markets but strong growth over the long-run. This is often view as a simple
catching-up effect. Alternatively, theory says that maximum growth can be achieved
in a situation where agents cannot borrow all what they want to.
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