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Abstract

In order to help in designing an accurate pension reform, we determine
the optimal resource allocation in an endogenous fertility model generat-
ing a demographic transition. Extending Samuelson's (1975) work in such
a setting, we analyze the problem of the interiority of the optimal solution
and discuss the serendipity theorem. We then characterize the decentral-
ization of the �rst best, showing that a pension policy linking pension
bene�ts to the number of children constitutes an optimal social security
program able to restore both the optimal capital stock and the optimal
rate of population growth as a unique instrument. We also show that nei-
ther a Beveridgean pension scheme nor a Bismarckian one can decentralize
the �rst best.
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1 Introduction

It is generally agreed upon that the ageing process experienced in most of the
OECD countries requires a reform of the public pension scheme. This is nec-
essary in order to insure their �nancial solvency threatened by the increase in
the dependency ratio. Di�erent policies have been proposed to face this demo-
graphic change, but all of them seem to imply a cost in terms of welfare for
some generations.

A way to shed some light in this debate is to provide a benchmark by deter-
mining the optimal social security program, namely the social security program
able to lead to the social optimum. Indeed, as shown by Atkinson and Sandmo
(1980), a transfer system that redistributes wealth among generations, such as
a pension system, constitutes a potential instrument to achieve the �rst best
allocation. In Diamond's overlapping generations model, Samuelson (1975a)
determines the social optimum, the so-called goldenest golden-rule state: it is
de�ned as the maximum of the steady-state lifetime well-being of the repre-
sentative agent, which is attained when the population grows at the optimum
population growth rate. He shows that, in general, the competitive solution
fails in achieving the goldenest golden-rule state. However, he proves that in
the particular case where the population growth rate is optimal, private savings
exactly lead to the golden-rule capital level. This result is known as `Samuelson's
Serendipity Theorem'. Samuelson (1975b) then shows that, when the population
does not grow at its optimal rate, there exists a social security program that
converts the laissez-faire equilibrium into a golden-rule state. However, such
a program does not allow to reach the goldenest golden rule since population
growth is exogenously �xed. It therefore does not constitute an optimal social
security system.

While in such a model fertility is exogenous, the endogeneity of such a de-
cision seems largely recognized and may have important implications in this
debate. First, if fertility is endogenous, it may be possible to design an in-
strument allowing to achieve the �rst best by insuring both the optimal capital
stock and the optimal population growth rate. Second, if fertility is an individ-
ual decision, it may be directly a�ected by the presence and the design of the
pension system. Our purpose is therefore to extend the analysis of Samuelson to
an endogenous fertility setting and investigate the consequences for Samuelson's
results as well as for policy recommendations. This analysis indeed highlights
the e�ects of pension policies on fertility, which is often ignored in the litera-
ture, whereas the drop in fertility is well at the root of the current problems of
pension schemes.

In order to be consistent with the observed fertility evolution, we endogenize
fertility using a model that is able to explain and reproduce the demographic
transition at the origin of the �nancial problems of pay-as-you-go (PAYG) pen-
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sion systems1. Apart from the social security hypothesis2, the various models
that generate an endogenous demographic transition are usually based on one of
these two arguments. One deals with the substitution of quality for quantity of
children due to economic development. Becker, Murphy and Tamura (1990) and
Galor and Weil (2000) rely on this argument in di�erent endogenous growth set-
tings. The other main argument put forward is the increase in the opportunity
cost of having children experienced by women in a developed economy. This ar-
gument is attractive because, apart from explaining the demographic transition,
it is also able to replicate the observed increase in female labor participation.
We therefore focus on this last explanation, following Galor and Weil (1996).

In addition, our analysis deals also with the issue of the existence of an
interior solution. As noticed by Deardor� (1976) and then analyzed by Michel
and Pestieau (1993), the maximization problem of the planner in Samuelson's
model is generally not concave and does not have an interior solution for a wide
variety of production and utility functions. We examine the shape of the utility
function in our endogenous fertility setting.

The paper is organized as follows. In section 2 we describe the model with
endogenous fertility. Section 3 examines the planner's problem as well as the
existence of an interior optimal solution, comparing it with Samuelson's case.
We �nd that, contrary to Deardor�'s case, with a log-linear utility function and
a Cobb-Douglas production function an interior optimal population growth rate
exists if parameters satisfy a particular condition and children are costly enough.
Hence the shape of the indirect utility function changes notoriously when fer-
tility is endogenous, allowing for the existence of an interior global maximum.
Section 4 analyzes the steady state solution of the laissez-faire economy and
discusses the serendipity theorem in the case of endogenous fertility. In section
5 we show that a policy that links pension bene�ts to the number of children
is able to decentralize the social optimum as a unique instrument. This pen-
sion policy restores the optimal incentives for individuals to have children, so
that the optimal capital and the optimal population growth rate are achieved
simultaneously when the payroll tax is properly chosen. Such a pension policy
has also the interesting property to solve the pension crisis {by restoring the
�nancial equilibrium of the system. We also show that other types of PAYG
pension system, such as a Beveridgean or a Bismarckian system, are not useful
to restore the �rst best.

1Some theoretical models with endogenous fertility have studied the capacity of a PAYG
social security system to solve the pension crisis, but none of these models are able to replicate
the drop in fertility observed since the sixties. For example, Eckstein and Wolpin (1985)
introduce a voluntary social security program that gives a return equal to the population
growth rate, although this system does not insure the �nancial equilibrium of the system out
of the steady state. Bental (1989) introduces a PAYG system similar to the one we propose,
in an economy where children support their parents according to an exogenous social norm.

2See for example Cigno (1993) and Wigger (1999).
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2 The Model

We consider a two-period overlapping generations model. The economy is con-
stituted of couples, each one formed by one man and one woman. Men and
women di�er in their ability in the production process. It is assumed that both
men and women are endowed with one unit of gender-speci�c labor. The pro-
duction function includes three inputs, physical capital and two types of labor
input:

Yt = F (Kt; L
f
t ; L

m
t )

with Kt denoting the capital stock, Lft the stock of female labor and Lmt the
amount of male labor. For simplicity, capital is assumed to totally depreciate
in the production process.

The crucial assumption allowing for an endogenous demographic transition
is that the production function F (�) is such that capital is more complementary
to female labor than it is to male labor. This assumption can be justi�ed, as in
Galor and Weil (1996), by the fact that men have a comparative advantage in
physical labor, which is less complementary to capital than mental labor. They
therefore provide more physical labor than women, which have a comparative
advantage in mental labor. This insures that, as the economy develops and
capital increases, the female wage {which, as will be seen further, constitutes
the opportunity cost of having children{ increases proportionately more than
total household income {the sum of the two wages. Hence the substitution e�ect
of an increase in wages dominates the income e�ect and households decide to
have less children. This, in turn, further increases the stock of capital, producing
a demographic transition.

Men supply inelastically their unit of labor in the market, while women
divide their unit of time between working in the market and raising children3.
As the total amount of male labor, Lmt , is equal to the number of working-age
couples in the economy, assuming that the production function exhibits constant
returns to scale we can express it in per-couple terms as:

yt = f(kt; l
f
t ) (1)

with its derivatives fk(kt; l
f
t ) > 0 and fl(kt; l

f
t ) > 0, and where yt; kt; l

f
t are

respectively per-couple units of output, capital4 and female labor.
To endogenize fertility, we introduce a taste for children and a cost of chil-

dren. First, we suppose individuals derive utility from having descendants.
Individual preferences can be represented by the following utility function:

U(nt; ct; dt+1) = u(nt) + (1� ) [u(ct) + �u(dt+1)] (2)

3We could think that women earn lower wages than men, hence have a lower opportunity
cost of raising children; or, alternatively, we could think that women have a comparative
advantage in childcare due to some natural reason. In any case, this assumption will per-
mit to explain the observed drop in fertility together with the observed increase in female
participation in the labor market.

4In the following we will use the term capital to refer to the per couple {or per male labor{
capital stock.
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where u(�) is increasing and concave in its argument,  2 [0; 1] is a parameter
reecting the taste for children, � 2 [0; 1] is the subjective discount factor,

nt =
Nt+1

Nt

represents the number of children (expressed in terms of number of
couples) that each couple has, while ct and dt+1 are respectively the couple's
consumption in the �rst and second period of life. The �rst derivatives of the
utility function with respect to each argument can be written as u0(nt) > 0,
(1� )u0(ct) > 0, (1� )�u0(dt+1) > 0.

Second, we assume children are costly in terms of time. Each couple of
children consumes a fraction z of the woman's endowment of time. The inclusion
of a time cost of children implies the endogeneity of female labor supply, as it
introduces a trade-o� between working and having children.

3 The Planner's Problem and the Existence of

an Interior Optimal Solution

Samuelson (1975a) determines the optimum growth rate for population in the
simple two-period overlapping generations model �a la Diamond (1965), in which
population grows at an exogenous constant rate. In his work, Samuelson as-
sumes the existence of an interior optimal solution. However, a year after its
publication, Deardor� (1976) states that, for a wide range of utility and produc-
tion functions, Samuelson's problem does not have an interior global maximum.
In this section, we solve the planner's problem in our model with endogenous
fertility, and describe how the optimal rate of population growth is determined.
We then turn to the problem of the interiority of the optimal solution, and
show that, contrary to Samuelson's case, with endogenous fertility there exists
the possibility of having an interior global maximum with Cobb-Douglas utility
and production functions.

3.1 The Planner's Problem

Following Samuelson (1975a), we assume that the planner maximizes the utility
of the representative agent at the steady state.

De�nition 1 An optimal allocation at the steady state is a set of positive quan-
tities (c; d; n; k; lf) that solve the planner's problem:

max
c;d;n;k

u(n) + (1� ) [u(c) + �u(d)]

subject to the resource constraint of the economy:

f
�
k; lf

�
= c+

d

n
+ nk

where lf = 1� zn.
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If it exists5, an interior optimal solution is characterized by the following
optimality conditions:

u0(c)

u0(d)
= �n (3)

fk
�
k; lf

�
= n (4)



1� 

u0(n)

u0(c)
+

d

n2
= zfl

�
k; lf

�
+ k (5)

f
�
k; lf

�
= c+

d

n
+ nk (6)

lf = 1� zn (7)

The �rst equation replicates the individual allocation of consumption across
time. The second condition is the so-called golden rule, which determines the
optimal stock of capital. Equation (5) is the �rst order condition determining
the optimal number of children or population growth rate by equalizing the
marginal bene�t of children to their marginal cost. The former is given by the
marginal utility provided by children to their parents {in terms of consumption{
plus the so-called intergenerational transfer e�ect ( d

n2 ). This e�ect captures the
fact that, when population grows, there are more working individuals to support
each retired person, which reduces the relative cost of consumption of the old.
The marginal cost of children for the planner is the loss in production due to the
time cost of children plus the so-called capital dilution e�ect ( k), according to
which, the higher the population growth, the higher the investment requirement
to keep a constant capital stock. In Samuelson's model, the optimal population
growth rate was given by the equalization of the intergenerational transfer e�ect
to the capital dilution e�ect. The other two terms were not present as in his
model there is no taste nor cost of children.

3.2 The Interiority of the Optimal Solution

Deardor� (1976) shows that with standard preferences6 the planner's problem in
Samuelson's model does not have an interior solution whenever the production
function is unbounded, i.e. when \it places no upper bound to the per capita
output as the capital-labor ratio becomes very large". This includes the typical
case of a Cobb-Douglas production function and also a CES production function

5The problem of the planner is indeed not necessarily concave. The next subsection details
the conditions insuring the existence of an interior global maximum.

6Utility increasing monotonically in both of its arguments.
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with an elasticity of substitution greater than 1. For instance, with a Cobb-
Douglas production function and a log-linear utility function, there exists no
interior solution to the planner's problem when capital depreciation is total,
while there may only exist an interior minimum if capital depreciation is lower
than 1. Michel and Pestieau (1993), using CES utility and production functions
and assuming total depreciation of capital, analyze the conditions guaranteeing
the existence of an interior solution. They conclude that, in order to have an
interior global maximum, there must exist complementarity between labor and
capital in production, as in Deardor�'s analysis. Alternatively, if the production
function is of the Cobb-Douglas type, complementarity between �rst and second
period consumption in preferences is required. In all other cases, the optimal
population growth rate is a corner solution.

In the following we analyze whether it is possible to have an interior global
maximum in the planner's problem when the framework has been changed to
include children as a decision variable for the agents. The existence of an interior
solution depends on the shape of the utility and production functions. After
giving necessary and suÆcient conditions for the existence of such a solution for
general preferences and technology, we focus on the case of a log-linear utility
function and a Cobb-Douglas production function. This allows us to contrast
our results in an endogenous fertility setting with the exogenous fertility setting
considered by Samuelson where the optimal solution of the planner was in this
case a corner solution.

The general case

A necessary condition to have an interior global maximum is that there
is a solution to the planner's set of �rst order conditions. In addition, the
Hessian matrix corresponding to the planner's problem evaluated at such a
critical point must be negative semide�nite; this guarantees that this point is
a local maximum. A suÆcient condition that guarantees that the maximum is
unique and global is that the planner's objective is strictly concave, i.e. that the
Hessian matrix is negative de�nite at all points. In appendix A we determine
necessary and suÆcient conditions to have this result.

The case of a log-linear utility function and a Cobb-Douglas pro-

duction function

In such a case, the problem is drastically simpli�ed since the indirect utility
function can be expressed as a function of n only. Preferences and technology
are assumed to satisfy:

Ut(nt; ct; dt+1) =  log(nt) + (1� ) [log(ct) + � log(dt+1)] (8)

f(kt; lt) = Ak�t (l
f
t )

1�� +B (9)
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with A > 0 and B > 0. Observe that this production function allows a de-
mographic transition to be generated7 but represents a strong assumption as it
implies that male labor is not complementary to capital. It however strongly
eases the analytical resolution.

Using the �rst order conditions of the planner's problem, the indirect utility
function can be expressed as:

V (n) =  log (n) + (1� ) [log (c (n)) + � log (d (n))]

with:

k = k (n) = (1� zn)

�
A�

n

� 1
1��

c = c (n) =
1

1 + �

�
1� �

�
(A�)

1
1�� (1� zn)n

��

1�� +B

�

d = d (n) = �n
1

1 + �

�
1� �

�
(A�)

1
1�� (1� zn)n

��

1�� +B

�
Proposition 2 With a log-linear utility function and a Cobb-Douglas produc-
tion function satisfying (8) and (9), there exists a unique interior global

maximum i�:

� �
 + � (1� )

1 + 2� (1� )
� e�1

and

z > zmin

If e�1 < � < 1=2, the global maximum is reached when n! 0.

The proof is given in appendix B8. The intuition for these conditions can be
easily seen from the planner's �rst order condition with respect to n, equation
(5). In order for the planner's objective to be hump-shaped and to achieve
an interior maximum, we need that the marginal bene�t of children {which
corresponds to the left-hand-side of equation (5){ dominates the marginal cost
{i.e. the right-hand-side of (5){ for low values of n, and that the opposite
happens for high enough values of n. The �rst condition in proposition 2 insures
that, for suÆciently low values of n, the marginal bene�t of children is higher
than their marginal cost. Observe that it requires that labor is suÆciently

7Recall that the only condition required is that female labor is more complementary to
capital than male labor is.

8It can also be shown that, in a model with a monetary cost (instead of a time cost) of
children and with exogenous labor supply, the result of the existence of an interior optimum
for a suÆciently low value of � would still hold. See Ab��o (2002).
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important in the production process (� suÆciently low, so that the capital
dilution e�ect is not very important), that the taste for children  is suÆciently
high (so that the marginal utility term is important enough), and that future
consumption is not discounted too much by individuals (� suÆciently high, so
that the intergenerational transfer e�ect is suÆciently valued). For larger values
of n, due to the di�erent proportions in which the terms in equation (5) depend
on n, the marginal cost dominates the marginal bene�t and utility is decreasing
in n. The second condition requires however that the cost per child is high
enough so that utility is maximized for a feasible value of the fertility rate, that
is for zn < 1.

4 The Laissez-Faire Solution and the Serendip-

ity Theorem

4.1 The Laissez-Faire Economy

In the �rst period of their life, couples raise their children, supply labor in
the labor market, consume and save. In the second period, they consume the
products of their savings. The budget constraints of the couple are then given
by:

ct + st = wm
t + wf

t (1� znt) (10)

dt+1 = Rt+1st (11)

with wf
t and wm

t being respectively the wages for female and male labor, Rt+1

the gross interest rate in period t+1 and st denoting the savings made in period
t.

Maximizing the utility function of the couple (2) subject to these two budget
constraints gives the two following �rst order conditions:

u0(ct)

u0(dt+1)
= �Rt+1 (12)



1� 

u0(nt)

u0(ct)
= zwf

t (13)

Equation (12) determines the allocation of consumption across time and there-
fore the amount of savings st. The second �rst order condition (13) determines
the total amount of time devoted to child-raising by equalizing the marginal
utility of children to their opportunity cost, both in terms of consumption. As
noted above, the higher the female wage, the higher is the opportunity cost of
children.
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The competitive behavior of the representative �rm leads to the equalization
of factor prices to their marginal productivity:

Rt = fk(kt; l
f
t ) (14)

wf
t = fl(kt; l

f
t ) (15)

wm
t = f(kt; l

f
t )� ktfk(kt; l

f
t )� lft fl(kt; l

f
t ) (16)

Capital comes from savings in the previous period. The capital market
equilibrium condition is therefore given by:

kt+1nt = st (17)

Finally, the labor market equilibrium condition is:

lft = 1� znt (18)

De�nition 3 A steady state in the laissez-faire economy is a stationary path
of variables (c; d; n; s; k; lf ; wf ; wm; R) with positive quantities verifying the fol-
lowing conditions:

u0(c)

u0(d)
= �R (19)



1� 

u0(n)

u0(c)
= zwf (20)

c+ s = wm + wf (1� zn) (21)

d = Rs (22)

lf = 1� zn (23)

s = kn (24)

R = fk(k; l
f ) (25)

wf = fl(k; l
f ) (26)

wm = f(k; lf )� kfk(k; l
f )� lffl(k; l

f ) (27)

Appendix C proves the existence of a unique steady state in the case of
log-linear utility and Cobb-Douglas production speci�ed in equations (8) and
(9).
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4.2 The Serendipity Theorem

Comparing the planner's solution with the laissez-faire solution at the steady
state, Samuelson (1975a) shows that if population grows {by chance{ at its op-
timal rate, the laissez-faire equilibrium just reaches what he called the goldenest
golden-rule state. Hence, at the optimal rate of population growth, laissez-faire
private savings exactly lead to the golden-rule capital stock: when n = n�,
k = k� also. This result is known as `Samuelson's Serendipity Theorem'.

By comparing the steady state solutions for the planner and for the laissez-
faire economy, it can be shown (see appendix D) that these two solutions can
be simpli�ed to the following two-equation sets:



1� 

u0(n)

u0(c)
+

d

nfk (k; lf )
= zfl

�
k; lf

�
+ k (28)

fk
�
k; lf

�
= n (29)

for the planner, and:



1� 

u0(n)

u0(c)
+

d

nfk (k; lf )
= zfl

�
k; lf

�
+ k (30)

k =
d

nfk(k; lf )
(31)

for the laissez-faire. Note that, as in the case with exogenous population growth
analyzed by Samuelson, one of the equations that characterize the laissez-faire
steady state solution can be expressed as the equation determining the optimal
population growth rate or fertility rate9. The other equation is di�erent. While
the planner chooses the optimal capital stock from the golden-rule equation, k in
the laissez-faire economy is determined by equalizing the capital dilution to the
intergenerational transfer e�ect. Hence, the laissez-faire and optimal solutions
do in general not coincide.

They would only coincide if by chance the capital dilution and intergener-
ational transfer e�ects cancelled each other in the optimal solution10. In this
situation, equation (31) would be satis�ed in the planner's problem, so the two
solutions would be identical and the laissez-faire would reach the social opti-
mum. However, in the general case where these two e�ects do not cancel each
other, it can in principle happen that in the laissez-faire solution the optimal
population growth rate is reached. Hence, we may have a situation where the
golden rule would not be attained in the laissez-faire solution (the capital would
not be optimal), but where the population growth would be optimal. In other

9With exogenous fertility, that equation corresponds to the capital market equilibrium
condition.

10Note that this might not be possible, i.e. if the set of equations (28), (29) and (31) has
no solution.
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words, we cannot rule out that a steady state with the optimal n but a non-
optimal k could be a solution of the laissez-faire economy.

Hence we do not know whether the serendipity theorem holds in our frame-
work11. In any case, with endogenous fertility, this theorem might not be rele-
vant any more. In this case, fertility is an individual decision, and may therefore
be potentially a�ected by policy variables. Hence, in place of trying to deter-
mine whether the achievement of the optimal n by chance in the laissez-faire
necessarily leads to the optimal k, it seems more interesting to focus on the
more general case in which population does not grow at its optimal rate and
to determine the policy able to decentralize this optimum. The next section
investigates the role of pension policy in that case.

5 The Optimal Pension Policy

As shown above, and as it typically happens in OLG models, the laissez-faire so-
lution is in general not optimal . With endogenous fertility, contrary to Samuel-
son's case, the rate of population growth can be a�ected by policy instruments.
This implies that there may exist a decentralization policy able to achieve the
�rst best, namely the optimal capital stock and the optimal population growth
rate. In this section, we study how di�erent pension policies a�ect the deci-
sions of the couples in our model, and in particular, whether they can be used
to decentralize the �rst best. Samuelson (1975b) shows that, in the case of
overaccumulation of capital in the laissez-faire economy, the introduction of a
Beveridgean PAYG pension system can lead to the golden rule. In this section
we show that in the model with endogenous fertility this policy also allows the
golden rule to be attained, although it is not able to decentralize the �rst best
{i.e. the potentially achieved golden rule is not the goldenest one, as in Samuel-
son's case. We then analyze the e�ects of introducing other PAYG pension
policies. We show that a Bismarckian pension system similar to those present
in most OECD countries cannot be used to decentralize the social optimum
either. By contrast, a system that links pensions to the number of children,
by introducing the social security system's budget constraint into the couple's
constraints, is shown to provide couples with the optimal incentives to choose
both the optimal capital stock and the optimal fertility rate12.

5.1 A Beveridgean PAYG Pension System

Suppose that we introduce an instrument in the competitive economy in or-
der to induce individuals to choose the golden-rule level of capital. Following
Samuelson (1975b), we use a pension system and we assume this system is a
pure PAYG scheme13. A proportional taxation rate, �t, is levied on male labor

11i.e. when n = n�, it is not possible to prove that k = k� nor that k 6= k�.
12Throughout the section we assume that the planner's solution is interior.
13Samuelson (1975b) introduces a social security system that has both a PAYG component

and a funded component. The use of a pure PAYG transfer system implies that, in case of
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income14 and each retired person at t receives a pension bene�t pt coming from
contributions in the same period. For convenience, we will refer to this type of
pension system as pure Beveridgean PAYG pension system.

De�nition 4 A steady state competitive equilibrium under a pure Beveridgean
PAYG pension system is a transfer system (p; �) satisfying:

p = n�wm (32)

and a vector of variables (c; d; n; s; lf ; k; w;R) satisfying (19), (20), (23), (24),
(25), (26), (27) and:

c+ s = wm(1� �) + wf (1� zn) (33)

d = sR+ p (34)

Observe that couples perceive their pension as a �xed amount of money, not
being aware of the social security budget constraint. Suppose that the govern-
ment �xes the value of the payroll tax � and pension bene�ts are determined
endogenously from equation (32). Then the government can choose the value of
the contribution rate such that the golden rule is attained. However, as stated
in the following proposition, this instrument cannot decentralize the goldenest
golden rule state, as it is not able to insure simultaneously the optimal capital
stock and the optimal rate of population growth.

Proposition 5 A Beveridgean PAYG pension system cannot be used to decen-
tralize the social optimum.

The proof is developed in appendix E. By comparing the two sets of equa-
tions, we show that this policy is not enough to restore the social optimum. If
the policy instrument is used to attain the golden rule, the optimal values of the
capital stock and the population growth rate are not achieved. Alternatively, if
� is chosen so as to reach the optimal k, neither the golden rule nor the opti-
mal n would be attained. And something similar would happen if we chose the
payroll tax so as to reach the optimal population growth rate. Hence, another
instrument is required to decentralize the �rst best.

5.2 A Bismarckian PAYG Pension System

Although the previous analysis is interesting as a starting point, one might point
out that in reality individuals do not perceive their pension as �xed. In fact, in
most OECD countries, pension bene�ts are de�ned as a replacement rate on past

underaccumulation, the payroll tax will be negative and the system will no longer be a pension
system.

14This does not produce any distortion in the choice of labor, since male labor supply is
inelastic. Note also that it can be shown that proposition 5 would still hold if both types of
labor were taxed.
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wages. This replacement rate often depends on labor participation, as bene�ts
are a function of the number of years of contribution to the system. Moreover,
in many countries, recent reforms of the pension system tend to increase the
proportionality between contribution years and pension bene�ts.

In the following we analyze a pension system where bene�ts are de�ned
according to the following pension formula:

pt+1 = �t+1

h
wm
t + wf

t (1� znt)
i

(35)

where �t+1 is the gross replacement rate on the couple's labor earnings, so that,
from the couple's point of view, the pension is positively related to female labor
force participation and hence negatively related to fertility. We refer to this
PAYG pension system as Bismarckian pension system.

The social security system's budget constraint, which must be balanced every
period, can be expressed as:

�t+1

h
wm
t + wf

t (1� znt)
i
= nt�t+1

h
wm
t+1 + wf

t+1(1� znt+1)
i

(36)

Under such a system, which is assumed to tax all wages15, the �rst order
conditions of the couple's maximization problem are:

u0(ct)

u0(dt+1)
= �Rt+1 (37)



1� 

u0(nt)

u0(ct)
= zwf

t

�
(1� �t) +

�t+1

Rt+1

�
(38)

Factor prices are still given by (14), (15), (16), and the equilibrium conditions
for the labor market and the capital market by (17) and (18).

De�nition 6 A steady state competitive equilibrium under a Bismarckian PAYG
pension system is a transfer system (p; �; �) satisfying:

p = �
�
wm + wf (1� zn)

�
(39)

� = n� (40)

and a vector of variables (c; d; n; s; lf ; k; wf ; wm; R) satisfying (19), (23), (24),
(25), (26), (27) and:



1� 

u0(n)

u0(c)
= zwf

�
(1� �) +

�

R

�
(41)

c+ s =
�
wm + wf (1� zn)

�
(1� �) (42)

d = sR+ �
�
wm + wf (1� zn)

�
(43)

15As it corresponds to reality, i.e. female labor is also taxed by the social security admin-
istration. However, the main result that the system cannot decentralize the social optimum
does not change if only male labor is taxed.
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As can be seen from equation (41), the existence of a Bismarckian pension
system a�ects the fertility decision in two ways. On the one hand, the payroll
tax reduces the opportunity cost of children in terms of net wage, having a pos-
itive e�ect on fertility. On the other hand, the social security system increases
such a cost by reducing second period consumption (through lower pension ben-
e�ts), having a negative e�ect on the choice of the number of children. We could
then expect that these two opposite e�ects on the fertility decision would al-
low to internalize the capital dilution and the intergenerational transfer e�ects.
However, it is not the case, as explained in the following proposition.

Proposition 7 The Bismarckian pension system cannot be used to decentralize
the planner's optimum.

Proof. Suppose that the government chooses the value of the replacement
rate, and then determines the payroll tax according to equation (40) and pension
bene�ts according to (39)16. Using (26) and (40), equation (41) can be written
as:



1� 

u0(n)

u0(c)
= zfl(k; l

f )

�
1�

�

n
+

�

R

�
Therefore, if we choose the payroll tax so that the golden rule is satis�ed, i.e.
R = n, the last two terms of the previous expression cancel out and the �rst
order condition with respect to n becomes:



1� 

u0(n)

u0(c)
= zfl(k; l

f )

which always di�ers from the optimal fertility decision, unless by chance the
capital dilution and intergenerational transfer e�ects cancel each other in the
planner's solution and thus disappear. However, in such a case the optimal
pension policy would be to have no transfer system, as we have seen in the
previous section. Hence, this pension policy cannot be used to decentralize the
�rst best.

We can also remark that, in addition to the two direct e�ects on the cou-
ple's fertility decision, a Bismarckian pension system produces several general
equilibrium e�ects by a�ecting capital accumulation and therefore factor prices.
Taking into account all these e�ects, the sign of the impact of such a Bismar-
ckian pension system on fertility at the steady state is ambiguous and crucially
depends on the bene�t formula as well as on preferences and technology. It can
however be proven that with the Cobb-Douglas production function and the
log-linear utility function (8) and (9), an increase in the size of the Bismarckian
pension system increases the steady state fertility level, while it decreases the
steady state capital stock17.

16Results would not change if the government �xed the contribution rate instead and the
replacement rate was adjusted.

17As the utility is log-linear, the substitution and income e�ects cancel each other and the
pension system only a�ects the fertility decision through general equilibrium e�ects. The pay-
roll tax crowds out capital and pushes the economy back to an earlier stage of the demographic
transition. See Ab��o (2002).
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5.3 A PAYG System Linking Pensions to the Number of

Children

In the following we analyze whether there is a transfer system under which
the achievement of the golden rule restores the social optimum, so that both
the optimal capital stock and the optimal population growth rate are achieved
simultaneously. The answer is positive: a PAYG pension system that links pen-
sion bene�ts to fertility and to future wages18 {i.e. to the children's contribution
to the pension scheme{ can decentralize the �rst best.

Suppose we introduce a pension system in which pension bene�ts are dis-
tributed proportionally to fertility behavior as well as to the level of future
wages. As before, to avoid any distortions on the labor supply choice, we as-
sume this system is �nanced by proportional taxation on male labor income
only19. We refer to this type of pension system as PAYG pension system with
fertility link. With such a pension policy, the budget constraints of the couple
become:

ct + st = wm
t (1� �t) + wf

t (1� znt) (44)

dt+1 = stRt+1 + wm
t+1�t+1nt (45)

where �t is the social security contribution rate, �xed by the government. As
can be seen in (45), the pension formula exactly replicates the budget constraint
of the PAYG pension system, given by:

pt+1 = ntw
m
t+1�t+1

Hence, this pension policy de facto insures the �nancial balance of the system
and provides couples with the information that their pensions depend on the
productivity growth rate as well as on the population growth rate.

The �rst order conditions of the maximization program of the couples ex-
pressed at the steady state become:

u0(c)

u0(d)
= �R (46)



1� 

u0(n)

u0(c)
+

wm�

R
= zwf (47)

In contrast with the pension schemes considered before, such a PAYG pen-
sion scheme constitutes an optimal social security system, as stated in the fol-
lowing proposition:

18As the pension scheme is still PAYG �nanced.
19It is therefore equivalent to using a lump-sum tax, which should be used if male labor

was also elastically supplied. It can indeed be shown that a system taxing both types of labor
would not restore the social optimum.
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Proposition 8 In a model with endogenous fertility, if an interior optimal al-
location exists, a PAYG social security system with fertility link decentralizes
the �rst best if the payroll tax satis�es:

�� =
d
n � kn

f(k; lf )� kn� lffl(k; lf )
(48)

The proof is shown in appendix F. The reason for such a policy to consti-
tute a unique instrument to reach the �rst best comes from the fact that such
a pension system introduces the links that are missing in the couple's fertility
decision. As can be seen in (45), this policy introduces a speci�c link between n
and d and between n and k. It introduces a positive link between consumption
of the old and the fertility decision (internalizing the intergenerational transfer
e�ect). Moreover, it a�ects the capital accumulation because it introduces an-
other way of saving through having children. This allows the capital dilution
e�ect to be internalized. Hence, for any value of the payroll tax, the proposed
policy corrects the divergences from the optimal fertility decision. The value of
the payroll tax can then be chosen so as to restore the optimal capital stock, ac-
complishing the golden rule. Since the individual allocation rule of consumption
over the life-cycle is the same as the optimal one, there is no need for another
instrument to allocate consumption optimally. Thus, for any interior optimal
allocation there exists a transfer system �� such that this allocation is a steady
state intertemporal equilibrium with perfect foresight. This policy is the only
instrument required to reach the optimal fertility rate and capital.

Note that, as it is typically the case when using such a decentralization
instrument, the sign of the transfer is not necessarily positive. Since one e�ect
is positive {intergenerational transfer e�ect{ and the other one is negative {
capital dilution e�ect{, the sign of the transfer depends on the balance of the
two. The weight of each e�ect depends on the parameters of the production and
utility functions as well as on the size of n. A negative value for �� implies a
transfer mechanism from the old to the young that would no longer be a pension
system.

Finally remark that in addition to restore the social optimum, such a transfer
system is attractive as it suggests a pension policy that could solve the �nancial
crisis of the pension system. Indeed, the �nancial crisis of PAYG pension sys-
tems experienced by many developed countries is mainly due to the di�erence
between the macroeconomic and the microeconomic return of the system: the
pension formula is not related to the population growth rate, whereas this rate
really matters at the macroeconomic level. Hence, an interesting way of solving
the crisis suggested by this analysis could be to rede�ne the system in a way that
links pension bene�ts to the fertility behavior of individuals. Alternatively, a
compensatory family allowance {which may be more politically feasible{ equiv-
alent to the present value of the future contribution of their children to the
pension scheme could be introduced20.

20See Loupias and Wigniolle (2000).
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6 Conclusion

In order to shed some light on the current debate over the pension reform re-
quired by the drop in fertility, this paper extends the analysis of Samuelson to a
framework of endogenous fertility. To this e�ect, we introduce a taste for chil-
dren and a time cost of raising them, so that female labor supply becomes an
endogenous joint decision. Compared with the Samuelson's case, the following
results are obtained. First, we show that in the case of endogenous fertility
the existence of a global maximum in the planner problem is more likely. In
particular, the introduction of these elements eliminates the problem of the
non-existence of an interior optimal solution in the case of a Cobb-Douglas pro-
duction function and a log-linear utility function. Second, while in Samuelson's
model no policy instruments could be used to restore the social optimum {which
could only be reached if the exogenous population growth rate happened to be
the optimal (the so-called `Serendipity Theorem'){ we �nd that a policy linking
pension bene�ts to the social security contribution of children can be used as the
unique instrument to restore the social optimum. The crucial point is that this
policy introduces the links that are missing in the individual's fertility decision,
so that the instrument {the contribution rate{ can be chosen so as to attain
the golden rule. In addition, from a positive point of view, the policy that links
pension bene�ts to fertility and wages has also the interesting characteristic of
restoring the �nancial equilibrium of the PAYG pension system, isolating it from
demographic shocks. By contrast, we also show that both a pure Beveridgean
system with constant pensions and a Bismarckian system where bene�ts are
proportional to labor force participation fail to lead the economy to the �rst
best.
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A Concavity of the Objective Function of the

Planner

In this appendix we determine suÆcient conditions guaranteeing that the ob-
jective function of the planner is strictly concave.

The assumptions imposed on the utility and production functions are:

� Ui(�) > 0; Uii(�) < 0; Uij(�) = 0; 8i; j = n; c; d; i 6= j:

� fk(�) > 0; fl(�) > 0; fkk(�) < 0; fll(�) < 0; fkl(�) = flk(�) > 0:

We �rst reduce two dimensions of the problem by eliminating variables d and
lf , using the resource constraint. Hence the planner's objective is expressed as
U(c; d(k); n) and the production function as f(k; lf (n)). The Hessian matrix
can be written as:

H =

2666664
@U2

@2c
@U2

@c@k
@U2

@c@n

@U2

@c@k
@U2

@2k
@U2

@n@k

@U2

@c@n
@U2

@n@k
@U2

@2n

3777775
Using the principal minors' method, we know the Hessian is negative de�nite

if the following conditions are satis�ed:

1. @U2

@2c < 0

2. @U2

@2k < 0

3. @U2

@2n < 0

4. @U2

@2c
@U2

@2k �
�
@U2

@c@k

�2
> 0

5. @U2

@2c
@U2

@2n �
�
@U2

@c@n

�2
> 0

6. @U2

@2k
@U2

@2n �
�
@U2

@n@k

�2
> 0

7. @U2

@2c
@U2

@2k
@U2

@2n+2
@U2

@c@k
@U2

@c@n
@U2

@n@k�
�
@U2

@c@n

�2
@U2

@2k�
�
@U2

@n@k

�2
@U2

@2c �
�
@U2

@c@k

�2
@U2

@2n < 0

Conditions (1)-(4), given the assumptions made on preferences, are auto-
matically satis�ed:

@U2

@2c
= Ucc|{z}

<0

+ n2Udd|{z}
<0

< 0
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@U2

@2k
= Udd|{z}

<0

n2(fk � n)
2| {z }

>0

+ Ud|{z}
>0

n fkk|{z}
<0

< 0

@U2

@2n
= Udd|{z}

<0

�
fnn+

d

n
� kn

�2
| {z }

>0

+ Ud|{z}
>0

�
fnn
<0

n+ 2fn
<0
� 2k

�
| {z }

<0

+ Unn|{z}
<0

< 0

@U2

@2c

@U2

@2k
�

�
@U2

@c@k

�2

=
�
Ucc + n2Udd

�| {z }
<0

h
Uddn

2 (fk � n)
2
+ Udnfkk

i
| {z }

<0| {z }
>0

�

�
�
n2Udd (fk � n)

�2| {z }
>0

= Ucc|{z}
<0

h
Uddn

2 (fk � n)2 + Udnfkk

i
| {z }

<0| {z }
>0

+ Udd|{z}
<0

Ud|{z}
>0

n3 fkk|{z}
<0| {z }

>0

> 0

Regarding condition (5),

@U2

@2c

@U2

@2n
�

�
@U2

@c@n

�2

=
�
Ucc + n2Udd

�| {z }
<0

26664Udd
�
fnn+

d

n
� kn

�2
| {z }

>0

+

+ [Ud [fnnn+ 2fn � 2k] + Unn]| {z }
>0

35� �Uddn �fnn+ d

n
� kn

�
+ Ud

�2
| {z }

>0

=

= UccUdd

�
fnn+

d

n
� kn

�2
| {z }

>0

+
�
Ucc + n2Udd

�
[Ud [fnnn+ 2fn � 2k] + Unn]| {z }

>0

�

�2UdUddn

�
fnn+

d

n
� kn

�
| {z }

?

� (Ud)
2| {z }

>0

which is positive if the following condition is satis�ed:

UccUdd

�
fnn+

d

n
� kn

�2
| {z }

>0

+ UccUd [fnnn+ 2fn � 2k]| {z }
>0

+
�
Ucc + n2Udd

�
Unn| {z }

>0

+

+UdUddn

�
fnnn

2 � 2
d

n

�
| {z }

>0

> (Ud)
2| {z }

>0
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A suÆcient condition on the utility function is hence that:

�2UdUddd� (Ud)
2
> 0 (49)

which is always satis�ed in the case of log-linear utility.
Condition (6), on the other hand, is also ambiguous:

h
Uddn

2 (fk � n)2 + Udnfkk

i
| {z }

<0

"
Udd

�
fnn+

d

n
� kn

�2
+ Ud (fnnn+ 2fn � 2k) + Unn

#
| {z }

<0

�

�

�
Udd

�
fnn+

d

n
� kn

�
n (fk � n) + Ud (fknn+ fk � 2n)

�2
| {z }

>0

and will be positive if the following condition is satis�ed:h
Uddn

2 (fk � n)
2
+ Udnfkk

i
[Ud (fnnn+ 2fn � 2k) + Unn]�

�2UddUdn(fk � n)| {z }
?

�
fnn+

d

n
� kn

�
| {z }

?

(fknn+ fk � 2n)| {z }
?

+

+UdnfkkUdd

�
fnn+

d

n
� kn

�2
� U2

d (fknn+ fk � 2n)
2
> 0

Therefore, the following suÆcient conditions on the production function in-
sure that the sixth principal minor is positive:

0 � fk � n < n (50)

2(fn
<0
� k)| {z }
<0

n fkk|{z}
<0| {z }

>0

> (fk � 2n) (2fknn+ fk � 2n)| {z }
>0 if condition (50) above holds

(51)

The seventh principal minor corresponds to the whole Hessian matrix and
is more complex. The following is a necessary condition for its determinant to
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be negative, as required by condition (7):

Udnfkk

2664Unn �Ucc + n2Udd
�
+ UddUcc

�
fnn+

d

n
� kn

�2

+
�
�2UdUddd� (Ud)

2
�

| {z }
>0 if condition (49) holds

3775
| {z }

<0 if condition (49) above holds

+

+Ucc (Ud)
2
[2fkkn(fn � k)� (fk � 2n) (2fknn+ fk � 2n)]| {z }

>0 if condition (51) above holds| {z }
<0 if conditions (50) and (51) hold

+ UddUccn (fk � n) �

�

26664(fk � n)

�
Unnn+ Ud

�
fnnn

2 � 2
d

n

��
� 2Udn

�
fnn+

d

n
� kn

�
| {z }

?

(fkn � 1)

37775+

+
h
�Udd (Ud)

2
n4 (1� 2fkn)

i
| {z }

>0

< 0 (52)

Hence a suÆcient condition that guarantees that the objective of the planner
is concave is that conditions (49), (50), (51) and (52) are satis�ed.

B Existence of an Interior Solution in the Dou-

ble Cobb-Douglas Case

In this appendix we analyze how the objective function of the planner behaves
in the particular case of log-linear preferences and a Cobb-Douglas production,
as speci�ed in equations (8) and (9). For these speci�c functions, using the
�rst order conditions of the planner's problem, we can express c, d and k as a
function of n only:

k = k (n) = (1� zn)

�
A�

n

� 1
1��

c = c (n) =
1

1 + �

�
1� �

�
(A�)

1
1�� (1� zn)n

��

1�� +B

�

d = d (n) = �n
1

1 + �

�
1� �

�
(A�)

1
1�� (1� zn)n

��

1�� +B

�
Hence we can write the following indirect utility function:

V (n) =  log (n) + (1� ) [log (c (n)) + � log (d (n))]
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which has the following limit values:

lim
n!0

V (n) =

8<:
�1 if � < e�1

+1 if � > e�1

I if � = e�1

with

e�1 �
 + �(1� )

1 + 2�(1� )

and

I � log

 
��(1�)A1+2�(1�) (1� )(1+�)(1�) [ + �(1� )]

+�(1�)

[1 + 2�(1� )]
1+2�(1�)

!
while

lim
n!1=z

V (n) = [ + �(1� )] log(
1

z
) + (1� ) (1 + �) log(

�

1 + �
) + � (1� ) log�

is a constant.

Second, taking the �rst derivative of V (n) and grouping terms together we
get:

V 0 (n) =
[ + � (1� )]

n
� (1� ) (1 + �)

�
A�

n

� 1
1�� 1 + zn

�
1�2�
�
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1��
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1�� (1� zn)n

��
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i

which can also be written as:

V 0 (n) =
B [ + � (1� )]

n
1

1��

h
1��
� (A�)

1
1�� (1� zn)n

��

1�� +B
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| {z }
>0

g (n)

where

g(n) � n
�

1�� � �n+�

with

� �
z(A�)

1
1�� [1 + 2�(1� )� � [1 + 2�(1� ) + (1� )(1 + �)]]
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1
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It can be shown that � > 0 i� � < e�2 �
1+2�(1�)

1+2�(1�)+(1�)(1+�) > 1=2 and � > 0

i� � < e�1 < e�2.
Note also that:

lim
n!0

V 0(n) = f:+1 if � � e�1�1 if � > e�1

As V 0(n) crucially depends on g (n), the function g (n) can be used to analyze
the critical points of V (n). Assuming � < 1=2, � is always positive and g (n)
has one critical point given by:

bn := g0(n) = 0

so

bn =

�
1� �

�
�

�
�

1��

1�2�

Since g00(n) < 0 8n > 0, this critical point is a maximum.

On the other hand, the function g (n) has the following limit values:

lim
n!0

g(n) = �

and

lim
n!1=z

g(n) =

�
1

z

� �

1��

�
(A�)

1
1��

B [ + �(1� )]

�
 + �(1� ) +

1� 2

�

�
which will be negative under the suÆcient condition that:

z > zmin �
1

�A1=�

�
B [ + �(1� )]

(1 + �)(1� )(1� �)

� 1��

�

This condition guarantees that zn� < 1.

Hence, two cases can be distinguished:

� If � � e�1 and z > zmin, � � 0 , � > 0 and g(n) has one root for
n 2 [0; 1=z]. This is depicted in panel (a) of �gure 1. Hence, V (n) has
one critical point. The utility function �rst increases, reaches a maximum
and then decreases, as represented graphically in panel (a) of �gure 2.

� If e�1 < � < 1=2, � < 0 but � > 0, and g(n) can have one, two or
no roots depending on the values of the parameters, as shown in panel
(b) of �gure 1. The utility function starts decreasing, as can be seen in
panels (b) and (c) of �gure 2. Depending on parameter values, utility may
always decrease (in case g(n) has no root) with the possibility of having
an inexion point (in case g(n) has one root) or it may have �rst a local
minimum and then a local maximum (in case g(n) has two roots).
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Figure 1: Shape of g(n)
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Therefore, with a log-linear utility function and a Cobb-Douglas produc-
tion function, there exists a unique interior global maximum if and only if the
following conditions are satis�ed:

� �
 + � (1� )

1 + 2� (1� )
� e�1

and

z > zmin

If e�1 < � < 1=2, the global maximum is reached when n! 0.

C Dynamics and Steady State of the Competi-

tive Economy

This appendix analytically studies the dynamics and the steady state equi-
librium of the laissez-faire economy. We focus on the log-linear utility and
Cobb-Douglas production case as speci�ed in equations (8) and (9).
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Figure 2: Shape of V (n)
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De�nition 9 Assume an initial capital stock k0. A perfect foresight, intertem-
poral laissez-faire equilibrium is a vector (ct; dt; nt;st; kt; l

f
t ; w

f
t ; w

m
t ; Rt) starting

at k0 and satisfying the following conditions:

ct + st = wm
t + wf

t (1� znt) (53)

dt+1 = Rt+1st (54)

u0(ct)

u0(dt+1)
= �Rt+1 (55)



1� 

u0(nt)

u0(ct)
= zwf

t (56)

wf
t = fl(kt; l

f
t ) (57)

Rt = fk(kt; l
f
t ) (58)

wm
t = f(kt; l

f
t )� ktfk(kt; l

f
t )� lft fl(kt; l

f
t ) (59)

kt+1nt = st (60)

lft = 1� znt (61)
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With the production function in (9), factor prices are given by:

1 + rt = Rt = A�k��1t (lft )
1�� (62)

wf
t = A(1� �)k�t (l

f
t )
�� (63)

wm
t = B (64)

With the utility function in (8), the �rst order condition of the maximization
program with respect to consumption (55), together with the budget constraints
(53) and (54), allow to de�ne the savings function as follows:

st =
�

1 + �

h
wm
t + wf

t (1� znt)
i

(65)

The �rst order condition relative to fertility (56) determines the time spent
by women raising children:

znt = min

"
1;



1 + �(1� )

 
1 +

wm
t

wf
t

!#
(66)

The log-linear utility function insures the positivity of znt, and the fertility
choice is restricted by the maximum available time of women (1 unit). After
substituting (61), (63) and (64) in (66), the time devoted to raising children can
be de�ned by the following implicit function:

H(znt; kt) � znt �


1 + �(1� )

�
1 +

B(1� znt)
�

A(1� �)k�t

�
= 0 (67)

with

@H(znt; kt)

@znt
= 1�



1 + �(1� )

B

A(1� �)k�t
�(1� znt)

��1(�1) > 0

as any znt that satis�es the above equation will always be inferior to 1 for
kt > 0. Indeed, we can isolate kt from (67) as:

kt = (1� znt)

 


1 + �(1� )

B

A(1� �)

1

znt �


1+�(1�)

!1=�

Then, since =(1+�(1�)) < 1, znt > 1 implies that kt < 0. Thus for positive
values of the capital stock, znt < 1. Women will always supply some labor in
the market, implying that the time devoted to raising children is strictly smaller
than 1.

Since @H(znt;kt)
@znt

> 0, there exists a function �(kt) such that:

znt = �(kt)
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Hence, we can rewrite (67) as:

�(kt)�


1 + �(1� )

�
1 +

B [1��(kt)]
�

A(1� �)k�t

�
= 0

Di�erentiating this expression, we obtain:

�0(kt)�


1 + �(1� )

B

A(1� �)

"
�

��0(kt)

[1��(kt)]
1�� k�t

�
� [1��(kt)]

�

k�+1
t

#
= 0

and therefore:

�0(kt) = �
[1��(kt)]

kt

�
1 + 1+�(1�)


A
B

1��
� [1��(kt)]

1�� k�t

� < 0 (68)

As capital accumulates, the female wage increases and fertility decreases.
Let's now turn to the accumulation of capital. Using (65) and (66), equation

(60) can be written as:

kt+1 =
1� 


z�wf

t (69)

Substituting factor prices,

kt+1 =
1� 


z�A (1� �)

�
kt

1� znt

��
(70)

Hence the evolution of the capital stock is de�ned by:

kt+1 =
1� 


z�A (1� �)

�
kt

1��(kt)

��
Di�erentiating this expression:

dkt+1

dkt
=

1� 


z�A (1� �)�

�
kt

1��(kt)

���1
1��(kt) + kt�

0(kt)

[1��(kt)]
2

Using (68), it is easy to see that:

1��(kt) + kt�
0(kt)

[1��(kt)]
2 =

[1��(kt)]
2�� 1��

�
A
B

1+�(1�)
 k�t

1 + 1��
�

A
B

1+�(1�)
 k�t [1��(kt)]

1��
> 0 (71)

and therefore, the capital accumulation is increasing over time. In addition:

lim
kt!0

kt+1 = 0
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Note also that capital stops increasing in the long run:

lim
kt!1

dkt+1

dkt
= 0

Hence, we can conclude the existence of at least one non-trivial steady

state.
We will now prove the existence of a unique non-trivial steady state. The

fertility equation (67) at the steady state can be written as:

zn =


1 + � (1� )

�
1 +

B(1� zn)�

A(1� �)k�

�
(72)

whereas the capital accumulation equation (70) at the steady state becomes:

k =
1� 


A�z(1� �)

�
k

1� zn

��
(73)

These two equations fully characterize the steady state, determining n and
k. In fact, we can isolate capital per couple in (72) as follows:

k =

�
CB

A(1� �)(zn� C)

� 1
�

(1� zn)

where C � 
1+�(1�) . Substituting this into (73), we obtain only one equation

in one variable, i.e. the number of children n:�
CB

A(1� �)(zn� C)

� 1
�

(1� zn) =
1� 



�zCB

zn� C

which we rewrite as:�
CB

A(1� �)

� 1
� h

(zn� C)
��1

� (1� zn)
i
�

1� 


�zCB = 0 (74)

Taking the �rst derivative with respect to zn21:

�
CB

A(1� �)

� 1
�

2664�� 1

�
(zn� C)

��1

�
�1(1� zn) + (zn� C)

��1

� (�1)| {z }
<0

3775
which means that this function is decreasing in zn. Hence, (74) will have, at the
most, one root. Since we have proven the existence of at least one non-trivial
steady state, there will be a unique steady state solution.

21Observe that we know that the term (zn� C) is positive from equation (72).
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D A Comparison of the Planner and Laissez-

Faire Solutions

The optimal values of c; d; k; n and lf are given by the set of equations (3)-(7).
Substituting (4) into (3) and (5), these two equations can be rewritten as:

u0(c)

u0(d)
= �fk

�
k; lf

�
(75)



1� 

u0(n)

u0(c)
+

d

nfk (k; lf )
= zfl

�
k; lf

�
+ k (76)

On the other hand, the laissez-faire values of c; d; k; n; lf ; s; R; wf and wm

are given by equations (19)-(27). Using (22), equation (21) can be rewritten as
the intertemporal budget constraint:

c+
d

R
= wm + wf (1� zn) (77)

Using equations (23) to (27), equations (19), (20) and (77) can be rewritten
as:

u0(c)

u0(d)
= �fk(k; l

f ) (78)



1� 

u0(n)

u0(c)
= zfl(k; l

f ) (79)

f(k; lf ) = c+
d

n
+ kn (80)

Substituting (24) into (22), this latter equation can be expressed as:

k =
d

nfk(k; lf )
(81)

Finally, we can sum equations (79) and (81) and express them as:



1� 

u0(n)

u0(c)
+

d

nfk (k; lf )
= zfl

�
k; lf

�
+ k (82)

k =
d

nfk(k; lf )
(83)

Written in this way, equations (78), (80), (82), (83) and (23) jointly deter-
mine c; d; k; n and lf {the same variables as the planner{ while s is given by
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(24) and factor prices by (25)-(27). Therefore, we can focus on the equations
that determine the same variables as the planner and compare them.

When doing so, we see that (78), (80), (23) and (82) are identical to (75),
(6), (7) and (76). Thus there is only one equation that is di�erent, i.e. (83) in
the laissez-faire and (4) in the planner. Female labor supply is given by (23) or
(7). From (78) or (75) we can usually express future consumption as a function
of �rst period consumption, and then from (80) or (6) we can obtain c as a
function of k and n only. Hence we end up with two equations determining n
and k, (82) and (83) in the laissez-faire, and (76) and (4) in the planner.

E Proof of Proposition 5

As we have seen in the previous appendix, using equations (25) and (26), equa-
tions (19) and (20) can respectively be rewritten as:

u0(c)

u0(d)
= �fk(k; l) (84)



1� 

u0(n)

u0(c)
= zfl(k; l

f ) (85)

Using (23) to (27) and (34), (33) can be expressed as:

f(k; lf ) = c+
d

n
+ kn (86)

Using (24), (25), (27) and (32), we can rewrite (34) as:

d

fk(k; l)
� �

n

fk(k; l)
[f(k; lf )� kfk(k; l

f )� lffl(k; l
f )] = kn (87)

Finally, we have also equation (23):

lf = 1� zn (88)

Suppose the government sets the tax rate so as to induce the level of capital
satisfying the golden rule (given by equation (87) with fk(k; l) = n). Then the
intertemporal allocation of consumption (84) is the same as the optimal one
(3), and the planner's optimality conditions (4), (6) and (7) are also satis�ed,
as can be seen from the equations above. However, equation (85) determining
the value of n is still di�erent from the optimal one given by (5).

F Proof of proposition 8

A steady state competitive equilibrium under a PAYG pension system with fer-
tility link is a transfer system (p; �) and a vector of variables (c; d; n; s; k; lf ; wf ;
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wm; R) with positive quantities verifying the following conditions:

u0(c)

u0(d)
= �R (89)



1� 

u0(n)

u0(c)
+

wm�

R
= zwf (90)

c+ s = wm(1� �) + wf (1� zn) (91)

d = sR+ wm�n (92)

lf = 1� zn (93)

s = kn (94)

R = fk(k; l
f ) (95)

wf = fl(k; l
f ) (96)

wm = f(k; lf )� kfk(k; l
f )� lffl(k; l

f ) (97)

p = wm�n (98)

We assume the government �xes the payroll tax and then determines pension
bene�ts according to (98).

Isolating the term wm� from (92), (90) can be written as:



1� 

u0(n)

u0(c)
+

d

nR
= zwf +

s

n

Substituting (94)-(97) into this new expression and in (89), (91) and (92), we
can rewrite (89)-(92) as:

u0(c)

u0(d)
= �fk(k; l

f ) (99)



1� 

u0(n)

u0(c)
+

d

nfk(k; lf )
= zfl(k; l

f ) + k (100)
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f(k; lf ) = c+
d

n
+ kn (101)

d = fk(k; l
f )kn+

�
f(k; lf )� kfk(k; l

f )� lffl(k; l
f )
�
�n (102)

The �rst three equations are identical to the planner's �rst order conditions
(3), (5) and (6), once we take into consideration (4), and (93) is the same as
(7). Hence, this pension policy keeps the right incentives to choose the optimal
fertility rate. The optimal value of � can then be obtained from (102) once the
golden rule has been introduced in that expression:

d = kn2 +
�
f(k; lf )� kn� lffl(k; l

f )
�
��n

Isolating the payroll tax in the previous expression, equation (48) is obtained.
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