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1. Introduction

Value at Risk (VaR) has become a key tool for risk management of �nan-
cial institutions. The regulatory environment and the need for controlling
risk in the �nancial community have provided incentives for banks to develop
proprietary risk measurement models. Among other advantages, Values at
Risk provide quantitative and synthetic measures of risk, that allow to take
into account various kinds of cross-dependence between asset returns, fat-tail
and non normality e¤ects, arising from the presence of �nancial options or
default risk, for example.

There is also growing interest on the economic foundations of VaR. For a
long time, economists have considered empirical behavioural models of banks
or insurance companies, where these institutions maximise some utility cri-
teria under a solvency constraint of VaR type [see Gollier, Koehl and Rochet
(1996), and Santomero and Babbel (1996) and the references therein]. Simi-
larly, other researchers have studied optimal portfolio selection under limited
downside risk as an alternative to traditional mean-variance e¢cient frontiers
[see Roy (1952), Levy and Sarnat (1972), Arzac and Bawa (1977), Jansen,
Koedijk and de Vries (1998)]. Finally, internal use of VaR by �nancial in-
stitutions has been addressed in a delegated risk management framework in
order to mitigate agency problems [Kimball (1997), Froot and Stein (1998),
Stoughton and Zechner (1999)]. Indeed risk management practitioners de-
termine VaR levels for every business unit and perform incremental VaR
computations for management of risk limits within trading books. Since the
number of such subportfolios is usually quite large, this involves huge cal-
culations that preclude online risk management. One of the aims of this
paper is to derive the sensitivity of VaR with respect to a modi�cation of
the portfolio allocation. Such a sensitivity has already been derived under a
Gaussian and zero mean assumption by Garman (1996, 1997).

Despite of the intensive use of VaR there is a limited literature dealing
with the theoretical properties of these risk measures and their consequences
on risk management. Following an axiomatic approach, Artzner, Delbaen,
Eber and Heath (1996, 1997) (see also Albanese (1997) for alternative axioms)
have proved that VaR lacks the subadditivity property for some distributions
of asset returns. This may induce an incentive to disagregate the portfolios in
order to circumvent VaR constraints. Similarly VaR is not necessarily convex
in the portfolio allocation, which may lead to di¢culties when computing
optimal portfolios under VaR constraints. Beside global properties of risk
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measures, it is thus also important to study their local second order behavior.
Apart from the previous economic issues, it is also interesting to discuss

the estimation of the risk measure which is related to quantile estimation and
tail analysis. Fully parametric approaches are widely used by practitioners
(see e.g. JP Morgan Riskmetrics documentation), and most often based on
the assumption of joint normality of asset (or factor) returns. These paramet-
ric approaches are rather stringent. They generally imply misspeci�cation of
the tails and VaR underestimation. Fully nonparametric approaches have
also been proposed and consist in determining the empirical quantile (the
historical VaR) or a smoothed version of it [Harrel and Davis (1982), Falk
(1984),(1985), Jorion (1996), Ridder (1997)]. Recently semi-parametric ap-
proaches have been developped. They are based on either extreme value ap-
proximation for the tails [Bassi, Embrechts and Kafetzaki (1998), Embrechts,
Resnick and Samorodnitsky (1998)], or local likelihood methods [Gouriéroux
and Jasiak (1999a)].

However up to now the statistical literature has focused on the estimation
of VaR levels, while in a number of cases, the knowledge of partial deriva-
tives of VaR with respect to portfolio allocation is more useful. For instance,
partial derivatives are required to check the convexity of VaR, to conduct
marginal analysis of portfolios or compute optimal portfolios under VaR
constraints. Such derivatives are easy to derive for multivariate Gaussian
distributions, but, in most practical applications, the joint conditional p.d.f.
of asset returns is not Gaussian and involves complex tail dependence [Em-
brechts, McNeil and Straumann (1999)]. The goal here is to derive analytical
forms for these derivatives in a very general framework. These expressions
can be used to ease statistical inference and to perform local risk analysis.

The paper is organized as follows. In Section 2, we consider the �rst and
second order expansions of Value at Risk with respect to portfolio allocation.
We get explicit expressions for the �rst and second order derivatives, which
are characterized in terms of conditional moments of asset returns given the
portfolio return. This allows to discuss the convexity properties of Value at
Risk. In Section 3, we introduce the notion of VaR e¢cient portfolio. It
extends the standard notion of mean-variance e¢cient portfolio by taking
VaR as underlying risk measure. First order conditions for e¢ciency are de-
rived and interpreted. Section 4 is concerned with statistical inference. We
introduce kernel based approaches for estimating the Value at Risk, checking
its convexity and determining VaR e¢cient portfolios. In Section 5 these ap-
proaches are implemented on real data, namely returns on two highly traded
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stocks on the Paris Bourse. Section 6 gathers some concluding remarks.

2. The sensitivity and convexity of VaR

2.1 De�nition of the Value at Risk

We consider n �nancial assets whose prices at time t are denoted by
pi;t; i = 1; : : : ; n. The value at t of a portfolio with allocations ai; i = 1; : : : ; n

is then : Wt(a) =
nX
i=1

aipi;t = a0pt. If the portfolio structure is held �xed

between the current date t and the future date t + 1, the change in the
market value is given by : Wt+1(a)¡Wt(a) = a0(pt+1 ¡ pt):

The purpose of VaR analysis is to provide quantitative guidelines for
setting reserve amounts (or capital requirements) in phase with potential
adverse changes in prices [see e.g. JP Morgan (1996), Wilson (1996), Jorion
(1997), Du¢e and Pan (1997), Dowd (1998), Stulz (1998) for a detailed
analysis of the concept of VaR and applications in risk management]. For a
loss probability level ®, the Value at Risk V aRt(a; ®) is de�ned by :

Pt [Wt+1(a)¡Wt(a) + V aRt(a; ®) < 0] = ®; (2.1)

where Pt is the conditional distribution of future asset prices given the infor-
mation available at time t. Such a de�nition assumes a continuous conditional
distribution of returns. Typical values for the loss probability range from 1%
to 5 %, depending on the time horizon. Hence the VaR is the reserve amount
such that the global position (portfolio plus reserve) only su¤ers a loss for a
given small probability ® over a �xed period of time, here normalized to one.
The VaR can be considered as an upper quantile at level 1¡ ®, since :

Pt [¡a0yt+1 > V aRt(a; ®)] = ®; (2.2)

where yt+1 = pt+1 ¡ pt.
At date t the VaR is a function of past information, of the portfolio

structure a and of the loss probability level ®.

2.2 Gaussian case

In practice Value at Risk is often computed under the normality assump-
tion for price changes (or returns), denoted as yt+1. Let us introduce ¹t and
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­t, the conditional mean and covariance matrix of this Gaussian distribution.
Then from (2.2) and the properties of the Gaussian distribution we deduce
the expression of the Value at Risk :

V aRt(a; ®) = ¡a0¹t + (a0­ta)1=2z1¡®; (2.3)

where z1¡® is the quantile of level 1¡® of the standard normal distribution.
This expression shows the decomposition of the VaR into two components
which compensate for expected negative returns and risk, respectively.

Let us compute the �rst and second order derivatives of the VaR with
respect to the portfolio allocation. We get :

@V aRt(a;®)

@a
= ¡¹t + ­ta

(a0­ta)1=2
z1¡®

= ¡¹t + ­ta

a0­ta
(V aRt(a; ®) + a

0¹t)

= ¡Et [yt+1ja0yt+1 = ¡V aRt(a; ®)] ; (2.4)
@2V aRt(a;®)

@a@a0
=

z1¡®
(a0­ta)1=2

"
­t ¡ ­taa0­t

a0­ta

#
=

z1¡®
(a0­ta)1=2

Vt[yt+1ja0yt+1 = ¡V aRt(a; ®)]: (2.5)

In particular we note that these �rst and second order derivatives are
a¢ne functions of the VaR with coe¢cients depending on the portfolio al-
location, but independent of ®. In the next subsection we extend these
interpretations of the �rst and second order derivatives of the Value at Risk
in terms of �rst and second order conditional moments given the portfolio
value.

2.3 General case

The general expressions for the �rst and second order derivatives of the
VaR are given in the property below. They are valid as soon as yt+1 has a
continuous conditional distribution with positive density and admits second
order moments.

Property 1 :
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i) The �rst order derivative of the Value at Risk with respect to the
portfolio allocation is :

@V aRt(a; ®)

@a
= ¡Et[yt+1ja0yt+1 = ¡V aRt(a; ®)].

ii) The second order derivative of the Value at Risk with respect to the
portfolio allocation is :

@2V aRt(a; ®)

@a@a0
=

@ log ga;t
@z

(¡V aRt(a; ®))Vt[yt+1ja0yt+1 = ¡V aRt(a; ®)]

¡
(
@

@z
Vt[yt+1ja0yt+1 = ¡z]

)
z=V aRt(a;®)

;

where ga;t denotes the conditional p.d.f of a0yt+1.

Proof : i) The condition de�ning the VaR can be written as :

Pt[X + a1Y > V aRt(a; ®)] = ®;

where X = ¡
nX
i=2

aiyi;t+1; Y = ¡y1;t+1. The expression of the �rst order

derivative directly follows from Lemma 1 in Appendix 1.

ii) The second order derivative can be deduced from the �rst order expan-
sion of the �rst order derivative around a benchmark allocation ao. Let us
set a = ao+"ej, where " is a small real number and ej is the canonical vector,
with all components equal to zero but the jth equal to one. We deduce :

@V aRt(a; ®)

@ai
= Et [X jZ + "Y = 0] + o(");

where :

X = ¡yi;t+1; Z = ¡a0oyt+1 ¡ V aRt(ao; ®);

Y = ¡yj;t+1 + Et[yj;t+1jZ = 0]:
The result follows from Lemma 3 in Appendix 2.
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Q.E.D

2.4 Convexity of the VaR

It may be convenient for a risk measure to be a convex function of the
portfolio allocation thus inducing incentive for portfolio diversi�cation. From
the expression of the second order derivative of the VaR, we can discuss
conditions which ensure convexity. Let us consider the two terms of the
decomposition given in Property 1. The �rst term is positive de�nite as soon
as the p.d.f. of the portfolio price change (or return) is increasing in its left
tail. This condition is satis�ed if this distribution is unimodal, but can be
violated in the case of several modes in the tail. The second term involves
the conditional heteroscedasticity of changes in asset prices given the change
in the portfolio value. It is non negative if this conditional heteroscedasticity
increases with the negative level ¡z of change in the portfolio value. This
expresses the idea of increasing multivariate risk in the left tail of portfolio
return. To illustrate these two components we further discuss particular
examples.

1) Gaussian distribution

In the Gaussian case considered in subsection 2.2, we get :

@ log ga;t(z)

@z
=

¡z + a0¹t
a0­ta

:

Therefore :

@ log ga;t
@z

(¡V aRt(a; ®)) =
V aRt(a; ®) + a

0¹t
a0­ta

=
z1¡®

(a0­ta)1=2
; from equation (2.3):

This positive coe¢cient (as soon as ® < 0:5) corresponds to the multi-
plicative factor observed in equation (2.5). Besides the second term of the
decomposition is zero due to the conditional homoscedasticity of yt given
a0yt.
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2) Gaussian model with unobserved heterogeneity

The previous example can be extended by allowing for unobserved het-
erogeneity. More precisely let us introduce an heterogeneity factor u and
assume that the conditional distribution of asset price changes given the in-
formation held at time t has mean ¹t(u) and variance ­t(u). The various
terms of the decomposition can easily be computed and admit explicit forms.
For instance we get :

ga;t(z) =
Z
ga;t(zju)¦(u)du;

where ga;t(zju) is the Gaussian distribution of the portfolio price changes
given the heterogeneity factor, and ¦ denotes the heterogeneity distribution
.

We deduce that :

@ log ga;t(z)

@z
=

@ga;t(z)

@z
ga;t(z)

=

Z @

@z
ga;t(zju)¦(u)duZ
ga;t(zju)¦(u)du

= E~¦

"
@ log ga;t(zju)

@z

#
;

where the expectation is taken with respect to the modi�ed probability ~¦
de�ned by :

~¦(u) = ga;t(zju)¦(u)=[
Z
ga;t(zju)¦(u)du]:

Due to conditional normality, we obtain :

@ log ga;t
@z

(¡V aRt(a; ®)) = E~¦
"
V aRt(a; ®) + a0¹t(u)

a0­t(u)a

#
: (2.6)

Let us proceed with the second term of the decomposition. We get :

Vt [yt+1ja0yt+1 = ¡z]

= E¦Vt [yt+1ja0yt+1 = ¡z; u] + V¦Et [yt+1ja0yt+1 = ¡z; u] :
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The conditional homoscedasticity given u, implies that Vt [yt+1ja0yt+1 = ¡z; u]
does not depend on the level z and we deduce that :

@

@z
Vt[yt+1ja0yt+1 = ¡z] =

@

@z
V¦Et[yt+1ja0yt+1 = ¡z; u]

=
@

@z

·
V¦

·
¹t(u) +

­t(u)a

a0­t(u)a
(¡z ¡ a0¹t(u))

¸¸
: (2.7)

Let us detail formulas (2.6) and (2.7), when ¹t(u) = 0;8u, i.e. for a
conditional Gaussian random walk with stochastic volatility. From (2.6) we
deduce that :

@ log ga;t
@z

(¡V aRt(a; ®)) = V aRt(a;®)E~¦
"

1

a0­t(a)a

#
> 0:

From (2.7), we get :

¡ @

@z
Vt[yt+1ja0yt+1 = ¡z] = ¡ @

@z

"
V¦

"
¡z ­t(u)a
a0­t(u)a

##

= ¡ @

@z

"
z2V¦

"
­t(u)a

a0­t(u)a

##
z=¡z

= +2zV¦

"
­t(u)a

a0­t(u)a

#
;

which is nonnegative for z = V aRt(a; ®). Therefore the VaR is convex when
price changes follow a Gaussian random walk with stochastic volatility.

3. VaR E¢cient Portfolio

Portfolio selection is based on a trade-o¤ between expected return and
risk, and requires a choice for the risk measure to be implemented. Usually
the risk is evaluated by the conditional second order moment, i.e. volatil-
ity. This leads to the determination of the mean-variance e¢cient portfolio
introduced by Markovitz (1952). It can also be based on a safety �rst crite-
rion (probability of failure), initially proposed by Roy (1952) [see Levy and
Sarnat (1972), Arzac and Bawa (1977), Jansen, Koedijk and de Vries (1998)
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for applications]. In this section we extend the theory of e¢cient portfolios,
when Value at Risk is adopted as risk measure instead of variance.

3.1 De�nition

We consider a given budget w to be allocated at time t among n risky
assets and a riskfree asset. The price at t of the risky assets are pt, whereas
the price of the riskfree asset is one and the riskfree interest rate is r. The
budget constraint at date t is :

w = ao + a
0pt;

where ao is the amount invested in the riskfree asset and a the allocation in
the risky assets. The portfolio value at the following date is :

Wt+1 = ao(1 + r) + a0pt+1

= w(1 + r) + a0[pt+1 ¡ (1 + r)pt]

= w(1 + r) + a0yt+1 (say):

The Value at Risk of this portfolio is de�ned by :

Pt [Wt+1 < ¡V aRt(ao; a;®)] = ®; (3.1)

and can be written in terms of the quantile of the risky part of the portfolio.

V aRt(ao; a; ®) = w(1 + r) + V aRt(a; ®); (3.2)

where V aRt(a; ®) satis�es : Pt[a0yt+1 < ¡V aRt(a; ®)] = ®: (3.3)

We de�ne a VaR e¢cient portfolio as a portfolio with allocation solving
the constrained optimization problem :8><>:

maxa EtWt+1

s:t: V aRt(ao; a;®) · V aRo;
(3.4)

where V aRo is a benchmark V aR level.
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This problem is equivalent to :8><>:
maxa a0Etyt+1

s:t: V aRt(a;®) · V aRo ¡ w(1 + r) = gV aRo; (3.5)

The VaR e¢cient allocation depends on the loss probability ®, on the
bound V aRo limiting the authorized risk (in the context of capital adequacy
requirement of the Basle Committee on Banking Supervision, usually one
third or one quarter of the budget allocated to trading activities) and on
the initial budget w. It is denoted by a¤t = a¤t [®;

gV aRo]. The constraint is
binding at the optimum and a¤t solves the �rst order conditions :8>>><>>>:

Etyt+1 = ¡¸¤t
@V aRt
@a

(a¤t ; ®);

V aRt(a¤t ; ®) = gV aRo;
(3.6)

where ¸¤t is a Lagrange multiplier. In particular it implies proportionality at
the optimum between the global and local expectations of the net gains :

Etyt+1 = ¸
¤
tEt

h
yt+1ja¤0t yt+1 = ¡ gV aRoi : (3.7)

4. Statistical inference

Estimation methods can be developped from stationary observations of
variables of interest. Hence it is preferable to consider the sequence of returns
(pt+1 ¡ pt)=pt instead of the price modi�cations pt+1 ¡ pt, and accordingly
the allocations measured in values instead of shares. In this section yt+1 =
(pt+1 ¡ pt)=pt denotes the return and a the allocation in value.

Moreover we consider the case of i.i.d. returns, which allows to avoid the
dependence on past information.

4.1 Estimation of the Value at Risk

Since the portfolio value remains the same whether allocations are mea-
sured in shares or values, the VaR is still de�ned by :

Pt[¡a0yt+1 > V aRt(a; ®)] = ®;
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and, since the returns are i.i.d. it does not depend on the past :

P [¡a0yt+1 > V aR(a; ®)] = ®:
It can be consistently estimated from T observations by replacing the

unknown distribution of the portfolio value by a smoothed approximation.
For this purpose we introduce a Gaussian kernel and de�ne the estimated
VaR, denoted by dV aR, as :

1

T

TX
t=1

©

Ã¡a0yt ¡ dV aR
h

!
= ®; (4.1)

where © is the c.d.f. of the standard normal distribution and h is the selected
bandwidth. In practice equation (4.1) is solved numerically by a Gauss-
Newton algorithm. If var(p) denotes the approximation at the pth step of the
algorithm, the updating is given by the recursive formula :

var(p+1) = var(p) +

1

T

TX
t=1

©

Ã¡a0yt ¡ var(p)
h

!
¡ ®

1

Th

TX
t=1

'

Ã
a0yt + var(p)

h

! ; (4.2)

where ' is the p.d.f. of the standard normal distribution.
The starting values for the algorithm can be set equal to the VaR obtained

under a Gaussian assumption or the historical VaR (empirical quantile).
Other choices than the Gaussian kernel may also be made without af-

fecting the procedure substantially. The Gaussian kernel has the advantage
of being easy to integrate and di¤erentiate from an analytical point of view,
and to implement from a computerized point of view.

Finally let us remark that, due to the small kernel dimension (one), we
do not face the standard curse of dimensionality often encountered in kernel
methods. Hence our approach is also feasible in the presence of a large
number of assets.

4.2 Convexity of the VaR

From the expression of the second order derivative of the VaR provided in

Property 1, we know that the Hessian
@2V aR(a; ®)

@a@a0
is positive semide�nite if
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@ log ga;t(z)

@z
> 0; and

@V [yt+1ja0yt+1 = z]
@z

À 0, for negative z values. These

su¢cient conditions can easily be checked without having to estimate the
Value at Risk. Indeed consistent estimators of the p.d.f. of the portfolio
value and of the conditional variance are :

ĝa(z) =
1

Th

TX
t=1

'

Ã
a0yt ¡ z
h

!
; (4.3)

V̂ [yt+1ja0yt+1 = z] =

TX
t=1

yty
0
t'

µ
a0yt ¡ z

h

¶
TX

t=1

'

µ
a0yt ¡ z

h

¶ ¡

TX
t=1

yt'

µ
a0yt ¡ z

h

¶ TX
t=1

y0
t'

µ
a0yt ¡ z

h

¶
"

TX
t=1

'

µ
a0yt ¡ z

h

¶#2 :

(4.4)

4.3 Estimation of a VaR e¢cient portfolio.

Due to the rather simple forms of the �rst and second order derivatives
of the VaR, it is convenient to apply a Gauss-Newton algorithm when deter-
mining the VaR e¢cient portfolio. More precisely let us look for a solution
to the optimization problem (3.5) in a neighbourhood of the allocation a(p).
The optimization problem becomes equivalent to :

maxa a0Eyt+1

s:t: V aR(a(p); ®) +
@V aR

@a0
(a(p); ®)[a¡ a(p)]

+
1

2
[a¡ a(p)]0@

2V aR

@a@a0
(a(p); ®)[a¡ a(p)] · gV aRo:

This problem admits the solution :

a(p+1) = a(p) ¡ [@
2V aR

@a@a0
(a(p); ®)]¡1

@V aR

@a
(a(p); ®)

+

266642( gV aRo ¡ V aR(a(p); ®)) +Q(a(p); ®)
Ey0t+1[

@2V aR

@a@a0
(a(p); ®)]¡1Eyt+1

37775
1=2
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£[@
2V aR

@a@a0
(a(p); ®)]¡1Eyt+1;

with : Q(a(p); ®) =
@V aR

@a0
(a(p); ®)[

@2V aR

@a@a0
(a(p); ®)]¡1

@V aR

@a
(a(p); ®):

To get the estimate, the theoretical recursion is replaced by its empirical

counterpart, in which the expectation Eyt+1 is replaced by ¹̂ =
1

T

TX
t=1

yt,

while the VaR and its derivatives are replaced by their corresponding kernel
estimates given in the two previous subsections.

5. An empirical illustration

This section illustrates the implementation of the estimation procedures
described in Section 4.1 We analyze two companies listed on the Paris
Bourse : Thomson-CSF (electronic devices) and L�Oréal (cosmetics). Both
stocks belong to the French stock index CAC 40. The data are daily returns
recorded from 04/01/1997 to 05/04/1999, i.e. 546 observations. The return
mean and standard deviation are 0.0049% and 1.262% for the �rst stock,
0.0586% and 1.330% for the second stock. Minimum returns are -4.524%
and -4.341%, while maximum values are 3.985% and 4.013%, respectively.
We have for skewness -0.2387 and 0.0610, and for kurtosis 4.099 and 4.295.
This indicates that the data cannot be considered as normally distributed (it
is con�rmed by the values 387.5 and 420.0 taken by the Jarque-Bera (1980)
test statistic). The correlation is 0.003%. We have checked the absence of
dynamics by examining the autocorrelograms, partial autocorrelograms and
Ljung-Box statistics.

Figure 1 shows the estimated VaR of a portfolio including these two
stocks with di¤erent allocations. The allocations range from 0 (1) to 1 (0) in
Thomson-CSF (L�Oréal) stock. The loss probability level is 1%. The dashed
line provides the estimated VaR based on the kernel estimator (4.1). We
have selected the bandwidth according to the classical proportionality rule :
h = (4=3)1=5¾aT

¡1=5, where ¾a is the standard deviation of the portfolio re-
turn with allocation a. We also provide the estimates given by (2.3) based
on the normality assumption (solid line) and the estimates using the empiri-
cal �rst percentile (dashed line). The standard VaR based on the normality
assumption are far below the other estimated values as it could have been

1Gauss programs developped for this section are available on request.
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expected from the skewness and kurtosis exhibited by the individual stock re-
turns. This standard VaR leads to an underestimation of the reserve amount
aimed to cover potential losses. We note that the kernel based estimator and
percentile based estimator lead to similar results with a smoother pattern for
the �rst one.

INSERT Figure 1 : Estimated VaR

Let us now examine the sensitivities. Estimated �rst partial derivatives of
the portfolio VaR are given in Figure 2. The solid line provides the estimate
of the partial derivative for the �rst stock Thomson-CSF based on a kernel
approach. The dotted line conveys its Gaussian counterpart and does not
re�ect the non monotonicity of the �rst derivative. The two other dashed
lines give the analogous curves for the second stock L�Oréal. At the portfolio
corresponding to the minimum VaR in Figure 1, the �rst derivatives w.r.t.
each portfolio allocation are equal as seen on Figure 2, and coincide with the
Lagrange mutiplier associated with the constraint a1 + a2 = 1.

INSERT Figure 2 : Estimated sensitivity

What could be said about VaR convexity when a particular allocation
a is adopted ? Both conditions @ log ga;t(z)

@z
> 0 and @V [yt+1ja0yt+1=z]

@z
À 0 for

negative z values can be veri�ed in order to check VaR convexity. We can
use the estimators based on (4.3) and (4.4) for such a veri�cation. Let us
take a diversi�ed portfolio with allocation a = (0:5; 0:5)0. Figure 3 gives the
estimated log derivative of the p.d.f. of the portfolio returns (see (4.3)) and
shows that the �rst condition is not empirically satis�ed.

INSERT Figure 3 : First condition for convexity

Moreover the second condition is also not empirically met. Indeed we
can observe in Figure 4 that the solid and dashed lines representing the two
eigenvalues of the estimated conditional variance (see (4.4)) are not strictly
positive for negative z values. Hence we conclude to the local non convexity
of the VaR for a portfolio evenly invested in Thomson-CSF and L�Oréal.
Such a �nding is not necessarily valid for other allocation structures.

INSERT Figure 4 : Second condition for convexity

14



We end this section by discussing the shapes of the estimated VaR. We
compare the Gaussian and kernel approaches in Figures 5 and 6. The asset
allocations range from -1 to 1 in both assets. The contour plot corresponds
to increments in the estimated VaR by 0.5%. Hence the contour lines cor-
respond to successive isoVaR curves with levels 0.5%, 1%, 1.5%, ..., starting
from 0 (allocation a = (0; 0)0). Under a Gaussian assumption, the isoVaR
corresponds to an elliptical surface (see Figure 5). The isoVaR obtained by
the kernel approach are provided in Figure 6. We observe that the corre-
sponding VaR are always higher than the Gaussian ones, and that symme-
try with respect to the origin is lost. In particular, without the Gaussian
assumption, the directions of steepest (resp. �attest) ascent are no more
straight lines. However under both computations of isoVaR the portfolios
with steepest (resp. �attest) ascent are obtained for allocation of the same
(resp. opposite) signs.

Finally the isoVaR curves can be used to characterize the VaR e¢cient
portfolios. The estimated e¢cient portfolio for a given authorized level gV aRo
is given by the tangency point between the isoVaR curve of level gV aRo and
the set of lines with equation : a1¹̂1 + a2¹̂2 = constant, where ¹̂1, ¹̂2 denote
the estimated means. Since the isoVaR curves do not di¤er substantially
on our empirical example the e¢cient portfolios are not very much a¤ected
by the use of the Gaussian or the kernel approach. This �nding would be
challenged if assets with nonlinear payo¤s, such as options, were introduced
in the portfolio.

INSERT Figure 5 : IsoVaR Curves by Gaussian approach

INSERT Figure 6 : IsoVaR Curves by kernel approach

6. Concluding remarks

We have considered the local properties of the Value at Risk. In particular
we have derived explicit expressions for the sensitivities of the risk measures
with respect to the portfolio allocation and applied the results to the deter-
mination of VaR e¢cient portfolios. The empirical application points out
the di¤erence between a VaR analysis based on a Gaussian assumption for
asset returns and a direct nonparametric approach.

This analysis has been performed under two restrictive conditions, namely
i.i.d. returns and constant portfolio allocations. These conditions can be

15



weakened. For instance we can introduce nonparametric Markov models for
returns, allowing for nonlinear dynamics, and compute the corresponding
conditional VaR together with their derivatives. Such an extension is under
current development. The assumption of constant holdings until the bench-
mark horizon can also be questioned. Indeed in practice the portfolio can be
frequently updated and a major part of the risk can be due to unappropriate
updating. The e¤ect of a dynamic strategy on the VaR can only be valu-
ated by Monte-Carlo methods [see for instance the impulse response analysis
in Gouriéroux and Jasiak (1999b)]. It has also to be taken into account
when determining a dynamic VaR e¢cient hedging strategy [see Foellmer
and Leukert (1998)]. Finally let us remark that our kernel based approach
can be used to analyse the sensitivity of the expected shortfall, i.e. the ex-
pected loss knowing that the loss is larger that a given loss quantile. This is
also under current development.
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Appendix 1
Expansion of a quantile

Lemma 1 : Let us consider a bivariate continuous vector (X; Y ) and the
quantile Q("; ®) de�ned by :

P [X + "Y > Q("; ®)] = ®:

Then :

@

@"
Q("; ®) = E[Y jX + "Y = Q("; ®)]:

Proof : Let us denote by f(x; y) the joint p.d.f. of the pair (X; Y ). We get :

P [X + "Y > Q("; ®)] = ®

()
Z "Z

Q(";®)¡"y
f(x; y)dx

#
dy = ®:

:

The di¤erentiation with respect to " provides.

Z "
@Q("; ®)

@"
¡ y

#
f (Q("; ®)¡ "; y)dy = 0;

which leads to :

@Q(";®)

@"
=

R
yf (Q("; ®)¡ "y; y)dyZ
f(Q("; ®)¡ "y; y)dy

= E[Y jX + "Y = Q("; ®)]:
Q.E.D
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Appendix 2
Expansion of the conditional expectation

Lemma 2 : Let us consider a continuous three dimensional vector (X;Y; Z);
then :

E[XjZ + "Y = 0]

= E[X jZ = 0]¡ "
@ log g(z)

@z

#
z=0

Cov [X; Y jZ = 0]

¡" @
@z

Cov [X; Y jZ = z]]z=0 + "E[Y jZ = 0] @
@z
E[XjZ = z]]z=0 + o(");

where g is the marginal p.d.f. of Z.

Proof : Let us denote by f(x; y; z) the joint p.d.f. of the triple (X; Y; Z)

and by f(x; yjz) = f(x; y; z)

g(z)
the conditional p.d.f. of X;Y given Z = z. The

conditional expectation is given by :

E[X jZ + "Y = 0] =

Z Z
xf (x; y;¡"y)dxdyZ Z
f(x; y;¡"y)dxdy

=

Z Z
xf (x; y; 0)dxdy ¡ "

Z Z
xy
@

@z
f (x; y; 0)dxdyZ Z

f (x; y; 0)dxdy ¡ "
Z Z
y
@

@z
f(x; y; 0)dxdy

+ o(")

= E[XjZ = 0]¡ "E
"
XY

@ log f

@z
(X; Y; 0)jZ = 0

#

+ "E[X jZ = 0]E
"
Y
@ log f

@z
(X; Y; 0)jZ = 0

#
+ o(")
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= E[X jZ = 0]¡ " Cov [X; Y
@ log f

@z
(X;Y; 0)jZ = 0] + o(")

= E[X jZ = 0]¡ "@ log g(z)
@z

]z=0 Cov [X; Y jZ = 0]

¡ " Cov[X; Y
@ log f

@z
(X; Y j0)jZ = 0] + o("): (A:1)

Let us now consider the derivative of the conditional covariance. We get :

@

@z
Cov [X; Y jZ = z]

=
@

@z
[E[XY jZ = z]¡ E[X jZ = z]E[Y jZ = z]]

= E

"
XY

@ log f

@z
(X; Y jz)jZ = z

#
¡ E[XjZ = z]E

"
Y
@ log f

@z
(X;Y jz)jZ = z

#

¡ @

@z
E[XjZ = z]E[Y jZ = z]

= Cov

"
X; Y

@ log f

@z
(X; Y jz)jZ = z

#
¡ @

@z
E[XjZ = z]E[Y jZ = z]:

The expansion of Lemma 2 directly follows after substitution in equation
(A:1).

Q.E.D

Lemma 3 : When E[Y jZ = 0] = 0, the expansion reduces to :

E[XjZ + "Y = 0]

= E[X jZ = 0]¡ "@ log g(z)
@z

]z=0 Cov [X; Y jZ = 0]

¡" @
@z

Cov [X; Y jZ = z]]z=0 + o("):
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Lemma 4 : When E[Y jZ = 0] = 0, and Cov [X; Y jZ = z] is independent
of z (conditional homoscedasticity) the expansion reduces to :

E[XjZ + "Y = 0]

= E[X jZ = 0]¡ "@ log g(z)
@z

]z=0 Cov [X; Y jZ = 0] + o(").

Let us remark that Lemma 4 is in particular valid for a Gaussian vector
(X;Y; Z). In this speci�c case, we get :

log g(z) = ¡1
2
log 2¼ ¡ 1

2
logV Z ¡ 1

2

(z ¡EZ)2
V Z

;

@ log g(z)

@z
]z=0 =

EZ

V Z
:
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Figure 1 : Estimated VaR

Figure 2 : Estimated sensitivity
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Figure 3 : First condition for convexity

Figure 4 : Second condition for convexity
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Figure 5 : IsoVaR curves by Gaussian approach
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Figure 6 : IsoVaR curves by kernel approach
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