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What is Machine Learning?

The design of computational systems that discover patterns in a collection
of data instances in an automated manner.

The ultimate goal is to use the discovered patterns to make predictions on
new data instances not seen before.

1

?

11 1 1 1 1 1 1

2 2 2 2 2 2 2

0 0 0 0 0 0 0 ? ?

? ? ?

? ? ?

Instead of manually encoding patterns in computer programs, we make
computers learn these patterns without explicitly programming them .

Figure source [Hinton et al. 2006].
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Model-based Machine Learning

We design a probabilistic model which explains how the data is generated.

An inference algorithm combines model and data to make predictions.

Probabilities are used to deal with uncertainty in the model or the data.
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Probabilistic programming languages such as Infer.Net or Church provide a
powerful implementation of MML.
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Basics of Probability Theory

Everything needed follows from just two rules:

Sum rule:

p(x) =

∫
p(x , y) dy .

Product rule:

p(x , y) = p(y |x)p(x) = p(x |y)p(y) .

They can be combined to obtain Bayes’ rule:

p(y |x) =
p(x |y)p(y)

p(x)
=

p(y |x)p(y)∫
p(x , y) dy

.

Independence of X and Y : p(x , y) = p(x)p(y).

Conditional independence of X and Y given Z : p(x , y |z) = p(x |z)p(y |z).
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The Bayesian Framework

The probabilistic model M with parameters θ explains how the data D is
generated by specifying the likelihood function p(D|θ,M) .

Our initial uncertainty on θ is encoded in the prior distribution p(θ|M) .

Bayes’ rule allows us to update our uncertainty on θ given D:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
.

We can then generate probabilistic predictions for some quantity ynew of a
new data instance xnew given D and M using

p(ynew|xnew,D,M) =

∫
p(ynew|θ, xnew,M)p(θ|D,M)dθ .

These predictions will be obtained using an inference algorithm .
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Bayesian Model Comparison

Given a particular D, we can use the model evidence p(D|M) to reject
both overly simple models, and overly complex models.

Figure source [Ghahramani 2012].
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Probabilistic Graphical Models

The Bayesian framework requires to specify a high-dimensional distribution
p(x1, . . . , xk) on the data, model parameters and latent variables.

Working with fully flexible joint distributions is intractable!

We will work with structured distributions, in which the random variables
interact directly with only few others. These distributions will have many
conditional independencies .

This structure will allow us to:
- Obtain a compact representation of the distribution.
- Use computationally efficient inference algorithms.

The framework of probabilistic graphical models allows us to represent
and work with such structured distributions in an efficient manner.
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Some Examples of Probabilistic Graphical Models

Bayesian Network Markov Network
Graphs

Muscle-Pain Congestion

Flu Hayfever

Season

BD

C

A

Independencies
(F⊥H|S), (C⊥S |F ,H) (A⊥C |B,D), (B⊥D|A,C )

(M⊥H,C |F ), (M⊥C |F ), ...
Factorization

p(S ,F ,H,M,C ) = p(S)p(F |S) p(A,B,C ,D) = 1
Z φ1(A,B)

p(H|S)p(C |F ,H)p(M|F ) φ2(B,C )φ3(C ,D)φ4(A,D)

Figure source [Koller et al. 2009].
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Bayesian Networks

A BN G is a DAG whose nodes are random variables X1, . . . ,Xd .

Let PAGXi
be the parents of Xi in G.

The network is annotated with the conditional distributions p(Xi |PAGXi
).

Conditional Independencies:

Let NDGXi
be the variables in G which are non-descendants of Xi in G.

G encodes the conditional independencies (Xi⊥NDGXi
|PAGXi

), i = 1, . . . , d .

Factorization:

G encodes the factorization p(x1, . . . , xd) =
∏d

i=1 p(xi |paGxi ) .
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BN Examples: Matrix Factorization Model

We have observations xi ,j from an n × d matrix X.

The entries of X are generated as a function of the entries of a
low rank matrix UVT, U is n × k and V is d × k and k � min(n, d).

p(X,U,V,θ1,θ2,θ3) =



n∏

i=1

d∏

j=1

p(xi ,j |ui , vj , θ3)




[
n∏

i=1

p(ui |θ1)

]


d∏

i=j

p(vj |θ2)




p(θ1)p(θ2)p(θ3) .
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D-separation

Conditional independence properties can be read directly from the graph.

We say that the sets of nodes A, B and C satisfy (A⊥B|C ) when all of

the possible paths from any node in A to any node in B are blocked .

A path will be blocked if it contains a node x with arrows meeting at x
1 - i) head-to-tail or ii) tail-to-tail and x is C .
2 - head-to-head and neither x , nor any of its descendants, is in C .

f

e b

a

c

f

e b

a

c

(a⊥b|c) does not follow from
the graph.

(a⊥b|f ) is implied by the
graph.

Figure source [Bishop 2006].
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Bayesian Networks as Filters

p(x1, . . . , xk) must satisfy the CIs implied by d-separation .

p(x1, . . . , xk) must factorize as p(x1, . . . , xd) =
∏d

i=1 p(xi |paGxi ).

p(x1, . . . , xk) must satisfy the CIs (Xi⊥NDGXi
|PAGXi

) , i = 1, . . . , d .

The three filters are the same!

All possible
Distributions

All distributions
that factorize 

and satisfy CIs 

Figure source [Bishop 2006].
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Markov Networks
A MN is an undirected graph G whose nodes are the r.v. X1, . . . ,Xd .

It is annotated with the potential functions φ1(D1), . . . , φk(Dk), where
D1, . . . ,Dk are sets of variables, each forming a maximal clique of G, and

φi , . . . , φk are positive functions.

Conditional Independencies:

G encodes the conditional independencies (A⊥B|C ) for any sets of nodes

A, B and C such that C separates A from B in G .

Factorization:

G encodes the factorization p(X1, . . . ,Xd) = Z−1
∏k

i=1 φi (Di ), where Z is
a normalization constant.
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Clique and Maximal Clique

Clique : Fully connected subset of nodes.

Maximal Clique : A clique in which we cannot include any more nodes
without it ceasing to be a clique.

x1

x2

x3

x4

(x1, x2) is a clique but not a maximal clique.

(x2, x3, x4) is a maximal clique.

p(x1, . . . , x4) =
1

Z
φ1(x1, x2, x3)φ2(x2, x3, x4) .

Figure source [Bishop 2006].

14



MN Examples: Potts Model

Let x1, . . . , xn ∈ {1, . . . ,C},

p(x1, . . . , xn) =
1

Z

∏

i∼j
φij(xi , xj) ,

where

log φij(xi , xj) =

{
β > 0 if xi = xj

0 otherwise
,

xi xj

Figure source [Bishop 2006]. Figure source Erik Sudderth.
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From Directed Graphs to Undirected Graphs: Moralization

Let p(x1, . . . , x4) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3) .
How do we obtain the corresponding undirected model?

p(x4|x1, x2, x3) implies that x1, . . . , x4 must be in a maximal clique.

General method:
1- Fully connect all the parents of any node.
2- Eliminate edge directions.

x1 x3

x4

x2

x1 x3

x4

x2
Moralization adds the fewest
extra links and so retains the
maximum number of CIs.

Figure source [Bishop 2006].
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CIs in Directed and Undirected Models

If all the CIs of p(x1, . . . , xn) are reflected in G, and vice versa, then G is
said to be a perfect map .

C

A B

A

C

B

D

P
UD

Figure source [Bishop 2006].
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Summary

With ML computers learn patterns and then use them to make predictions.
With ML we avoid to manually encode patterns in computer programs.

Model-based ML separates knowledge about the data generation process
(model) from reasoning and prediction (inference algorithm).

The Bayesian framework allows us to do model-based ML using probability
distributions which must be structured for tractability.

Probabilistic graphical models encode such structured distributions by
specifying several CIs (factorizations) that they must satisfy.

Bayesian Networks and Markov Networks are two different types of
graphical models which can express different types of CIs.

18



References

Detailed references:

Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief
nets. Neural Computation 18, 2006, 1527-1554.

Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and
Techniques Mit Press, 2009

Bishop, C. M. Model-based machine learning Philosophical Transactions of the
Royal Society A: Mathematical,Physical and Engineering Sciences, 2013, 371

Ghahramani Z. Bayesian nonparametrics and the probabilistic approach to
modelling. Philosophical Transactions of the Royal Society A, 2012.

Murphy, K. Machine Learning: A Probabilistic Perspective Mit Press, 2012

19



Inference in Graphical Models with Discrete Variables

Daniel Hernández–Lobato1,

June 29, 2015

slides by
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What is inference?

The problem of inference: Given that some of the variables in a GM are
clamped to observed values, we want to compute the conditional
distribution of a subset of other variables.

Simplest example: a Bayesian network (BN) for p(x , y).

The BN represents the joint distribution for
x and y as p(x , y) = p(y |x)p(x).

Given y , we use Bayes’ theorem to obtain
p(x |y) = p(y , x)/p(y), where
p(y) =

∑
x p(y , x).

x

y

x

y

Difficult problem with probably exponential cost in the worst case .

However, for some GM exact inference is tractable .
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Variable Elimination
Given the BN A→ B → C → D we want to compute p(d) .

The chain rule of BNs and the sum rule of probability theory lead to
p(d) =

∑
a

∑
b

∑
c p(d |c)p(c |b)p(b|a)p(a) .

This operation has cost O(n4), when the variables can take n values each.
However, we can reorder the computations to obtain
p(d) =

∑
c p(d |c)

∑
b p(c |b)

∑
a p(b|a)p(a) .

In this case, the computation of p(d) has cost O(n2).
Selecting a specific order of computations can produce large savings .

Main Idea

The GM expresses the joint distribution as a product of factors which

depend only on a small number of variables .

Only need to compute some expressions once. By caching intermediate

results , we avoid generating very large factors (probability tables).
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Sum-product Variable Elimination Algorithm

Procedure Sum-Product-VE

Input
Set of factors Φ.
Set of variables to be eliminated Z.
Ordering of Z: Z1, . . . ,Zk .

1: for i = 1, . . . , k
2: Φ← Eliminate-Var(Φ,Zi )
3: return

∏
φ∈Φ φ

Procedure Eliminate-Var

Input
Set of factors Φ.
Variable to be summed out Z .

1: Φ′ ← {φ ∈ Φ : Z ∈ Scope[φ]}
2: Φ′′ ← Φ−Φ′

3: ψ ←∏
φ∈Φ′ φ

4: τ ←∑
Z ψ

5: return Φ′′ ∪ {τ}
where scope(φ) is the set of variables on which φ is evaluated.

When a set of variables Z′ are clamped to observed values , we

1 - Reduce the factors in Φ which depend on any variable in Z′.
2 - Eliminate only the variables in Z− Z′ .
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Example of the Execution of Variable Elimination

We ask for p(J) for the joint

distribution p(J,C ,D, I ,H,G , S , L)
given by the BN in the figure.

Slide source [Koller et al. 2009]

DC I

G S

L

JH

Step Variable Factors Variables New
Eliminated used to compute ψi Involved Factor

1 C φC (C ), φD(D,C ) C , D τ1(D)
2 D φG (G , I ,D), τ1(D) G I , D τ2(G , I )
3 I φI (I ), φS(S , I ), τ2(G , I ) G , S , I τ3(G , S)
4 H φH(H,G , J) H G , J τ4(G , J)
5 G τ4(G , J), τ3(G , S), φL(L,G ) G , J, L, S τ5(J, L,S)
6 S τ5(J, L,S), φJ(J, L, S) J, L, S τ6(J, L)
7 L τ6(J, L) J, L τ7(J)
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Induced Graph (IG)
Undirected graph where two random variables are connected if the two of

them appear in some factor during the execution of variable elimination.

The scope of every factor produced during VE is a clique in the IG.

Every maximal clique is the scope of one of the ψ produced during VE.

DC I

G S

L

JH

DC I

G S

L

JH

The cost of VE is exponential in the number of nodes in the largest

clique of the IG. Depends on the elimination ordering ! Finding the best

ordering is NP-hard . Alternative: use a heuristic method .
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Clique Tree
A run of VE defines a clique tree such that:

1 - We have a node for each factor ψi produced by VE.
2 - Each node is associated with the set of variables Ci = Scope[ψi ].
3 - We connect Ci and Cj if τi is used to compute τj .
4 - For the link between Ci and Cj we have the sepset Sij = Ci ∩ Cj .

Figure
[Koller et al.
2009].

5: G,J,S,L

4: H,G,J

3: G,S,I

7: J,L
J,L

6: J,S,L
J,S,L

2: G,I,D1: C,D

G,J

G,S

G, ID

The clique tree satisfies the following properties:

Running intersection property (RIP) : for any variable X such that X ∈ Ci

and X ∈ Cj , then X is also in every node in the path between Ci and Cj .

Family preservation property (FPP) : each factor φ ∈ Φ is associated

with a node Ci such that Scope[φ] ⊆ Ci .
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Clique Tree Message Passing

VE can be implemented via message passing in a given clique tree.

By the FPP, any φ ∈ Φ is assigned to a node which we denote by α(φ) .

The initial potential for Cj is

ψj(Cj) =
∏

φ:α(φ)=j

φ .

The message from Ci to its neighbor Cj is

δi→j =
∑

Ci−Sij

ψi

∏

k∈Nb(i)−{j}
δk→i .

At any node i , we call beliefs the factor given by

βi (Ci ) = ψi (Ci )
∏

j∈Nb(i)

δj→i =
∑

∪jCj−Ci

∏

φ∈Φ
φ .

To compute p(Zj) we follow the steps

- Select any Ci s.t. Zj ∈ Ci and compute βi (Ci ) by message passing.
- Sum out in βi (Ci ) the variables Ci − {Zj}.
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Example of Message Passing I

Given a GM we obtain a clique tree that satisfies the RIP and the FPP.

1:C,D

P(D |C)
P(C)

P(G |I,D) P(I )
P(S|I )

P(L|G)
P(J |L,S)

P(H |G,J )

4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L
D G,I G,S G,J

DC I

G S

L

JH

To obtain p(J) we select C5 and do message passing to get β5(G , J, S , L).

Figure source [Koller et al. 2009].
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Example of Message Passing II

d1→2(D):

∑C 1(C1)

d2→3(G,I ):

∑D 2(C2) × d1→2

d3→5(G,S):

∑I 3(C3) × d2→3

d4→5(G,J ):

∑H 4(C4)

1:C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

Figure source [Koller et al. 2009].
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Calibration of a Clique Tree

Any edge i ∼ j in a CT has two messages associated δi→j and δj→i .

To compute both messages for any edge and the beliefs for each node :

1 - Pick a random node as the root.
2 - Send all messages from the leaves to the root.
3 - Send all messages from the root to the leaves.
4 - Compute the beliefs for each node in the graph using the messages.

At the end, each node has the marginal over the variables in its scope .

1:C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

1:C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

We can compute all the marginals with only twice the cost of VE.
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How to Construct a Clique Tree

By running Variable Elimination:
Any resulting Ci which is not a maximal clique in the IG is usually
collapsed.

From a chordal graph (undirected graph with no loop larger than 3 ):
1 - Obtain an undirected graph by moralization.
2 - Obtain a chordal graph by triangulation.
3 - Find the maximal cliques in the chordal graph.
4 - Make each maximal clique a node in the clique tree.
5 - Find maximum spanning tree with weight |Ci ∩ Cj | for i ∼ j .

The computational cost of message passing is exponential in the number
of variables of the largest clique, exponential in the tree-width .

Finding a triangulation in which the largest clique has minimum size is
NP-hard . Alternative: use a heuristic method .

12



Approximate Inference

Exact inference is intractable if the tree-width of the clique tree is large.

What to do then?

Use approximate inference , trading off computational cost vs. accuracy .

We construct an approximation Q to the target distribution P.

The approximation Q can be obtained by

1 Selecting a simpler form for Q that can be efficiently tuned to P.

2 Drawing a finite number of samples from the distribution P.
Q is then built using these samples.

In the first case, approximate inference involves optimizing Q to match P.

Some of these methods can be viewed as message passing on a graph.
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Loopy Belief Propagation

We do message passing on a cluster graph rather than on a clique tree.

Cluster graph:
- Like a clique tree, but with cycles or loops .

- For the link between Ci and Cj we have the sepset Sij ⊆ Ci ∩ Cj .

The cluster graph has to satisfy the FPP and a generalized RIP.

Running Intersection Property for Cluster Graphs

For any two nodes Ci and Cj containing variable X , there is precisely

one path between them for which X ∈ Se for all edges e in the path.

This implies that all edges associated with X form a tree that spans all

the nodes containing X . Two nodes can be connected by multiple paths .

We can do inference on the cluster graph by message passing. However,
because of the loops, we will often obtain only approximate answers .
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Cluster Graph Example

Undirected graphical model with factors:

(b) (c)(a)

DB

A

C

A,B,D

B,C,D

B,D

1:A,B

2: B,C

B

A

C

4: A,D

3: C,D

D

(a) - The undirected GM. (b) - A clique tree for the network in (a).
(c) - A cluster graph for the same network.

Figure source [Koller et al. 2009]
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How to Choose the Cluster Graph?

When choosing the CG we have to consider a cost vs. accuracy trade-off .

Doing message passing in CGs that lead to more accurate results is more

computationally expensive and vice-versa.

The chosen CG must also to satisfy the RIP and FPP .

A typical solution is the Bethe cluster graph (easily automated).

- A bipartite graph with two layers of large and small nodes.
- A large node Cα(φ) per factor φ in Φ, where Cα(φ) = Scope(φ).
- A small node per random variable, with no associated factor.
- A large node Ci is connected to a small node Cj when Cj ⊆ Ci .

The Bethe cluster graph is guaranteed to satisfy both the RIP and FPP.
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Example of Bethe Cluster Graph

Distribution with factors

φ1(A,B,C ) φ2(B,C ,D) φ3(B,D,F ) φ4(B,E ) φ5(D,E )

6:A 11: F10: E9:D8:C7:B

1:A,B,C 2:B,C,D 4:B,E 5:D,E3:B,D, F

The Bethe cluster graph is limited in the sense that information between

different clusters is passed through univariate marginal distributions .

Merging clusters can help capture interactions between multiple variables.
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Loopy Belief Propagation Algorithm

1 Assign each factor φk ∈ Φ to a cluster Cα(k).
2 Construct initial potentials ψi(Ci) =

∏
k:α(k)=i φk .

3 Initialize all messages to be non-informative (e.g. equal to 1).
4 Repeat until convergence (e.g. messages no longer change)

1 Select edge (i , j) and pass message:

δi→j(Si,j) =
∑

Ci−Si,j

ψi×
∏

k∈(Ni−j)
δk→i =


 ∑

Ci−Si,j

ψi ×
∏

k∈Ni

δk→i


 /δj→i .

5 Compute un-normalized beliefs βi(Ci) = ψi

∏
k∈Ni

δk→i .

At convergence, the marginals over the sepsets of adjacent nodes
coincide and we have a calibrated cluster graph .
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Example of Loopy Belief Propagation

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5 10 15 20
Iteration#

P
(a

1 )

True marginal

The algorithm converges but to a solution different from the exact one .

Figure source [Koller et al. 2009].
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Loopy Belief Propagation: Accuracy of the Approximation

1

5 6

2

7 8

3
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13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

K. P. Murphy, Y. Weiss and
M. I. Jordan. Loopy Belief
Propagation for Approximate
Inference: An Empirical
Study, UAI 99
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Summary

Inference in GMs is mainly the computation of conditional distributions .

Exact inference requires to sum an exponentially large joint distribution.

Variable elimination avoids the exponential blow up by caching
intermediate results.

A clique tree allows us to do exact inference using message passing .

Message passing produces multiple answers in a single run.

When the tree-width of the graph is large we have to use
approximations .

Loopy belief propagation allows us to do efficient approximate inference

by passing messages in a cluster graph .
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The Laplace Approximation: Introduction

The simplest deterministic method for approximate inference. Restricted to
GMs in which the variables of interest are continuous .

The factors for the continuous random variables will generally be some
continuous parametric functions.

Probit regression model :

yi =

{
1 if wTxi + εi ≥ 0

−1 if wTxi + εi < 0

w ∼ N (0, Iα)

εi ∼ N (0, σ2)

p(yi |wi , xi ) = Φ(yiw
Txi |0, σ2) .

y i

xi

N

w

α

σ2

w are the variables of interest, and the evidence are the {yi}Ni=1. Furthermore,

p(y,w) =
∏N

i=1 p(yi |w, xi )p(w) =
∏N

i=1 Φ(yiwTxi |0, σ2)N (w|0, Iα) .
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The Laplace Approximation: Probit Regression Model
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Sample data from the corresponding GM.

We want to make inference on w given
some observed labels y. For this, we can
use Bayes theorem:

p(w|y) =
p(y|w)p(w)

p(y)
.

where p(y) is a normalization constant

which can be used for model selection .

We also want to compute a predictive distribution for new unlabeled instances:

p(ynew|xnew, y) =

∫
p(ynew|xnew,w)p(w|y)dw .

Unfortunately the required computations are intractable .
3



The Laplace Approximation: Univariate Case I

The Laplace approximation will find a Gaussian approximation to the conditional
distribution of a set of continuous variables:

Consider first a single scalar variable z :

p(z) =
1

Z
f (z) ,

where f (z) = p(z , e), e are observed variables and Z =
∫
f (z)dz .

How do we set the parameters of Q(z), the Gaussian approximation, so that it is

similar to p(z) given that we do not know Z?

The first step is to find a mode (i.e., a local maximum z0) of p(z)

df (z)

dz

∣∣∣∣
z=z0

= 0

Any optimization algorithm can be used for this purpose.
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The Laplace Approximation: Univariate Case II

The logarithm of a Gaussian is a quadratic function of the variables.

We consider a truncated Taylor expansion of log f (z) center at the mode:

log f (z) ≈ log f (z0)− 1

2
A(z − z0)2 , A = − d2

dz2
log f (z)

∣∣∣∣
z=z0

Taking the exponential we obtain:

f (z) ≈ f (z0) exp

{
−A

2
(z − z0)2

}
Q(z) = N (z |z0,A

−1)

The normalization constant Z can be approximated by f (z0)
√

2π/A .

The mean of Q is z0 and the variance is A−1 .

The Gaussian approximation will only be defined if A > 0, i.e., z0 must be a local
maximum of log f and hence f with negative second derivative .
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The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution
p(z) = f (z)/Z defined over a vector of real values.

log f (z0) ≈ log f (z0)− 1

2
(z− z0)TA(z− z0) , A = − 55 log f (z)|z=z0

Taking the exponential we have:

f (z) ≈ f (z0) exp

{
−1

2
(z− z0)TA(z− z0)

}
, Q(z) = N (z|z0,A

−1)

The normalization constant is approximated by f (z0)
√

(2π)M/|A| .

The mean of Q is z0 and the covariance matrix is A−1 .

The Gaussian approximation will only be defined if A is positive semidefinite, i.e.,
z0 must be a local maximum not a minimum or a saddle point .
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The Laplace Approximation: Example

f ( z ) lo g f ( z )

lo g f ( z ) & lo g ~ Q (z ) f ( z ) & ~ Q (z )
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The Laplace Approximation: Probit Regression I

For simplicity we consider that σ2 = 1 and that α = 1.

The posterior distribution is:

p(w|y) ∝ p(y|w)p(w) = f (w) , log f (w) = log p(y|w) + log p(w) .

Furthermore, we have that:

log f (w) =
N∑

i=1

log Φ(yiw
Txi )−

1

2
wTw .

Let w0 a maximum of f . Computing the negative Hessian at w0:

A = −∇∇ log f (w0) =
N∑

i=1

[
vi (si + vi )xix

T
i

]
+ I , vi =

N (si |0, 1)

Φ(si )
, si = yiw

T
0 xi .

The approximate posterior is Q(w) = N (w|w0,A−1). The normalization

constant is Z ≈ f (w0)
√

(2π)M

|A| , where M is the dimensionality of w.
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The Laplace Approximation: Probit Regression II
It is also possible to compute an approximate predictive distribution :

p(ynew|xnew, y) ≈
∫

p(ynew|xnew,w)Q(w)dw =

∫
Φ(ynewwTxnew)N (w|w0,A−1)dw ,

= Φ

(
ynewwT

0 xnew√
xT

newA−1xnew + 1

)
.
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Uncertainty is high near the decision
boundary and progressively
decreases as we move away from it .

Uncertainty is significantly larger in
regions where there is no data .

MAP solutions do not consider this
uncertainty.
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The Laplace Approximation: Considerations

The mode of log f can be found using a numerical optimization method .

The Hessian can be approximated by differences .

Many distributions can be multi-modal , what leads to

many different Laplace approximations , depending on the mode.

In many cases, the posterior distribution of z will converge to a Gaussian

as the number of observations (evidence) increases.

Only applicable on real variables .

Only focuses around the mode and can fail to capture global properties .

No need to know Z . Furthermore, it provides an estimate of Z .

Depends on the basis . If z is mapped to u(z), the density is transformed

to p(u) = p(z)|dz/du| and the approximation will be different.
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Variational Inference: Introduction

Based on the calculus of variations , i.e., a generalization of standard calculus.

Deals with functionals, functions and derivatives of functionals rather than

functions, variables and derivatives. Similar rules apply .

Can be applied to models of either continuous or discrete random variables.

Approximates both the posterior distribution and its normalization constant :

p(z|e) and p(e).

It is based on the following decomposition:

log p(e) = L(Q) + KL(Q||p)

where

L(Q) =
∑

z

Q(z) log

{
p(z, e)

Q(z)

}
, KL(Q||p) = −

∑

z

Q(z) log

{
p(z|e)

Q(z)

}
≥ 0

The Kullback Leibler divergence measures the fit of Q to p(z|e) .

L(Q) approximates log p(e) .

11



Decomposition of the Marginal Likelihood

ln p(E)L(Q)

KL(Q P)

12



Variational Inference: Choosing the approximation Q
Q minimizes KL(Q||p) (maximizes L(Q)) when Q = p(z|e) .

In practice, one selects Q to be a parametric distribution Q(z|θ) , for which

L(Q) can be computed analytically, e.g., a Gaussian.

The lower bound then becomes a function of θ and can be optimized using

non-linear optimization techniques such as gradient descent.

An alternative is to assume that Q factorizes with respect to a partition of z

into M disjoint groups zi , with i = 1, . . . ,M:

Q(z) =
M∏

i=1

Qi (zi )

and no further assumptions are made about Q.

This approach is known in the literature as variational mean field .

13



Variational Inference: Variational Mean-Field
Substituting Q in L(·) and looking for the dependence with respect to Qj :

L(Q) =
∑

z

M∏

i=1

Qi (zi )

{
log p(z, e)−

M∑

i=1

logQi (zi )

}

=
∑

zj


Qj(zj)




∑

zi 6=j

log p(z, e)
M∏

i 6=j

Qi (zi )



−Qj(zj) logQj(zj)


+ const

=
∑

zj

[Qj(zj) log p̂(zj , e)−Qj(zj) logQj(zj)] + const

which is a negative KL divergence and we have defined

log p̂(zj , e) = Ei 6=j [log p(z, e)] + const .

The optimal Qj given that the other factors are kept fixed is:

logQ?j (zj) = Ei 6=j [log p(z, e)] + const (1)

To optimize Q we iterate, optimizing each Qj using (1) .

14



Properties of Variational Approximations

The KL divergence KL(Q||p) favors solutions that take high probability where p

takes high probability , but can ignore important regions.

The optimization problem is not convex and can have multiple local optima .

15



Variational Inference Example: 2D Ising Model I

Ising models (ferromagnetic or anti-ferromagnetic) are arrays of spins , e.g.,

atoms that can take states ±1, that are magnetically coupled to each other.

At temperature T , the probability of a spin configuration z ∈ {−1, 1}N is

p(z|β, J,H) =
1

Z (β, J,H)
exp {−βE (z; J,H)} ,

where β = 1/(kBT ), kB is Boltzmann’s constant and Z is a normalizer ,

E (z; J,H) = −
[

1

2

∑

m,n

Jm,nzmzn +
∑

n

Hzn

]

H is the applied field, Jm,n = J is m and n are neighbors and 0 otherwise.

Can be described by an un-directed GM.

The evaluation of p(z|β, J,H) is intractable since
computing Z requires summing out z.

16



Variational Inference Example: 2D Ising Model II

T=5 T=2.5 T=2.4 T=2.3 T=2

As the temperature increases the probability of any state becomes uniform .

For low temperatures it is likely to find all the spins in the same position .

17



2D Ising Model: Mean Field Approximation I

We choose a factorizing approximation :

Q(z) =
N∏

i=1

Qi (zi ) , Qj(zj) ∝ exp{Ei 6=j [log p̃(z|β, J,H)]} .

which gives a closed form solution for Qj :

Qj(zj = 1) =
exp(aj)

exp(aj) + exp(−aj)
=

1

1 + exp(−2aj)
, aj = β


J

∑

n∈Nbj

zn + H


 .

where zn = 1 · Qn(zn = 1)− 1 · Qn(zn = −1) = tanh(an).

This process has to be iterated for j = 1, . . . ,N until convergence of Q.

Given Q it is easy to evaluate the lower bound on Z (β, J,H), which can be used
to approximate the value of this constant.
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Example: Unknown Mean and Variance of a Gaussian

Goal: infer the posterior distribution of the mean µ and precision τ of a

Gaussian distribution given a dataset D = {x1, . . . , xN} of independent samples.

The posterior satisfies p(µ, τ |D) ∝ p(D|µ, τ)p(µ)p(τ) = p(D, µ, τ).

The log likelihood of µ and τ is:

log p(D|µ, τ) = −N

2
log 2πτ−1 − τ

2

N∑

n=1

(xn − µ)2

= −N

2
log τ − τ

2

[
N(µ− x)2 + S

]
+ const ,

xn

µ τ

N

where S =
∑

n(xn − x)2 and x is the empirical mean .

The priors for µ and τ are uniform :

p(µ) = 1/σµ , p(τ) = 1/τ

19



Mean Field: Unknown Mean and Variance of a Gaussian I

We enforce that the posterior approximation factorizes Q(µ, τ) = Qµ(µ)Qτ (τ)

and solve for the optimal factors .

logQµ(µ) = EQτ
[log p(D, µ, τ)] + const. ,

logQτ (τ) = EQµ
[log p(D, µ, τ)] + const. ,

This gives the following optimal factors given that the other factor is fixed :

Qµ(µ) = N (µ|x , λ−1) , Qτ (τ) = Gamma(τ |a, b)

Qτ (τ) = ba
1

Γ(a)
τ a−1 exp{−bτ} ,

where λ = NEQτ
[τ ] = Na/b, a = N/2 and b = 1/2(Nλ−1 + S).

We iteratively optimize Qµ and Qτ until convergence .
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Mean Field: Unknown Mean and Variance of a Gaussian II

µ

τ

(a)

−1 0 1
0

1

2

µ

τ

(b)

−1 0 1
0

1

2

µ

τ

(c)

−1 0 1
0

1

2

µ

τ

(d)

−1 0 1
0

1

2
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Variational Inference: Local Methods I
Bounds over specific factors can be useful to deal with intractable expectations .

Consider the logistic function :

σ(z) =
1

1 + e−z
, log σ(z) = log

(
1 + e−z

)
=

z

2
− log

(
e

z
2 + e−

z
2

)
.

The function f (z) = − log
(
e

z
2 + e−

z
2

)
is convex in terms of z2. We can hence

approximate this function by a tangent line at ξ which is a global lower bound :

f (z) ≥ f (ξ) +
df (z)

d(z2)

∣∣∣∣
z=ξ

(z2 − ξ2) = −ξ
2

+ log σ(ξ) + λ(ξ)(z2 − ξ2) .

which is tight for z2 = ξ2 and gives

σ(z) ≥ σ(ξ) exp

{
z − ξ

2
− λ(ξ)(z2 − ξ2)

}
= σ(z , ξ) , λ(ξ) =

1

2ξ

[
σ(ξ)− 1

2

]
.

The lower bound is Gaussian with respect to z .

Can be maximized with respect to ξ to find the best fit .
22



Variational Inference: Local Methods II

ξ= 2.5

−ξ ξ−6 0 6
0

0.5

1

A tangent line is a global lower bound of any convex function.

The bound on the right is tight for z = ξ and z = −ξ (green dashed lines).
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Variational Inference: Considerations

The VI approximation Q tends to be more compact than the exact p.

Takes into account global properties of the exact distribution, unlike the
Laplace approximation.

Independent of the basis used . The KL divergence is invariant to any
variable transformation.

Computing each factor given that the others are kept fixed is a
convex optimization problem .

However, the global optimization problem need not be convex and
there could be local optima .

Only suitable when the the logarithm of p is tractable .

If this is not the case, sometimes further approximations can be made.
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Introduction

EP can be used to approximate an un-normalized distribution by a simpler

parametric distribution , in a similar way as VI.

Also based on the minimization of the KL-divergence, but in its direct way

KL(p||Q) instead of KL(Q||p) (the one used by VI).

EP is a generalization of LBP to GM which may contain continuous variables.

The distribution Q is restricted to belong to a family of probability distributions
that is closed under the product operation . This is the exponential family :

Q(z) = exp
(
ηTu(z)− g(η)

)
, g(η) = log

∫
exp

(
ηTu(z)

)
dz

where η is a vector of natural parameters of Q, u(z) are the

sufficient statistics and g(η) is a log normalizer .
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Examples of Distributions in the Exponential Family

Gaussian N (z |µ, σ2) = 1/
√

2πσ2 exp
{
− 1

2σ2 (z − µ)2
}

:

η = (µ/σ2,−1/(2σ2))T , u(z) = (z , z2)T , g(η) =
1

2
log

π

−η2
− η2

1

4η2
.

Multinomial for a single observation p(z) =
∏M

k=1 µ
zk
k :

η = (logµ1, . . . , logµM)T , u(z) = z , g(η) = 0 .

Bernoulli Bern(z |µ) = µz(1− µ)1−z :

η = log

(
µ

1− µ

)
, u(z) = z , g(η) = log(1 + exp(η)) .

Most of the simplest parametric distributions belong to the exponential family.
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KL Divergence Minimization

Consider any distribution p(z) and the KL-divergence between p and Q :

KL(p||Q) = −
∫

p(z) log

{Q(z)

p(z)

}
dz = g(η)− ηTEp[u(z)] + const .

To minimize KL(p||Q) with respect to the natural parameters η we do

∂KL(p||Q)

∂η
= 0⇐⇒ ∂g(η)

∂η
= Ep[u(z)] ,

∂g(η)

∂η
= EQ[u(z)] .

Minimizing KL(p||Q) is equivalent to matching expected sufficient statistics .

If Q is Gaussian, then we have to match EQ[z] = Ep[z] and EQ[zzT] = Ep[zzT].

This result is systematically exploited in EP to carry out approximate inference .

Problem : computing Ep[u(z)] is intractable!
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Factorization of the Joint Distribution

In many GMs (mainly those that assume i.i.d. data) the joint distribution

p(z, e) of the observed variables e and the latent variables z factorizes as

p(z, e) =
∏

i

fi (z) ,

where each factor f1 depends on z or a subset of these variables.

The factors fi can be produced by a likelihood or a prior for z.

Given p(z, e), the posterior for z is obtained after normalizing by p(e):

p(z|e) =
1

p(e)

∏

i

fi (z) , p(e) =

∫ ∏

i

fi (z)dz ,

5



The Approximation to the Joint Distribution
EP approximates p(z, e) using a product of simpler factors :

p(z, e) =
∏

i

fi (z) ≈
∏

i

f̃i (z) .

Each approximate factor f̃i approximates the corresponding exact factor fi .

The f̃i are in an exponential family but need not be normalized . For example,

the f̃i can be unnormalized Gaussians.

Because the exponential family is closed under the product operation , the

product of the f̃i (z) has a simple form and can be easily normalized :

p(z|e) =
1

p(e)

∏

i

fi (z) ≈ 1

Z

∏

i

f̃i (z) = Q(z) ,

where Z =
∫ ∏

i f̃i (z)dz approximates p(e) , the model evidence. Importantly, Q
has the same form as the approximate factors f̃i .

6



Updating the Approximate Factors I

How do we adjust the parameters of the approximate factors f̃i?

Ideally, we would like to minimize KL(p||Q) . However, this involves computing

averages with respect to the exact posterior which is intractable . EP minimizes

the KL divergence between fj and f̃j in the context of all the other approximate

factors f̃i , i 6= j . This ensures that f̃j is accurate where Q\j =
∏

i 6=j f̃i takes

large values .

To refine f̃j , we first remove it from Q: Q\j(z) ∝∏i 6=j f̃i (z) = Q(z)/f̃j(z) .

We then adjust f̃j so that the distributions

Qnew(z) ∝ f̃j(z)Q\j(z) and p̂(z) =
1

Zj
fj(z)Q\j(z) , Zj =

∫
fj(z)Q\j(z)dz ,

are as close as possible in terms of the KL divergence, where Q\j is kept fixed.

7



Updating the Approximate Factors II

First, we minimize KL(Z−1
j fj(z)Q\j(z)||Qnew(z)) with respect to Qnew.

Done by matching expected sufficient statistics between Qnew and 1/Zj fjQ\j .
For this, expectations with respect to 1/Zj fjQ\j must be tractable .

Then f̃j is updated using

f̃j(z) = Zj
Qnew(z)

Q\j(z)
, recall that Qnew ∝ f̃j(z)Q\j(z) ,

which ensures that f̃j(z)Q\j(z) and fj(z)Q\j(z) integrate the same .

Several passes are made trough the factors until they converge .

The model evidence is approximated by the normalizing constant of the

product of all the f̃i .

8



The Expectation Propagation Algorithm

Computes Q and an approximation to the model evidence.

1 Initialize Q and each f̃i to be uniform.
2 Repeat until convergence of the f̃i :

1 Choose a factor f̃j to refine.

2 Remove f̃j from Q by division Q\j = Q/f̃j .
3 Compute Zj and find Qnew by minimizing KL(p̂||Qnew).

4 Compute and store the new factor f̃j = ZjQnew/Q\j .
3 Evaluate the approximation to the model evidence:

p(e) ≈ Z =

∫ ∏

i

f̃j(z)dz .

A simplification is known as assumed density filtering (ADF).

In ADF only one pass is done for each factor (faster but less accurate).
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Expectation Propagation as a Message Passing Algorithm

EP is a generalization of LBP with approximate messages in a cluster graph,
often the Bethe cluster graph. If there is no approximation they are equivalent.

In LBP the messages are factors (the product of factors is another factor). EP
keeps messages consistent by projecting to the chosen exponential family.

The approximate messages sent in EP are the approximate factors f̃i .

z

...fi (z)i: fj (z)j:

δi→ z(z) = Proj(fi (z)Q\ i (z))/Q\ i (z)

∝ f̃i (z)

δz→ i (z) ∝ ∏
k≠ i

f̃k(z) ∝ Q\ i (z)

δz→ j (z) ∝ ∏
k≠ j

f̃k(z) ∝ Q\ j (z)

Node i sends a message f̃i to node z. This last node sends a message with Q\j to node j . At
convergence, the clusters are approximately calibrated and the product of the messages in node

z give Q. Note the division in the computations carried out at node i .

10



Expectation Propagation: Considerations

The minimization of the KL is done by moment matching .

EP may not converge and the f̃i may oscillate forever (same as in LBP).

Convergence can be improved by damping the EP updates .

As with loopy BP, the convergence points of EP can be shown to be
stationary points of a particular energy function which need not be

convex. There can be multiple convergence points of EP.

It is possible to design convergent versions of EP that directly attempt to
optimize the energy function. However, they are much more expensive and
most times EP converges successfully.

No need to replace all the factors in the joint distribution with
approximations . For example, if one factor is already in the exponential

family, the approximate factor is always the same and exact .

EP considers global aspects of p by approximately minimizing KL(p|Q).

11



EP Example: The Clutter Problem

We consider the problem of inferring the mean µ of a multivariate Gaussian

when the Gaussian observations are embedded in background Gaussian clutter .

In this problem z = µ and e are the observations x, which are generated from:

p(x|µ) = (1− w)N (x|µ, I) + wN (x|0, Ia) ,

where w = 0.5 is the proportion of clutter and a = 10.

The prior for µ is p(µ) = N (µ|0, Ib) with b = 100 (little informative).

x−5 0 5 10µ

xn
N
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Factorization of the Joint Distribution

The joint distribution of µ and the evidence e = {x1, . . . , xN} is

p(µ, e) = p(µ)
N∏

i=1

p(xi |µ) = f0(µ)
N∏

i=1

fi (µ) ,

a mixture of 2N terms. Computing p(µ|e) is intractable for large N.

We choose a parametric form for Q that belongs to the exponential family :

Q(µ) = N (µ|m, v I) , f̃i (µ) = s̃iN (µ|m̃i , ṽi I) ,

with parameters m, {m̃i}Ni=0, {s̃i}Ni=0, {ṽi}Ni=0 and v .

The f̃i are not densities and negative values for ṽi are valid.

f0 can be approximated exactly and the optimal choice for f̃0 is f̃0 = f0.

Once initialized, this term needs not be updated by EP anymore.
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Gaussian Identities I
The product and ratio of Gaussians is again Gaussian .

N (µ1,Σ1) · N (µ2,Σ2) = CN (µ,Σ) ,

Σ = (Σ−1
1 + Σ−1

2 )−1 , µ = Σ
(
Σ−1

1 µ1 + Σ−1
2 µ2

)
,

C =

√
|Σ|

(2π)d |Σ1||Σ2|
exp

{
−1

2

(
µT

1 Σ
−1
1 µ1 + µT

2 Σ
−1
2 µ2 − µTΣ−1µ

)}
.

N (µ1,Σ1)/N (µ2,Σ2) = CN (µ,Σ) ,

Σ = (Σ−1
1 −Σ−1

2 )−1 , µ = Σ
(
Σ−1

1 µ1 −Σ−1
2 µ2

)
,

C =

√
|Σ||Σ2|(2π)d

|Σ1|
exp

{
−1

2

(
µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 − µTΣ−1µ

)}
.

14



Gaussian Identities II

Let f (x) be an arbitrary factor of x and let

Z =

∫
t(x)N (x|µ,Σ) , p̂(x) =

1

Z
t(x)N (x|µ,Σ) ,

Then, we have that

Ep̂[x] = µ + Σ
∂ logZ

∂µ
,

Ep̂[xxT]− Ep̂[x]Ep̂[x]T = Σ−Σ

(
∂ logZ

∂µ

(
∂ logZ

∂µ

)T

− 2
∂ logZ

∂Σ

)
Σ .

These expressions are very useful to find the parameters of Qnew in EP.
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Initialization and Computation of Q\i

The f̃i are initialized to be non-informative , Q is also non-informative :

s̃i = (2πṽi )
D
2 , m̃i = 0 , ṽi →∞ , m = 0 , v = b , for i = 1, . . . ,N.

where we have used the Gaussian identities .

After refining f̃0, Q is equal to the prior p(µ).

The first step to refine f̃i with i = 1, . . . ,N, is to compute Q\i using

Q\i (µ) ∝ Q(µ)/f̃i (µ) ∝ N (µ|m\i , Iv\i ) ,

where we use the Gaussian identities again to get

m\i = v\i (mv−1 − m̃i ṽ
−1
i ) , (v\i )−1 = v−1 − ṽ−1

i .
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Computation of the New Posterior Qnew

The first step to update f̃i is to compute Zi :

Zi =

∫
fi (µ)Q\i (µ)dµ = (1− w)N (xi |m\i , (v\i + 1)I) + wN (xi |0, aI) .

which is obtained from the convolution of two Gaussians.

Next, we compute Qnew by finding the mean and the variance of fiQ\i :

mnew = m\i + ρi
v\i

v\i + 1
(xi −m) ,

vnew = v\i − ρi
(v\i )2

v\i + 1
+ ρi (1− ρi )

(v\i )2||xi −m\i ||2
D(v\i + 1)2

,

where we have used again the Gaussian identities and

ρi = 1− w

Zi
N (xi |0, aI)

can be interpreted as the probability of xi not being clutter .
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Update of the Approximate Factor f̃i

f̃i is updated to be equal to ZiQnew/Q\i :

(ṽi )
−1 = (vnew)−1 − (v\i )−1 ,

m̃i = ṽi
(
v−1

newmnew − (v\i )−1m\i
)
,

s̃i =
Zi

N (m̃i |m\i , (ṽi + v\i )I)
,

where we used the Gaussian identities .

At convergence we evaluate the approximation of the marginal likelihood :

p(e) ≈
∫ N∏

i=0

f̃i (µ)dµ = (2πvnew)D/2 exp(B/2)
N∏

i=0

[
s̃i (2πṽi )

−D/2
]
,

where B = mT
newv

−1
newmnew −

∑N
i=0 m̃

T(ṽi )
−1m̃ and we have used the

Gaussian identities .
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EP Example: Computed Approximations of fi

μ−5 0 5 10 μ−5 0 5 10

Approximation of specific factors fi when D = 1. Exact factor fi (µ) is shown in blue (a Gaussian
plus a constant), approximate factor f̃i (µ) is shown in red, and Q\i (µ) in green. The Gaussian

approximation is accurate in regions of high posterior probability as estimated by Q\i .
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EP Example: Comparison with VI and Laplace

ep

vblaplace

Posterior mean

FLOPS

E
rr

or

10
4

10
6

10
−5

10
0

ep

vb

laplace

Evidence

FLOPS

E
rr

or

10
4

10
6

10
−204

10
−202

10
−200

Comparison of EP with Laplace’s method and Variational Inference (mean field) on the clutter
problem. Accuracy is measured in absolute difference from the true mean and the true integral.

Cost is measured in FLOPS (floating point operations).
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