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Introduction

Linear regression problems are under-determined when we
have the same or more attributes than observations (n < d).

y=Xw+e, e~N(01I57%).
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A typical regularization assumes sparsity in w, i.e., most
coefficients are equal to zero (Johnstone & Titterington, 2009).
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Induction under the sparsity assumption

Introduced by setting a sparse enforcing prior for w, e.g.,
Laplace, Student’s T, Horseshoe or spike-and-slab.
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is the Strawderman-Berger prior which has a closed form
convolution with the Gaussian (Strawderman, 1971; Berger, 1980).



Shrinkage analysis

© 7 —— Discrete Mixture
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+ =+ Laplace

Assume that 02 = 1, X = I and define
tij = 1/(1+ A3). Then the posterior

mean for w; is (1 — k;)y;, where x; is
a random shrinkage coefficient. -

Probability Density

The discrete mixture is very convenient for sparse induction and
can be considered as a gold standard (Carvalho et al., 2009).



Multi-task learning

There may be several learning tasks available for induction.

Single-Task Learning
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Multi-task Learning
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Multi-task methods try to exploit similarities among tasks.
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Typical hypothesis under the sparsity assumption

Tasks share relevant and irrelevant features.
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This is the assumption made in, e.g., (Herndndez-Lobato et al.,
2010; Jebara, 2004; Obozinski et al., 2009; Vogt & Roth, 2010; Xiong
et al., 2007; Argyriou et al., 2007).
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A more reasonable scenario
Most tasks share relevant and irrelevant features, but there

are a few outlier tasks and a few outlier features.
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How can we account for all this?

» Back to Experiments
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Robust prior distribution for W (I)

We
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introduce the following set of binary latent variables:

Indicates whether feature 7 is an outlier (z; = 1) or not (z; = 0). If it is
an outlier it can be independently relevant or irrelevant for each task.
Indicates whether task k is an outlier (wx = 1) or not (wy = 0). If it is
an outlier it can have specific relevant and irrelevant features for
prediction.

Indicates whether the non-outlier feature 7 is relevant (y; = 1) for
prediction or not (y; = 0) in all tasks that are not outliers, i.e., those
tasks for which wy = 0.

Indicates whether, given that task k is an outlier task, i.e., wy =1,
feature ¢ for that task is relevant (Tfk) = 1) or irrelevant (Ti(k) =0) for
prediction.

Indicates whether, given that feature 7 is an outlier feature, that
particular feature is relevant for prediction in task k (ngk) =1) or not

(n® = 0).

We summarize all these variables in Q = {z,w,~, {T® M {(n®™}1E ).



Robust prior distribution for W (II)

Relation of binary latent variables for the example:
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Robust prior distribution for W (I1I)
Given € the prior for W is:

HEN

R

where p(wgm |2) =

Outlier feature Not outlier feature
(k) k : (k) K ) 1— 1—2z;
(K)\ i 617717(; ) % (K)\ i 61*7}( ) (k)\7i Fyamels oK -
™ wz- 0 ™ ’LUi o s ’LUZ- o
Outlier task Not outlier task

(k)

Under this prior w; "’ is different from zero iff:

1. It corresponds to an outlier feature (z; = 1) relevant for task k (ngk) =1).

2. It does not correspond to an outlier feature (z; = 0), but it corresponds to

an outlier task (wy = 1) and the feature is relevant for that task (7; k) — =1).

3. It does not correspond to an outlier feature (z; = 0), nor an outlier task
(wg = 0), but the feature is relevant for prediction across tasks (v; = 1).
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Dirty multi-task feature selection model (DMFS)
Gaussian Likelihood

L N 0 Tofy), kL
wl(k) ~ RobustPrior(z;, wg, Vi, 1( ),nfk)) Vi, k.
Ll I )y W

~ Bernoulli(p,), Vi, p. ~ Beta(1,1),
: wg ~ Bernoulli(p,), Vk, pw ~ Beta(1,1),
TR Bernoulli(py), Vi, p~ ~ Beta(1,1),
ETi(k) ~ Bernoulli(p;), Vi,k,: i pr~ Beta(l,1),
nz(k) ~ Bernoulli(p,), Vi, k, py ~ Beta(1,1),

...................................................................................

Independence among variables Hyper—prlor for each prob

Task k& and dimension 7.
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Inference, prediction and relevant features
Define X = {X® M and p = (p2, pu, py, pr o)L

The posterior is:

p(Y,W,Q,p,0%|X)
p(Y|X)

p(W7 Q’ p’ 0-2|Y7 X) =

The predictive distribution for ynew given Xpew of task k is:

P(Ynew [Xnew) = Y / N Ynow Xneww ™, 1) )p(W, @, p, 0°| Y, X)dWdpdo® .
Q

The probability that wz(k) is different from zero is:

p(wz(k) #0Y, X) =p({zi =10n mw =1}U{z=0Nuw,=1nN Ti(k) =1}U
U{Z-L'IO Nwr=0N "= 1}|Y,X).
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Inference, prediction and relevant features
Define X = {X® M and p = (p2, pu, py, pr o)L

The posterior is:

p(Y,W,Q,p,0%|X)
p(Y|X)

p(W7 Q’ p’ 0-2|Y7 X) =

The predictive distribution for ynew given Xpew of task k is:

P(Ynew [Xnew) = Y / N Ynow Xneww ™, 1) )p(W, @, p, 0°| Y, X)dWdpdo® .
Q

The probability that wz(k) is different from zero is:

p(wz(k) #0Y, X) =p({zi =10n 77§k) =1}U{z=0Nuw,=1nN Ti(k) =1}U
U{Z-;IO Nwr=0N "= 1}|Y,X).

All these computations are intractable in practice!



Expectation propagation (I)

Approximates each factor in the joint p(Y, W, Q, p, %|X) with
an unormalized distribution inside an exponential family F.

F — Gaussians on W, Bernoullis on ©, I. Gammas on o and Betas on p.

Example of factors that need approximation:

. k
Exact Factor f{%) Exact Factor qf : Exact Factor h;

—f
NP |G Tw® 020)  pw® [z, wpv, 7™ 0™)  Bernoulli(zip-)

éq(qk)InvGam(o(Qm |&£lk) , B%k)) §§k)./\/’(w§k) |7h§k), 17§k)) 3;Beta(pz|as, b;)
N (e Tw B g, i) Bern(zi[p{"") .- Bern(zi f:)
—_———

Approx. Factor f,(lk) Approx. Factor §(k) Approx. Factor h;

i

Factors such as InvGam(U%k) |5,5) and Beta(p-|1,1) need not be approximated.



Expectation propagation (II)

» The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.
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Expectation propagation (II)

» The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.

» EP adjusts each gl?’“) by minimizing KL[gl(k) Q\<i:k>||g§’“) Q\@R)

where Q\(©5) is the distribution obtained from the ratio Q/ gg’“).



Expectation propagation (II)

» The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.

» EP adjusts each gl?’“) by minimizing KL[gl(k) Q\<i:k>||g§’“) Q\@R)

where Q\(©5) is the distribution obtained from the ratio Q/ gg’“).

» The minimization of KL[g® @\(:¥)[|g™ Q\(:9)] is done by
matching moments between the two prob. distributions.



Expectation propagation (II)

The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.

EP adjusts each gl?’“) by minimizing KL[gl(k) Q\<i:k>||g§’“) Q\@R)

where Q\(©5) is the distribution obtained from the ratio Q/ gg’“).

The minimization of KL[g® 9\(:#)[|g™ Q\(:5)] is done by
matching moments between the two prob. distributions.

Let Z; . be the normalization constant of ggk) Q\@F) ATl
moments can be obtained from the derivatives of log Z; .



Expectation propagation (II)

The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.

EP adjusts each gl?’“) by minimizing KL[gl(k) Q\<i:k>||g§’“) Q\@R)

where Q\(©5) is the distribution obtained from the ratio Q/ gg’“).

The minimization of KL[g® 9\(:#)[|g™ Q\(:5)] is done by
matching moments between the two prob. distributions.

Let Z; . be the normalization constant of ggk) Q\@F) ATl
moments can be obtained from the derivatives of log Z; .

log Z; ;, can be evaluated analytically because W(wgk)) has a
closed form convolution with the Gaussian distribution.



Related methods (I) (DM)

Dirty model: Jalali et al. (2010) assume W = P + Q. They
penalize P with the ¢; norm and Q with the ¢ 2 norm.

P Q w
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8 |
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Task k

Task k
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Assumes a few features jointly relevant for all tasks and some
features that may be specifically relevant only for some tasks.



Related methods (IT) (RMFL)

Robust multi-task feature learning: Gong et al. (2012) assume
W = P + Q. They penalize both PT and Q with the {1,2 norm.

Q

Task k

1234567891011

I
Triisereomnm
Task k

T

3 4 5 6 7 8 9 1011 12
Dimension i Dimension i

Assumes a few features jointly relevant for all tasks and some
outlier tasks with all features relevant for prediction.
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Related methods (ITI) (MFSpep)

Multi-task feature selection with dependencies: Common
correlations are shared in the feature selection process of each
task (Herndndez-Lobato & Hernéndez-Lobato, 2013).

w Correlations

:-d

Task k

Dimension i

123 456 7 8 9 101112
123 456 7 8 9 101112

12 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12
Dimension i Dimension i

The relevant features for each task may be different.



Experiments with synthetic data (I)

N =200, d = 2,000 and we use for W the pattern
shown. K =12, 0%, = 0.5, Vk and wgk) ~ Student(df = 5).

(k)

Method Test RMSE

Rec. Error Training Time

DMFS 0.73 +£0.04
DM 0.86%0.05
RMFL 0.90+0.05
MFSpge 0.77£0.06
MFS 0.81£0.06
STL 0.78£0.07

0.22+0.02 21.2940.2
0.504+0.03 150.35410.0
0.56+0.03 95.42+5.0
0.3240.04 2-10%+4 - 102
0.374+0.04 6.7+1.7
0.3340.06 4.76+0.4

MFS and STL are particular cases of DMFS.



Experiments with synthetic data (II)

Average posterior probabilities of the binary latent variables.
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Experiments with synthetic data (I1I)

Average probability that each coefficient is different from zero.

DMFS

INENEE|

61920 21 22 23 24 25 26

Dimension |

DM and RMFL shrink relevant coefficients (Herndndez-Lobato et al., 2013).

DM

Dimension |
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Reconstruction of gene regulatory networks

X contains N measurements of log mRNA: X ~ XWT + ¢2E.
To estimate W we create d tasks where X is given by X with
column k set to 0. The targets are the elements in that column.

DREAM 4 in silico challenge: we use GeneNetWeaver to
generate 100 networks with 100 genes and 90 measurements.
The edge j — i is predicted when p(w,gJ ) # 0) exceeds ¢ € [0, 1].

Method AUROC

MFS 0.73+0.05
DMFS 0.84+0.05
DM 0.76+0.06

MFSpep 0.79+0.06
RMFL 0.79+0.05
STL 0.721+0.04

Average AUROC of the winning solution of the challenge: 0.75.



Denoising of natural images (I)

We consider denoising the 256 x 256 house image when it has been

contaminated with Gaussian noise with o) equal to 25, 50 and 75.

We generate 62,001 blocks of 8 x 8 pixels and let each block be a
different task. We consider 64 groups of non-overlapping blocks.

y® = XEwF) 4 e where X*® is a Haar wavelet orthonormal basis.

Peak-to-signal ratio for each method.

Method Ok) = 25 O(k) = 50 Ok) = 75

MFS 25.89 23.89 23.87
DMF'S 30.67 27.21 25.23
DM 28.50 25.91 24.24
MFSpep 30.46 25.74 23.65
RMFL 28.35 25.56 24.09
STL 30.55 26.26 23.40

In these experiments N = 64, d = 64.

N



Denoising of natural images (II)

Denoising results for the proposed method, DMFS.

O(k) = 29

.O(k) =50

Denoised Image

Noisy Image

Ok) =19
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Anti-cancer drug sensitivity prediction (I)

The dataset of Barretina et al. (2012) has mRNA levels for 294
cell lines and their sensitivity level to 24 anti-cancer drugs.

We consider only the 1,000 genes with the largest IQR distance.

Breast  Melanoma
Lung small cell

Method RMSE

clors \ o DMFS 0.71540.050
parrss - Ve DM 0.70340.050
o (PR RMFL  0.703-+0.050
Hext e R MFSpep  0.70440.051
Ml mylond NS MFS 0.734£0.053

Lymphoma DLBCL

ey STL 0.743£0.051

Urinary tract  Liver

Extracted from (Barretina et al., 2012)

The differences with respect to STL and MFS are statistically significant. DM

reduces in these experiments to the group LASSO.
24 /28



Anti-cancer drug sensitivity prediction (II)

We compare DMFS and RMFL to identify outlier tasks.

Probability

AT

0 05 1

17-AAG —
AEW541
AZD0530 —|
AZD6244 —|
Erlotinib —
Irinotecan —|
L-685458 —

LBW242 —|=

Lapatinib —| ee—

Nilotinib —+
Nutlin-3 —+

PD-0325901

PD-0332991
PF2341066 —*

PHA-665752 —*

PLXA720 —| e

Paclitaxel —{+
Panobinostat —+
RAF265 —+
Sorafenib —+
TAE684 —{emmmmm
TKI258 —{=
Topotecan —*
7D-6474 )

Avg. prob. that each drug (task) is an outlier, as estimated by DMFS.

We evaluate the group LASSO on the non-outlier tasks (identified by DMFS
or RMFL) when outlier tasks are thrown away and when they are not.

RMSE of the group LASSO in the non-outlier tasks

Outlier Tasks Outlier Tasks Improvement
Not Removed Removed in RMSE x1073
DMFS 0.672+0.070 0.6681+0.072 3.64+1.25
RMFL  0.686+0.069 0.684+0.074 1.97+1.22

The first improvement is statistically significant. The second is not.

N
=1

N



Conclusions

» Most methods for multi-task feature selection assume jointly
relevant and irrelevant features, which may be too restrictive.

> A robust prior allows tasks with specific relevant and irrelevant
coefficients, and features to be arbitrarily relevant or irrelevant.

» Exact inference is infeasible under such a prior. However, a
quadrature-free expectation propagation algorithm is possible.

> Several experiments show gains in the prediction performance
and in the identification of relevant features for prediction.

» Our new prior is also useful to better understand the data since
it allows to identify outlier tasks and outlier features.
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