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Introduction

Linear regression problems are under-determined when we
have the same or more attributes than observations (n ≤ d).

y = Xw + ε , ε ∼ N (0, Iσ2) .

A typical regularization assumes sparsity in w, i.e., most
coefficients are equal to zero (Johnstone & Titterington, 2009).
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Induction under the sparsity assumption

Introduced by setting a sparse enforcing prior for w, e.g.,
Laplace, Student’s T, Horseshoe or spike-and-slab.
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Discrete-mixture prior: p(wi) = ρδ0 + (1− ρ)π(wi).

π (wi) =

∫
N (wi|0, λ2

i )
λi

(λ2
i + 1)

3
2

dλi =
1√
2π

(
1− |wi|

Φ(−|wi|)
N (wi|0, 1)

)
,

is the Strawderman-Berger prior which has a closed form

convolution with the Gaussian (Strawderman, 1971; Berger, 1980).
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Shrinkage analysis

Assume that σ2 = 1, X = I and define

κj = 1/(1 + λ2j ). Then the posterior

mean for wj is (1− κj)yj , where κj is

a random shrinkage coefficient.
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The discrete mixture is very convenient for sparse induction and
can be considered as a gold standard (Carvalho et al., 2009).
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Multi-task learning

There may be several learning tasks available for induction.
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Multi-task methods try to exploit similarities among tasks.
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Typical hypothesis under the sparsity assumption

Tasks share relevant and irrelevant features.
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This is the assumption made in, e.g., (Hernández-Lobato et al.,

2010; Jebara, 2004; Obozinski et al., 2009; Vogt & Roth, 2010; Xiong

et al., 2007; Argyriou et al., 2007).
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A more reasonable scenario
Most tasks share relevant and irrelevant features, but there
are a few outlier tasks and a few outlier features.
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How can we account for all this?

Back to Experiments
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Robust prior distribution for W (I)

We introduce the following set of binary latent variables:

zi Indicates whether feature i is an outlier (zi = 1) or not (zi = 0). If it is
an outlier it can be independently relevant or irrelevant for each task.

ωk Indicates whether task k is an outlier (ωk = 1) or not (ωk = 0). If it is
an outlier it can have specific relevant and irrelevant features for
prediction.

γi Indicates whether the non-outlier feature i is relevant (γi = 1) for
prediction or not (γi = 0) in all tasks that are not outliers, i.e., those
tasks for which ωk = 0.

τ
(k)
i Indicates whether, given that task k is an outlier task, i.e., ωk = 1,

feature i for that task is relevant (τ
(k)
i = 1) or irrelevant (τ

(k)
i = 0) for

prediction.

η
(k)
i Indicates whether, given that feature i is an outlier feature, that

particular feature is relevant for prediction in task k (η
(k)
i = 1) or not

(η
(k)
i = 0).

We summarize all these variables in Ω = {z,ω,γ, {τ (k)}Kk=1, {η(k)}Kk=1}.
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Robust prior distribution for W (II)

Relation of binary latent variables for the example:
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Robust prior distribution for W (III)

Given Ω the prior for W is:

p(W|Ω) =

d∏
i=1

K∏
k=1

p(w
(k)
i |Ω)

where p(w
(k)
i |Ω) =

{ Outlier feature︷ ︸︸ ︷
π
(
w

(k)
i

)η(k)
i

δ
1−η(k)

i
0

}zi{ Not outlier feature︷ ︸︸ ︷[
π
(
w

(k)
i

)τ(k)
i

δ
1−τ(k)

i
0︸ ︷︷ ︸

Outlier task

]ωk
[
π
(
w

(k)
i

)γi
δ
1−γi
0︸ ︷︷ ︸

Not outlier task

]1−ωk
}1−zi

Under this prior w
(k)
i is different from zero iff:

1. It corresponds to an outlier feature (zi = 1) relevant for task k (η
(k)
i = 1).

2. It does not correspond to an outlier feature (zi = 0), but it corresponds to

an outlier task (ωk = 1) and the feature is relevant for that task (τ
(k)
i = 1).

3. It does not correspond to an outlier feature (zi = 0), nor an outlier task
(ωk = 0), but the feature is relevant for prediction across tasks (γi = 1).
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Dirty multi-task feature selection model (DMFS)

y(k) ∼ N (X(k)w(k), 0, Iσ2
(k)) , ∀k .

w
(k)
i ∼ RobustPrior(zi, ωk, γi, τ

(k)
i , η

(k)
i ) , ∀i, k .

σ2
(k) ∼ InvGam(5, 5) , ∀k .

Gaussian Likelihood

Hyper-prior for the noise

zi ∼ Bernoulli(ρz) , ∀i , ρz ∼ Beta(1, 1) ,

ωk ∼ Bernoulli(ρω) , ∀k , ρω ∼ Beta(1, 1) ,

γi ∼ Bernoulli(ρω) , ∀i , ργ ∼ Beta(1, 1) ,

τ
(k)
i ∼ Bernoulli(ρτ ) , ∀i, k , ρτ ∼ Beta(1, 1) ,

η
(k)
i ∼ Bernoulli(ρη) , ∀i, k , ρη ∼ Beta(1, 1) ,

Hyper-prior for each prob.Independence among variables

Task k and dimension i.
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Inference, prediction and relevant features

Define X = {X(k)}Kk=1 and ρ = (ρz, ρω, ργ , ρτ , ρη)
T.

The posterior is:

p(W,Ω,ρ,σ2|Y,X ) =
p(Y,W,Ω,ρ,σ2|X )

p(Y|X )
.

The predictive distribution for ynew given xnew of task k is:

p(ynew|xnew) =
∑
Ω

∫
N (ynew|xT

neww(k), σ2
(k))p(W,Ω,ρ,σ2|Y,X )dWdρdσ2 .

The probability that w
(k)
i is different from zero is:

p(w
(k)
i 6= 0|Y,X ) = p({zi = 1 ∩ η(k)i = 1} ∪ {zi = 0 ∩ ωk = 1 ∩ τ (k)i = 1}∪

∪ {zi = 0 ∩ ωk = 0 ∩ γi = 1}|Y,X ).

All these computations are intractable in practice!
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Expectation propagation (I)
Approximates each factor in the joint p(Y,W,Ω,ρ,σ2|X ) with
an unormalized distribution inside an exponential family F .

F → Gaussians on W, Bernoullis on Ω, I. Gammas on σ2 and Betas on ρ.

Example of factors that need approximation:
Exact Factor f

(k)
n︷ ︸︸ ︷

N (y
(k)
n |(x

(k)
n )Tw(k), σ2

(k))

Exact Factor g
(k)
i︷ ︸︸ ︷

p(w
(k)
i |zi, ωk, γi, τ

(k)
i , η

(k)
i )

Exact Factor hi︷ ︸︸ ︷
Bernoulli(zi|ρz)

s̃
(k)
n InvGam(σ2

(k)
|ã(k)n , b̃

(k)
n ) s̃

(k)
i N (w

(k)
i |m̃

(k)
i , ṽ

(k)
i ) s̃iBeta(ρz |ãi, b̃i)

N ((x
(k)
n )Tw(k)|m̃(k)

n , ṽ
(k)
n )︸ ︷︷ ︸

Approx. Factor f̃
(k)
n

Bern(zi|ρ̃
(i,k)
z ) · · ·︸ ︷︷ ︸

Approx. Factor g̃
(k)
i

Bern(zi|p̃i)︸ ︷︷ ︸
Approx. Factor h̃i

Factors such as InvGam(σ2
(k)
|5, 5) and Beta(ρz |1, 1) need not be approximated.
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Expectation propagation (II)

I The approximate posterior Q is obtained by normalizing the
joint where exact factors are replaced by their approximation.

I EP adjusts each g̃
(k)
i by minimizing KL[g

(k)
i Q\(i,k)||g̃(k)i Q\(i,k)],

where Q\(i,k) is the distribution obtained from the ratio Q/g̃(k)i .

I The minimization of KL[g
(k)
i Q\(i,k)||g̃(k)i Q\(i,k)] is done by

matching moments between the two prob. distributions.

I Let Zi,k be the normalization constant of g
(k)
i Q\(i,k). All

moments can be obtained from the derivatives of logZi,k.

I logZi,k can be evaluated analytically because π(w
(k)
i ) has a

closed form convolution with the Gaussian distribution.
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Related methods (I) (DM)

Dirty model: Jalali et al. (2010) assume W = P + Q. They
penalize P with the `1 norm and Q with the `1,2 norm.
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Assumes a few features jointly relevant for all tasks and some
features that may be specifically relevant only for some tasks.
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Related methods (II) (RMFL)

Robust multi-task feature learning: Gong et al. (2012) assume
W = P + Q. They penalize both PT and Q with the `1,2 norm.
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Assumes a few features jointly relevant for all tasks and some
outlier tasks with all features relevant for prediction.
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Related methods (III) (MFSDep)

Multi-task feature selection with dependencies: Common
correlations are shared in the feature selection process of each
task (Hernández-Lobato & Hernández-Lobato, 2013).
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The relevant features for each task may be different.
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Experiments with synthetic data (I)

N = 200, d = 2, 000 and we use for W the pattern earlier

shown. K = 12, σ2
(k) = 0.5, ∀k and w

(k)
i ∼ Student(df = 5).

Method Test RMSE Rec. Error Training Time
DMFS 0.73 ±0.04 0.22±0.02 21.29±0.2
DM 0.86±0.05 0.50±0.03 150.35±10.0
RMFL 0.90±0.05 0.56±0.03 95.42±5.0
MFSDep 0.77±0.06 0.32±0.04 2 · 103±4 · 102

MFS 0.81±0.06 0.37±0.04 6.7±1.7
STL 0.78±0.07 0.33±0.06 4.76±0.4

MFS and STL are particular cases of DMFS.
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Experiments with synthetic data (II)

Average posterior probabilities of the binary latent variables.
Pr

ob
ab

ilit
y

1 2 3 4 5 6 7 8 9 10 11 12

0
0.

5
1

Pr
ob

ab
ilit

y

1 8 16 24 32

0
0.

5
1

Pr
ob

ab
ilit

y

1 8 16 24 32

0
0.

5
1

19 / 28



Experiments with synthetic data (III)
Average probability that each coefficient is different from zero.
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DM and RMFL shrink relevant coefficients (Hernández-Lobato et al., 2013).
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Reconstruction of gene regulatory networks

X contains N measurements of log mRNA: X ≈ XWT + σ2E.
To estimate W we create d tasks where X(k) is given by X with
column k set to 0. The targets are the elements in that column.

DREAM 4 in silico challenge: we use GeneNetWeaver to
generate 100 networks with 100 genes and 90 measurements.

The edge j → i is predicted when p(w
(j)
i 6= 0) exceeds ζ ∈ [0, 1].

Method AUROC

MFS 0.73±0.05
DMFS 0.84±0.05
DM 0.76±0.06
MFSDep 0.79±0.06
RMFL 0.79±0.05
STL 0.72±0.04

Average AUROC of the winning solution of the challenge: 0.75.
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Denoising of natural images (I)
We consider denoising the 256× 256 house image when it has been

contaminated with Gaussian noise with σ(k) equal to 25, 50 and 75.

We generate 62, 001 blocks of 8× 8 pixels and let each block be a

different task. We consider 64 groups of non-overlapping blocks.

y(k) = X(k)w(k) + ε(k), where X(k) is a Haar wavelet orthonormal basis.

Peak-to-signal ratio for each method.

Method σ(k) = 25 σ(k) = 50 σ(k) = 75

MFS 25.89 23.89 23.87
DMFS 30.67 27.21 25.23
DM 28.50 25.91 24.24
MFSDep 30.46 25.74 23.65
RMFL 28.35 25.56 24.09
STL 30.55 26.26 23.40

In these experiments N = 64, d = 64.
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Denoising of natural images (II)

Denoising results for the proposed method, DMFS.
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Anti-cancer drug sensitivity prediction (I)

The dataset of Barretina et al. (2012) has mRNA levels for 294
cell lines and their sensitivity level to 24 anti-cancer drugs.

We consider only the 1,000 genes with the largest IQR distance.
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32
32

Extracted from (Barretina et al., 2012)

Method RMSE

DMFS 0.715±0.050
DM 0.703±0.050
RMFL 0.703±0.050
MFSDep 0.704±0.051
MFS 0.734±0.053
STL 0.743±0.051

The differences with respect to STL and MFS are statistically significant. DM

reduces in these experiments to the group LASSO.
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Anti-cancer drug sensitivity prediction (II)

We compare DMFS and RMFL to identify outlier tasks.
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Avg. prob. that each drug (task) is an outlier, as estimated by DMFS.

We evaluate the group LASSO on the non-outlier tasks (identified by DMFS
or RMFL) when outlier tasks are thrown away and when they are not.

RMSE of the group LASSO in the non-outlier tasks

Outlier Tasks Outlier Tasks Improvement
Not Removed Removed in RMSE ×10−3

DMFS 0.672±0.070 0.668±0.072 3.64±1.25
RMFL 0.686±0.069 0.684±0.074 1.97±1.22

The first improvement is statistically significant. The second is not.
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Conclusions

I Most methods for multi-task feature selection assume jointly
relevant and irrelevant features, which may be too restrictive.

I A robust prior allows tasks with specific relevant and irrelevant
coefficients, and features to be arbitrarily relevant or irrelevant.

I Exact inference is infeasible under such a prior. However, a
quadrature-free expectation propagation algorithm is possible.

I Several experiments show gains in the prediction performance
and in the identification of relevant features for prediction.

I Our new prior is also useful to better understand the data since
it allows to identify outlier tasks and outlier features.
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