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Machine learning
Learn to generalize from examples

Data Learning Model

labeled

unlabeled

supervised

unsupervised

classification

clustering
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Numerical and structured data

Numerical data

Each data instance is a numerical feature vector.

Example: the age, body mass index, blood
pressure, ... of a patient.

x =


26

21.6
102
. . .


Structured data

Each instance is a structured object: a string, a tree or a graph.

Examples: French words, DNA sequences, XML documents,
molecules, social communities...

ACGGCTT
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Importance of metrics

Pairwise metric

Informally, a way of measuring the distance (or similarity) between objects.

Metrics are ubiquitous in machine learning

Get yourself a good metric and you’ve basically solved the problem.

Metrics are convenient proxies to manipulate complex objects.

Applications

Classification: k-Nearest Neighbors, Support Vector Machines...

Clustering: K -Means and its variants.

Information Retrieval / Ranking: search by query, image retrieval...

Data visualization in high dimensions.

. . .
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Importance of metrics
Application: classification

?
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Importance of metrics
Application: document retrieval

Query image

Most similar images
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Metric learning
Adapt the metric to the problem of interest

The notion of good metric is problem-dependent

Each problem has its own semantic notion of similarity, which is often
badly captured by standard metrics (e.g., Euclidean distance).

Solution: learn the metric from data

Basic idea: learn a metric that assigns small (resp. large) distance to pairs
of examples that are semantically similar (resp. dissimilar).

Metric Learning
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Metrics
Definitions

Definition (Distance function)

A distance over a set X is a pairwise function d : X × X → R which
satisfies the following properties ∀x , x ′, x ′′ ∈ X :

1 d(x , x ′) ≥ 0 (nonnegativity),

2 d(x , x ′) = 0 if and only if x = x ′ (identity of indiscernibles),

3 d(x , x ′) = d(x ′, x) (symmetry),

4 d(x , x ′′) ≤ d(x , x ′) + d(x ′, x ′′) (triangle inequality).

Definition (Similarity function)

A (dis)similarity function is a pairwise function K : X × X → R. K is
symmetric if ∀x , x ′ ∈ X , K (x , x ′) = K (x ′, x).
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Metrics
Examples

Minkowski distances

Minkowski distances are a family of distances induced by `p norms:

dp(x, x′) = ‖x− x′‖p =

(
d∑

i=1

|xi − x ′i |p
)1/p

,

for p ≥ 1. We can recover three widely used distances:

For p = 1, the Manhattan distance dman(x, x′) =
∑d

i=1 |xi − x ′i |.
For p = 2, the “ordinary” Euclidean distance:

deuc(x, x′) =

(
d∑

i=1

|xi − x ′i |2
)1/2

=
√

(x− x′)T (x− x′)

.
For p →∞, the Chebyshev distance dche(x, x′) = maxi |xi − x ′i |.
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Metrics
Examples

The Mahalanobis distance

The Mahalanobis (pseudo) distance is defined as follows:

dM(x, x′) =
√

(x− x′)TM(x− x′),

where M ∈ Rd×d is a symmetric PSD matrix.

The original term refers to the case where x and x′ are random vectors
from the same distribution with covariance matrix Σ, with M = Σ−1.
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Disgression: PSD matrices

Definition (PSD matrix)

A matrix M ∈ Rd×d is positive semi-definite
(PSD) if all its eigenvalues are nonnegative.
The cone of symmetric PSD d × d
real-valued matrices is denoted by Sd+. As a
shortcut for M ∈ Sd+ we use M � 0. 0
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Useful properties

If M � 0, then

xTMx ≥ 0 ∀x (as a linear operator, can be seen as nonnegative
scaling).

M = LTL for some matrix L.

(in fact each of these is sufficient for M � 0)
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Metrics
Examples

Cosine similarity

The cosine similarity measures the cosine of the angle between two
instances, and can be computed as

Kcos(x, x′) =
xTx′

‖x‖2‖x′‖2
.

It is widely used in data mining (better notion of similarity for
bag-of-words + efficiently computable for sparse vectors).

Bilinear similarity

The bilinear similarity is related to the cosine but does not include
normalization and is parameterized by a matrix M:

KM(x, x′) = xTMx′,

where M ∈ Rd×d is not required to be PSD nor symmetric.
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Metrics
Examples

String edit distance

The edit distance is the cost of the cheapest sequence of operations
(script) turning a string into another. Allowable operations are insertion,
deletion and substitution of symbols. Costs are gathered in a matrix C.

Properties

It is a proper distance if and only if C satisfies:

Cij ≥ 0, Cij = Cji , Cik ≤ Cij + Cjk ∀i , j , k.

The edit distance can be computed in O(mn) time by dynamic
programming (m, n length of the two strings).

Generalization to trees (quadratic or cubic complexity) and graphs
(NP-complete).
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Metrics
Examples

Example 1: Standard (Levenshtein) distance

C $ a b

$ 0 1 1
a 1 0 1
b 1 1 0

=⇒ edit distance between abb and aa

is 2 (needs at least two operations)

Example 2: Specific Cost Matrix

C $ a b

$ 0 2 10
a 2 0 4
b 10 4 0

=⇒ edit distance between abb and aa

is 10 (a→ $, b→ a, b→ a)

$: empty symbol, Σ: alphabet, C: (|Σ|+ 1)× (|Σ|+ 1) matrix with positive values.
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Convex optimization in a nutshell
Convexity of sets and functions

Definition (Convex set)

A convex set C contains line segment between any two points in the set.

x1, x2 ∈ C , 0 ≤ α ≤ 1 =⇒ αx1 + (1− α)x2 ∈ C

Definition (Convex function)

The function f : Rn → R is convex if

x1, x2 ∈ Rn, 0 ≤ α ≤ 1 =⇒ f (αx1+(1−α)x2) ≤ αf (x1)+(1−α)f (x2)

x1 x2

f(x1)

f(x2)
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Convex optimization in a nutshell
Convex functions

Useful fact

The function f : Rd → R is convex iff its Hessian matrix ∇2f (x) is PSD.

Example

A quadratic function f (x) = a + bTx + xTQx is convex iff Q is PSD.

A key property

If f : Rd → R is convex, then any local minimum of f is also a global
minimum of f .

global maximum

global minimum

local maximum

local minimum
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Convex optimization in a nutshell
General formulation and tractability

General formulation

min
x

f (x)

subject to x ∈ C,

where f is a convex function and C is a convex set.

Convex optimization is (generally) tractable

A global minimum can be found (up to the desired precision) in time
polynomial in the dimension and number of constraints.

What about nonconvex optimization?

In general, cannot guarantee global optimality of solution.

19 / 122



Convex optimization in a nutshell
Projected (sub)gradient descent

Basic algorithm when f is (sub)differentiable

1: Let x(0) ∈ C
2: for k = 0, 1, 2, . . . do

3: x(k+ 1
2

) = x(k)−α∇f (x(k)) for some α > 0 (gradient descent step)

4: x(k+1) =
∏
C(x(k+ 1

2
)) (projection step)

5: end for
demo for unconstrained case: http://goo.gl/7Q46EA

Euclidean projection

The Euclidean projection of x ∈ Rd onto C ⊆ Rd is defined as follows:∏
C(x) = arg minx′∈C ‖x− x′‖.

Convergence

With proper step size, this procedure converges to a local optimum (thus a
global optimum for convex optimization) and has a O(1/k) convergence
rate (or better).
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Metric learning in a nutshell

A hot research topic

Really started with a paper at NIPS 2002 (cited over 1,300 times).

Ever since, several papers each year in top conferences and journals.

Since 2010, tutorials and workshops at major machine learning (NIPS,
ICML) and computer vision (ICCV, ECCV) venues.

Common process

Metric learning

algorithm

Metric-based

algorithm

Data

sample

Learned

metric

Learned

predictor
Prediction
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Metric learning in a nutshell
Basic setup

Learning from side information

Must-link / cannot-link constraints:

S = {(xi , xj) : xi and xj should be similar},
D = {(xi , xj) : xi and xj should be dissimilar}.

Relative constraints:

R = {(xi , xj , xk) : xi should be more similar to xj than to xk}.

Geometric intuition: learn a projection of the data

Metric Learning

s1

s2

s3

s4

d1

d2s5
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Metric learning in a nutshell
Basic setup

General formulation

Given a metric, find its parameters M∗ as

M∗ = arg min
M

[`(M,S,D,R) + λR(M)] ,

where `(M,S,D,R) is a loss function that penalizes violated constraints,
R(M) is some regularizer on M and λ ≥ 0 is the regularization parameter.

Five key properties of algorithms

Metric Learning 

Fully

supervised

Weakly

supervised

Semi

supervised

Learning 

paradigm

Form of 

metric

Linear

Nonlinear

Local

Optimality of 

the solution

Local

Global

Scalability

w.r.t. 

dimension

w.r.t. number 

of examples

Dimensionality

reduction

Yes

No
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Metric learning in a nutshell
Applications

Applications in virtually any field

Whenever the notion of metric plays an important role. Fun examples of
applications include music recommendation, identity verification, cartoon
synthesis and assessing the efficacy of acupuncture, to name a few.

Main fields of application

Computer Vision: compare images or videos in ad-hoc
representations. Used in image classification, object/face recognition,
tracking, image annotation...

Information retrieval: rank documents by relevance.

Bioinformatics: compare structured objects such as DNA sequences
or temporal series.
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Metric learning in a nutshell
Scope of the tutorial

This tutorial

Metric learning as optimizing a parametric notion of distance or similarity
in a fully/weakly/semi supervised way. Illustrate the main techniques by
going through some representative algorithms.

Related topics (not covered)

Kernel learning: typically nonparametric (learn the Gram matrix).

Multiple Kernel Learning: learn to combine a set of predefined kernels.

Dimensionality reduction: often unsupervised, primary goal is really to
reduce data dimension.

26 / 122



Outline

1 Preliminaries
Metrics, basic notions of convex optimization

2 Metric Learning in a Nutshell
Basic formulation, type of constraints, key properties

3 Linear Metric Learning
Mahalanobis distance learning, similarity learning

4 Nonlinear Metric Learning
Kernelization of linear methods, nonlinear and local metric learning

5 Metric Learning for Other Settings
Multi-task, ranking, histogram data, semi-supervised, domain adaptation

6 Metric Learning for Structured Data
String and tree edit distance learning

7 Deriving Generalization Guarantees
Basic notions of statistical learning theory, the specifics of metric learning

8 Summary and Outlook

27 / 122



Mahalanobis distance learning
More on the Mahalanobis distance

Recap

The Mahalanobis (pseudo) distance is defined as follows:

dM(x, x′) =
√

(x− x′)TM(x− x′),

where M ∈ Rd×d is a symmetric PSD matrix.

Interpretation

Equivalent to a Euclidean distance after a linear projection L:

dM(x, x′) =
√

(x− x′)TM(x− x′) =
√

(x− x′)TLTL(x− x′)

=
√

(Lx− Lx′)T (Lx− Lx′).

If M has rank k , L ∈ Rk×d (dimensionality reduction).

Remark

For convenience, often use the squared distance (linear in M).
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Mahalanobis distance learning
MMC [Xing et al., 2002]

Formulation

max
M∈Rd×d

∑
(xi ,xj )∈D

dM(xi , xj)

s.t.
∑

(xi ,xj )∈S

d2
M(xi , xj) ≤ 1,

M � 0.

Remarks

Proposed for clustering with side information.

The problem is convex in M and always feasible (with M = 0).

Solved with a projected gradient descent algorithm.

For large d , the bottleneck is the projection on the set M � 0:
requires eigenvalue decomposition which scales in O(d3).

Only look at sum of distances.
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Mahalanobis distance learning
MMC [Xing et al., 2002]

Original data
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Mahalanobis distance learning
S&J [Schultz and Joachims, 2003]

Formulation

min
M

ξ≥0

‖M‖2
F

+ C
∑

i ,j ,k ξijk

s.t. d2
M(xi , xk)− d2

M(xi , xj) ≥ 1

− ξijk

∀(xi , xj , xk) ∈ R
M � 0,

where M = ATWA, where A is fixed and known and W diagonal.

Remarks

Regularization on M (keeps the metric “simple”, avoid overfitting).

One large-margin constraint per triplet.

Advantages:

more flexible constraints.
no PSD constraint to deal with.

Drawbacks:

how to choose A?
only learns a weighting of attributes.
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Mahalanobis distance learning
S&J [Schultz and Joachims, 2003]

Formulation with soft constraints

min
M,ξ≥0

‖M‖2
F + C

∑
i ,j ,k ξijk

s.t. d2
M(xi , xk)− d2
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Mahalanobis distance learning
S&J [Schultz and Joachims, 2003]

Formulation with soft constraints and PSD enforcement by design

min
W,ξ≥0

‖M‖2
F + C

∑
i ,j ,k ξijk

s.t. d2
M(xi , xk)− d2

M(xi , xj) ≥ 1 − ξijk ∀(xi , xj , xk) ∈ R
��

��XXXXM � 0,

where M = ATWA, where A is fixed and known and W diagonal.

Remarks

Regularization on M (keeps the metric “simple”, avoid overfitting).

One large-margin constraint per triplet that may be violated.

Advantages:

more flexible constraints.
no PSD constraint to deal with.

Drawbacks:

how to choose appropriate A?
only learns a weighting of the attributes defined by A. 31 / 122



Mahalanobis distance learning
NCA [Goldberger et al., 2004]

Main idea

Optimize leave-one-out error of a stochastic nearest neighbor classifier in
the projection space induced by dM. Use M = LTL and define the
probability of xj being the neighbor of xi as

pij =
exp(−‖Lxi − Lxj‖2

2)∑
l 6=i exp(−‖Lxi − Lxl‖2

2)
, pii = 0.

Formulation

max
L

∑
i pi ,

where pi =
∑

j :yj=yi
pij is the probability that xi is correctly classified.

Remarks

Fully supervised, tailored to 1NN classifier.

Can pick L rectangular for dimensionality reduction.

Nonconvex (thus subject to local optima).
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Mahalanobis distance learning
NCA [Goldberger et al., 2004]
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Mahalanobis distance learning
LMNN [Weinberger et al., 2005]

Main Idea

Define constraints tailored to k-NN in a local way: the k nearest neighbors
should be of same class (“target neighbors”), while examples of different
classes should be kept away (“impostors”):

S = {(xi , xj) : yi = yj and xj belongs to the k-neighborhood of xi},
R = {(xi , xj , xk) : (xi , xj) ∈ S, yi 6= yk}.
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Mahalanobis distance learning
LMNN [Weinberger et al., 2005]

Formulation

min
M∈Sd+,ξ≥0

(1− µ)
∑

(xi ,xj )∈S

d2
M(xi , xj) + µ

∑
i ,j ,k

ξijk

s.t. d2
M(xi , xk)− d2

M(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R,

where µ ∈ [0, 1] is a trade-off parameter.

Remarks

Minimizing the distances between target neighbors as a regularizer.

Advantages:

More flexible constraints (but require full supervision).
Convex, with a solver based on working set and subgradient descent.
Can deal with millions of constraints and very popular in practice.

Drawbacks:

Subject to overfitting in high dimension.
Sensitive to Euclidean distance performance.
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Mahalanobis distance learning
ITML [Davis et al., 2007]

Main idea

Use a regularizer that automatically enforces PSD, the LogDet divergence:

Dld(M,M0) = tr(MM−1
0 )− log det(MM−1

0 )− d

=
∑
i ,j

λi
θj

(vi
Tui )

2 −
∑
i

log

(
λi
θi

)
− d ,

where M = VΛVT and M0 = UΘUT is some PSD matrix (typically I or
Σ−1). Properties:

Convex (because determinant of PSD matrix is log-concave).

Finite if and only if range(M) = range(M0).

Implicitly makes M PSD and same rank as M0.

Information-theoretic interpretation: minimize KL divergence between
two Gaussians parameterized by M and M0.
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Mahalanobis distance learning
ITML [Davis et al., 2007]

Formulation

min
M∈Sd+,ξ≥0

Dld(M,M0) + λ
∑
i ,j

ξij

s.t. d2
M(xi , xj) ≤ u + ξij ∀(xi , xj) ∈ S

d2
M(xi , xj) ≥ v − ξij ∀(xi , xj) ∈ D,

where u, v , λ ≥ 0 are threshold and trade-off parameters.

Remarks

Soft must-link / cannot-link constraints.

Simple algorithm based on Bregman projections. Each iteration is
quadratic in d instead of cubic with projections on PSD cone.

Drawback: the choice of M0 can have an important influence on the
quality of the learned metric.
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Mahalanobis distance learning
Online learning

Large-scale metric learning

Consider the situation where the number of training constraints is
very large, say > 106 (this can happen even with a moderate number
of training examples, e.g. in LMNN).

Previous algorithms become huge, possibly intractable optimization
problems (gradient computation and/or projections become very
expensive).

One solution: online learning

In online learning, the algorithm receives training instances one at a
time and updates the current hypothesis at each step.

Performance typically inferior to that of batch algorithms, but allows
to tackle large-scale problems.
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Mahalanobis distance learning
Online learning

Setup, notations, definitions

Start with a hypothesis h1.

At each step t = 1, . . . ,T , the learner receives a training example
zt = (xt , yt) and suffers a loss `(ht , zt). Depending on the loss, it
generates a new hypothesis ht+1.

The goal is to find a low-regret hypothesis (how much worse we do
compared to the best hypothesis in hindsight):

R =
T∑
t=1

`(ht , zt)−
T∑
t=1

`(h∗, zt),

where h∗ is the best batch hypothesis on the T examples.

Ideally, have a regret bound of the form R ≤ O(T ).
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Mahalanobis distance learning
LEGO [Jain et al., 2008]

Formulation

At each step, receive (xt , x′t , yt) where yt is the target distance between xt
and x′t , and update as follows:

Mt+1 = arg min
M�0

Dld(M,Mt) + λ`(M, xt , x
′
t , yt),

where ` is a loss function (square loss, hinge loss...).

Remarks

It turns out that the above update has a closed-form solution which
maintains M � 0 automatically.

Can derive a regret bound.
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Linear similarity learning
Motivation

Drawbacks of Mahalanobis distance learning

Maintaining M � 0 is often costly, especially in high dimensions. If
the decomposition M = LTL is used, formulations become nonconvex.

Objects must have same dimension.

Distance properties can be useful (e.g., for fast neighbor search), but
restrictive. Evidence that our notion of (visual) similarity violates the
triangle inequality (example below).
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Linear similarity learning
OASIS [Chechik et al., 2009]

Recap

The bilinear similarity is defined as follows:

KM(x, x′) = xTMx′,

where M ∈ Rd×d is not required to be PSD nor symmetric. In general, it
satisfies none of the distance properties.

Formulation

At each step, receive triplet (xi , xj , xk) ∈ R and update as follows:

Mt = arg min
M,ξ≥0

1

2
‖M−Mt−1‖2

F + Cξ

s.t. 1− KM(xi , xj) + KM(xi , xk) ≤ ξ.
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Linear similarity learning
OASIS [Chechik et al., 2009]

Formulation

At each step, receive triplet (xi , xj , xk) ∈ R and update as follows:

Mt = arg min
M,ξ≥0

1

2
‖M−Mt−1‖2

F + Cξ

s.t. 1− KM(xi , xj) + KM(xi , xk) ≤ ξ.

Remarks

Passive-aggressive algorithm: no update if the triplet satisfies the
margin. Otherwise, simple closed-form update.

Scale to very large datasets with good generalization performance.
Evaluated on 2.3M training instances (image retrieval task).

Limitation: restricted to Frobenius norm (no fancy regularization).
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Linear similarity learning
OASIS [Chechik et al., 2009]
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Linear similarity learning
SLLC [Bellet et al., 2012b]

Main idea

Similarity learning to improve linear classification (instead of k-NN).

Based on the theory of learning with (ε, γ, τ)-good similarity functions
[Balcan et al., 2008]. Basic idea: use similarity as features (similarity map).

If the similarity satisfies some property, then there exists a sparse linear
classifier with small error in that space (more on this later).

E

F
G

H

A

B

C
D

K(x,A)

K(x,B)

K
(x

,E
)
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Linear similarity learning
SLLC [Bellet et al., 2012b]

Formulation

min
M∈Rd×d

1
n

n∑
i=1

1− yi
1

γ|R|
∑
xj∈R

yjKM(xi , xj)


+

+ β‖M‖2
F ,

where R is a set of reference points randomly selected from the training
sample, γ is the margin parameter, [·]+ is the hinge loss and β the
regularization parameter.

Remarks

Basically learn KM such that training examples are more similar on
average to reference points of same class than to those of opposite
class by a margin γ. Thus, more flexible constraints that are sufficient
for linear classification.

Leads to very sparse classifiers with error bounds (more on this later).

Drawback: multi-class setting requires several classifiers.
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Linear similarity learning
SLLC [Bellet et al., 2012b]
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Linear similarity learning
SLLC [Bellet et al., 2012b]
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Linear metric learning
Summary and limitation

Summary

Well-studied framework, often with convex formulations.

Can learn online (or using stochastic gradient) to scale to large
datasets.

Mahalanobis if distance properties are needed, otherwise more
flexibility with a similarity function.

Limitation

A linear metric is often unable to accurately capture the complexity of the
task (multimodal data, nonlinear class boundaries).
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Nonlinear metric learning
The big picture

Three approaches

1 Kernelization of linear methods.

2 Learning a nonlinear metric.

3 Learning several local linear metrics.
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Nonlinear metric learning
Kernelization of linear methods

Definition (Kernel function)

A symmetric similarity function K is a kernel if there exists a (possibly
implicit) mapping function φ : X → H from the instance space X to a
Hilbert space H such that K can be written as an inner product in H:

K (x , x ′) =
〈
φ(x), φ(x ′)

〉
.

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e.,

n∑
i=1

n∑
j=1

cicjK (xi , xj) ≥ 0

for all finite sequences of x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.
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Nonlinear metric learning
Kernelization of linear methods

Kernel trick

Let K (x , x ′) = 〈φ(x), φ(x ′)〉 a kernel. We have training data {xi}ni=1 and

we use φi
def
= φ(xi ). We want to compute a (squared) Mahalanobis

distance in kernel space:

d2
M(φi , φj) = (φi − φj)TM(φi − φj) = (φi − φj)TLTL(φi − φj).

Let Φ = [φ1, . . . , φn] and use the parameterization LT = ΦUT . Now:

d2
M(φi , φj) = (ki − kj)

TM(ki − kj),

where ki = ΦTφi = [K (x1, xi ), . . . ,K (xn, xi )]T and M is n × n.
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Nonlinear metric learning
Kernelization of linear methods

Now, why is this interesting?

Similar trick as in kernel SVM: take K to be some nonlinear kernel.
Say, the RBF kernel (inducing an infinite dimensional space):

Krbf (x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
.

We get a distance computed after a nonlinear, high-dimensional
projection of the data, but distance computations are done
inexpensively through the kernel.

To learn our distance, need to estimate n2 parameters: independent
of original and projection space dimensions!

Justified theoretically through a representer theorem
[Chatpatanasiri et al., 2010].
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Nonlinear metric learning
Kernelization of linear methods

Limitations

Some algorithms have been shown to be kernelizable, but in general
this is not trivial: a new formulation of the problem has to be derived,
where interface to the data is limited to inner products, and
sometimes a different implementation is necessary.

When the number of training examples n is large, learning n2

parameters may be intractable.

A solution: KPCA trick

Use KPCA (PCA in kernel space) to get a nonlinear but
low-dimensional projection of the data.

Then use unchanged algorithm!

Again, theoretically justified [Chatpatanasiri et al., 2010].
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Nonlinear metric learning
Learning a nonlinear metric: GB-LMNN [Kedem et al., 2012]

Main idea

Learn a nonlinear mapping φ to optimize the Euclidean distance
dφ(x, x′) = ‖φ(x)− φ(x′)‖2 in the transformed space.

Same objective as LMNN.

They use φ = φ0 + α
∑T

t=1 ht , where φ0 is the mapping learned by
linear LMNN, and h1, . . . , hT are gradient boosted regression trees of
limited depth p.

At iteration t, the tree that best approximate the negative gradient
−gt of the objective with respect to the current transformation φt−1:

ht(·) = arg min
h

n∑
i=1

(gt(xi ) + h(xi ))2 .

Intuitively, each tree divides the space into 2p regions, and instances
falling in the same region are translated by the same vector (thus
examples in different regions are translated in different directions).
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Nonlinear metric learning
Learning a nonlinear metric: GB-LMNN [Kedem et al., 2012]

Remarks

Dimensionality reduction can be achieved by learning trees with
low-dimensional output.

The objective function is nonconvex, so bad local minima are an
issue, although this is attenuated by initializing with linear LMNN.

In practice, GB-LMNN performs well and seems quite robust to
overfitting.

Drawback: distance evaluation may become expensive when a large
number of trees is needed.
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Nonlinear metric learning
Local metric learning

Motivation

Simple linear metrics perform well locally.

Since everything is linear, can keep formulation convex.

Pitfalls

How to split the space?

How to avoid a blow-up in number of parameters to learn, and avoid
overfitting?

How to make local metrics comparable?

How to generalize local metrics to new regions?

How to obtain a proper global metric?

. . .
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Nonlinear metric learning
Local metric learning: MM-LMNN [Weinberger and Saul, 2009]

Main idea

Extension of LMNN where data is first divided into C clusters and a
metric is learned for each cluster.

Learn the metrics in a coupled fashion, where the distance to a target
neighbor or an impostor x is measured under the local metric
associated with the cluster to which x belongs.

Formulation (one metric per class)

min
M1,...,MC∈Sd+,ξ≥0

(1− µ)
∑

(xi ,xj )∈S

d2
Myj

(xi , xj) + µ
∑
i ,j ,k

ξijk

s.t. d2
Myk

(xi , xk)− d2
Myj

(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R.
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Nonlinear metric learning
Local metric learning: MM-LMNN [Weinberger and Saul, 2009]

Formulation (one metric per class)

min
M1,...,MC∈Sd+,ξ≥0

(1− µ)
∑

(xi ,xj )∈S

d2
Myj

(xi , xj) + µ
∑
i ,j ,k

ξijk

s.t. d2
Myk

(xi , xk)− d2
Myj

(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R.

Remarks

Advantages:

The problem remains convex.
Can lead to significant improvement over LMNN.

Drawbacks:

Subject to important overfitting.
Computationally expensive as the number of metrics grows.
Change in metric between two neighboring regions can be very sharp.
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Nonlinear metric learning
Local metric learning: MM-LMNN [Weinberger and Saul, 2009]
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Nonlinear metric learning
Local metric learning: PLML [Wang et al., 2012]

Main idea

Learn a metric d2
Mi

for each training instance xi as a weighted
combination of metrics defined at anchor points u1, . . . ,um

throughout the space.

First, learn the weights based on manifold (smoothness) assumption.

Then, learn the anchor metrics.

Weight learning

min
W

‖X−WU‖2
F + λ1 tr(WG) + λ2 tr(WTLW)

s.t. Wibj ≥ 0, ∀i , bj
m∑
j=1

Wibj = 1, ∀i ,

where G holds distances between each training point and each anchor
point, and L is the Laplacian matrix constructed on the training instances.
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Nonlinear metric learning
Local metric learning: PLML [Wang et al., 2012]

Anchor metric learning

Similar to (MM)-LMNN.

Remarks

Advantages:

Both subproblems are convex.
A specific metric for each training point, while only learning a small
number of anchor metrics.
Smoothly varying metrics reduce overfitting.

Drawbacks:

Learning anchor metrics can still be expensive.
No discriminative information when learning the weights.
No principled way to get metric for a test point (in practice, use
weights of nearest neighbor).
Relies a lot on Euclidean distance.
Large number of hyperparameters.

63 / 122



Nonlinear metric learning
Local metric learning: PLML [Wang et al., 2012]

MM-LMNN PLML
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Nonlinear metric learning
Summary

Three ways of tackling the problem

1 Learn a nonlinear metric implicitly through kernelization. Elegant, but
choosing a relevant kernel might be difficult.

2 Learn a nonlinear form of metric. Powerful although it leads to
nonconvex formulations.

3 Learn multiple local metrics. Very expressive and retains convexity,
but must watch out for overfitting and high complexity.
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Metric learning for other settings
Multi-task learning: mt-LMNN [Parameswaran and Weinberger, 2010]

Multi-task learning

Given T (somehow related) tasks, learn in a coupled fashion to leverage
commonalities between tasks. When data is scarce, this can outperform
separate learning of each task.

Multi-task metric learning

Learn a metric for each task while sharing information between metrics.

Formulation

Learn a shared Mahalanobis metric dM0 as well as task-specific metrics
dM1 , . . . , dMt and define the metric for task t as

dt(x, x′) = (x− x′)T (M0 + Mt)(x− x′),

and learn as in LMNN but with the regularizer

γ0‖M0 − I‖2
F +

T∑
t=1

γt‖Mt‖2
F .
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Metric learning for other settings
Multi-task learning: mt-LMNN [Parameswaran and Weinberger, 2010]

Formulation

Learn a shared Mahalanobis metric dM0 as well as task-specific metrics
dM1 , . . . , dMt and define the metric for task t as

dt(x, x′) = (x− x′)T (M0 + Mt)(x− x′),

and learn as in LMNN but with the regularizer

γ0‖M0 − I‖2
F +

T∑
t=1

γt‖Mt‖2
F .

Remarks

When γ0 →∞, reduces to T independent LMNN formulations.

When γt>0 →∞, reduces to learning one metric on union of data.

In-between: trade-off between shared and task-specific component.

Remains convex. Works well when the strong assumption that all
tasks share the same common part is reasonable.
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Metric learning for other settings
Multi-task learning: mt-LMNN [Parameswaran and Weinberger, 2010]
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Metric learning for other settings
Metric learning to rank

Ranking

Produce a ranked list of examples where relevant ones are ranked higher
than irrelevant ones. Typically want to optimize a measure of ranking
quality, such as the Area Under the ROC Curve (AUC), Precision-at-k , or
Mean Average Precision (MAP).

Ranking with a metric

Let P the set of all permutations (i.e., possible rankings) over the training
set. Given a Mahalanobis distance d2

M and a query x, the predicted
ranking p ∈ P consists in sorting the instances by ascending d2

M(x, ·).
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Metric learning for other settings
Metric learning to rank: MLR [McFee and Lanckriet, 2010]

Formulation based on Structural SVM

min
M∈Sd+

‖M‖∗ + C
∑
i

ξi

s.t. 〈M, ψ(xi , pi )− ψ(xi , p)〉F ≥ ∆(pi , p)− ξi ∀i ∈ {1, . . . , n}, p ∈ P,

where

‖M‖∗ = tr(M) is the nuclear norm (induces sparsity in the spectrum),

〈A,B〉F =
∑

i ,j AijBij the Frobenius inner product,

ψ : R × P → Sd the feature encoding of an input-output pair (x, p),
designed such that the ranking p which maximizes 〈M, ψ(x, p)〉F is
the one given by ascending d2

M(x, ·),

∆(pi , p) ∈ [0, 1] the “margin” representing the loss of predicting
ranking p instead of the true ranking pi .
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Metric learning for other settings
Metric learning to rank: MLR [McFee and Lanckriet, 2010]

Big issue

The number of constraints is super-exponential in the number of training
instances!

Solution: use a cutting-plane algorithm

Basically, iteratively optimize over a small set of active constraints (adding
the most violated ones at each step) using subgradient descent. As it
turns out, the most violated constraints can be identified efficiently.

Remarks

Convex and can induce low-rank solutions.

However, requires projections onto the PSD cone.

Performs well in ranking tasks, in terms of the optimized ranking
measure.
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Metric learning for other settings
Metric learning for histogram data

Histogram data

Histograms are feature vectors that
lie on the probability simplex Sd :

Sd = {x ∈ Rd : x ≥ 0,
∑
i

xi = 1}.

Example

In areas dealing with complex objects, such as natural language
processing, computer vision or bioinformatics: an instance is often
represented as a bag of features, i.e., a vector containing the frequency of
each feature in the object.
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Metric learning for other settings
Metric learning for histogram data

Metrics for histogram data

Some specific metrics are more appropriate than say, the Euclidean
distance:

The χ2 distance χ2(x, x′) = 1
2

∑d
i=1

(xi−x ′i )2

xi+x ′i
(introduces a

normalization factor). It is a nonlinear proper distance.

The Earth Mover’s Distance (EMD), a more powerful cross-bin
measure (which is also a proper distance under some conditions).
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Metric learning for other settings
Metric learning for histogram data: χ2-LMNN [Kedem et al., 2012]

Formulation

Generalize the χ2 distance with a linear transformation:

χ2
L(x, x′) = χ2(Lx,Lx′),

where L ∈ Rr×d , with the constraint that L maps any x ∈ Sd onto Sr .
Can even get an unconstrained formulation by using a change of variable.

Remarks

Same objective function as LMNN, solved using a standard
subgradient descent procedure.

Nonconvex.

Although subject to local minima, significant improvement on
histogram data compared to standard histogram metrics and learned
Mahalanobis distance.

Exhibits promising results for dimensionality reduction (when r < d).
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Metric learning for other settings
Semi-supervised metric learning

Semi-supervised learning

When labeled data is scarce, it is useful to leverage the information
brought by (potentially inexpensive to obtain) unlabeled data (for instance
to help regularize the model).

Semi-supervised metric learning

In the context of metric learning, by unlabeled data we refer to training
examples for which we have no labels and that are not associated with any
constraints. In particular, we want to use the “unlabeled pairs”:

U = {(xi , xj) : i 6= j , (xi , xj) /∈ S ∪ D}.
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Metric learning for other settings
Semi-supervised metric learning: LRML [Hoi et al., 2008]

Main idea

Follow the principle of manifold regularization for semi-supervised
learning by resorting to a weight matrix W that encodes the similarity
between pairs of points:

Wij =

{
1 if xi ∈ N (xj) or xj ∈ N (xi )
0 otherwise

where N (xj) denotes the nearest neighbor list of xj based on the
Euclidean distance.

Based on W, they use Laplacian regularization:

1

2

n∑
i ,j=1

d2
M(xi , xj)Wij = tr(XLXTM),

where X is the data matrix and L = D−W is the Laplacian matrix
with D a diagonal matrix such that Dii =

∑
j Wij .
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Metric learning for other settings
Semi-supervised metric learning: LRML [Hoi et al., 2008]

Remarks

1

2

n∑
i ,j=1

d2
M(xi , xj)Wij = tr(XLXTM)

Intuition: favor a metric that is smooth over the adjacency graph
defined by W.

This regularizer is obviously convex and can be plugged in existing
metric learning algorithms.

Significantly outperforms supervised approaches when side
information is scarce.

Drawback: computing W can be expensive for large datasets.
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Metric learning for other settings
Metric learning for domain adaptation

Domain adaptation

Domain adaptation (DA) tries to tackle the case where the distribution of
the test data is different from that of the training data. Can work when
the two distributions are “not too different”.

Example: ham or spam?

Spam filters are learned on a set of ham/spam emails, but once deployed
on an actual user mailbox, the distribution of emails may be quite different.

Example: object recognition

For instance, systems learned on high-resolution images but applied to
webcam images.

Example: speech recognition

A speech recognition system must adapt to the user’s specific voice,
accent, local dialect, etc.
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Metric learning for other settings
Metric learning for domain adaptation

amazon.com consumer images

digital SLRcamera low-cost camera, flash

Taken from [Kulis et al., 2011]
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Metric learning for other settings
Metric learning for domain adaptation: DAML [Geng et al., 2011]

“Unsupervised” DA

The learner has access to labeled data of the source distribution but only
unlabeled data from the target distribution.

Classic strategy

Bring the source and target distribution closer!

Application to metric learning

Use the empirical Maximum Mean Discrepancy (MMD), a nonparametric
way of measuring the distribution difference between the source sample S
and the target sample T :

MMD(S ,T ) =

∥∥∥∥∥∥ 1

|S |

|S |∑
i=1

φ(xi )−
1

|T |

|T |∑
i=1

φ(x′i)

∥∥∥∥∥∥
2

H

,

where φ(·) is a nonlinear feature mapping function to H.
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Metric learning for other settings
Metric learning for domain adaptation: DAML [Geng et al., 2011]

Remarks

MMD(S ,T ) =

∥∥∥∥∥∥ 1

|S |

|S |∑
i=1

φ(xi )−
1

|T |

|T |∑
i=1

φ(x′i)

∥∥∥∥∥∥
2

H

The MMD can be computed efficiently using the kernel trick.

Thus this convex term can be used as regularization in kernelized
metric learning algorithms!

Intuitively, learn a transformation in kernel space s.t. the distance
performs well on source data while bringing distributions closer.

Performs well in practice.

Metric learning for DA has broader applicability than adapting a
specific classifier.
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Summary of the reviewed methods
Standard setting

MMC S&J NCA LMNN ITML LEGO

Year 2002 2003 2004 2005 2007 2008
Supervision Weak Weak Full Full Weak Weak

Form of metric Linear Linear Linear Linear Linear Linear
Scalability in n HII HII HII HHI HII HHH
Scalability in d III HHI HHI HII HHI HHI

Optimum Global Global Local Global Global Global
Dim. reduc No No Yes No Yes Yes
Regularizer None Frobenius None None LogDet LogDet

Source code Yes No Yes Yes Yes No
Other info — — For k-NN For k-NN — Online

OASIS SLLC GB-LMNN MM-LMNN PLML

Year 2009 2012 2012 2008 2012
Supervision Weak Full Full Full Weak

Form of metric Linear Linear Nonlinear Local Local
Scalability in n HHH HHI HHI HHI HHI
Scalability in d HHI HHI HHI HII III

Optimum Global Global Local Global Global
Dim. reduc No No Yes No No
Regularizer Frobenius Frobenius None None Manifold+Frob

Source code Yes No Yes Yes Yes
Other info Online Linear classif. — — —
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Summary of the reviewed methods
Other settings

mt-LMNN MLR χ2-LMNN LRML DAML

Year 2010 2010 2012 2008 2011
Supervision Full Full Full Semi Semi

Form of metric Linear Linear Nonlinear Linear Nonlinear
Scalability in n HHI HHI HHI HII HII
Scalability in d III III HHI III III

Optimum Global Global Local Global Global
Dim. reduc No Yes Yes No No
Regularizer Frobenius Nuclear norm None Laplacian MMD

Source code Yes Yes No Yes No
Setting Multi-task Ranking Histogram Semi-sup. Domain adapt.
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Metric learning for structured data
An important but difficult problem

Structured metrics are convenient...

Metrics for structured data (strings, trees, graphs) act like a proxy to
manipulate these complex objects: one can then use any metric-based
algorithm!

...but state-of-the-art is limited

Typically involves more complex procedures (structured metrics are
combinatorial by nature).

Often enough, structured objects are simply represented by a feature
vector (e.g., bag-of-words), even though this implies a loss of
structural information.

Most of the work on learning metrics that operate directly on
structured objects has focused on edit distance-based metrics.
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Metric learning for structured data
String edit distance

Definition (Alphabet and string)

An alphabet Σ is a finite nonempty set of symbols.

A string x is a finite sequence of symbols from Σ.

The empty string/symbol is denoted by $.

Σ∗ is the set of all finite strings that can be generated from Σ.

The length of a string x is denoted by |x|.

Definition (More formal definition of string edit distance)

Let C be a nonnegative (|Σ|+ 1)× (|Σ|+ 1) matrix giving the cost of the
following elementary edit operations: insertion, deletion and substitution
of a symbol, where symbols are taken from Σ ∪ {$}.
Given two strings x, x′ ∈ Σ∗, an edit script is a sequence of operations
that turns x into x′. The string edit distance between x and x′ is defined
as the cost of the cheapest edit script and can be computed in O(|x| · |x′|)
time by dynamic programming.
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Metric learning for structured data
Examples recap

Example 1: Standard (Levenshtein) distance

C $ a b

$ 0 1 1
a 1 0 1
b 1 1 0

=⇒ edit distance between abb and aa

is 2 (needs at least two operations)

Example 2: Specific Cost Matrix

C $ a b

$ 0 2 10
a 2 0 4
b 10 4 0

=⇒ edit distance between abb and aa

is 10 (a→ $, b→ a, b→ a)
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Metric learning for structured data
Tree/graph edit distance

Tree edit distance: two variants
1 when a node is deleted all its children are connected to its father.

Worst-case complexity: n3, where n is the number of nodes in the
largest tree.

2 insertions and deletions are restricted to the leaves of the tree. This
version can be computed in quadratic time.

Original tree after deletion of the <UL> 

node in the first variant

after deletion of the <UL> 

node in the second variant

Graph edit distance

There an extension to general graphs, but it is NP-hard to compute.
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Metric learning for structured data
Stochastic string edit distance learning

Stochastic edit distance

Edit distance learning is challenging because the optimal edit script
depends on the costs themselves.

Therefore, updating the costs may change the optimal edit script.

Instead consider stochastic version of ED:

The cost matrix defines a probability distribution over the edit
operations.
Define an edit similarity as the posterior probability pe(x′|x) that an
input string x is turned into an output string x′.
Corresponds to summing over all possible scripts.
Represent this stochastic process by a probabilistic model and do
parameter inference.
Maximize the expected log-likelihood of must-link pairs via an EM
iterative procedure.
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Metric learning for structured data
A stochastic memoryless transducer
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Metric learning for structured data
Stochastic string edit distance learning: [Oncina and Sebban, 2006]

Expectation Step

Given current edit probabilities for each operation, compute the frequency
of each operation. This takes the form of a probabilistic version of the
dynamic programing algorithm for the standard edit distance.

Maximization Step

Given current frequencies, compute the updated probabilities for each
operation by maximizing the likelihood of the training pairs under the
constraints:

∀u ∈ Σ,
∑

v∈Σ∪{$}

Cv |u +
∑
v∈Σ

Cv |$ = 1, with
∑
v∈Σ

Cv |$ + c(#) = 1,

where # is a termination symbol and c(#) the associated probability.
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Metric learning for structured data
Stochastic string edit distance learning: O&S [Oncina and Sebban, 2006]

Remarks

Advantages:

Elegant probabilistic framework.
Works reasonably well in practice in classification tasks, with the
advantages of a probabilistic models (e.g., data generation).
The same idea can be used to learn a stochastic tree edit distance (but
requires more complex steps).

Drawbacks:

Converges only to a local minimum in practice.
Costly as it requires to run the DP algorithm on each pair at each
iteration.
Not flexible: impossible to use cannot-link constraints or incorporate
background knowledge.
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Metric learning for structured data
Stochastic string edit distance learning: O&S [Oncina and Sebban, 2006]
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Metric learning for structured data
Large-margin edit similarity learning: GESL [Bellet et al., 2012a]

Main idea

Draw inspiration from the success stories of metric learning for feature
vectors, based on large-margin constraints and convex optimization.

Requires a key simplification of the problem: fix the edit script.
New notion of edit distance:

eC(x, x′) =
∑

0≤i ,j≤|Σ|

Ci ,j ×#i ,j(x, x′),

where #i ,j(x, x′) is the number of times the operation i → j appears
in the Levenshtein script.

eC is simply a linear function of the edit cost matrix!
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Metric learning for structured data
Large-margin edit similarity learning: GESL [Bellet et al., 2012a]

Formulation

min
C≥0,ξ≥0,B1≥0,B2≥0

∑
i ,j

ξij + β‖C‖2
F

s.t. eC(x, x′) ≥ B1 − ξij ∀(xi , xj) ∈ D
eC(x, x′) ≤ B2 + ξij ∀(xi , xj) ∈ S,
B1 − B2 = γ,

where γ is a margin parameter.
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Metric learning for structured data
Large-margin edit similarity learning: GESL [Bellet et al., 2012a]

Remarks

Advantages:

Convex, easier to solve than for Mahalanobis (no PSD constraint).
Does not suffer from limitations of stochastic edit distance learning.
Shown to outperform stochastic approach for k-NN and linear
classification.
Straightforward adaptation to trees! (use Levenshtein tree edit script)
Generalization guarantees (more on this later).

Drawbacks:

Less general than the proper edit distance.
Depends on the relevance of the Levenshtein script (although other
scripts could be used).
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Metric learning for structured data
Large-margin edit similarity learning: GESL [Bellet et al., 2012a]
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Deriving generalization guarantees
Basic notions of statistical learning theory

Input

A sample of NT labeled examples T = {zi = (xi , yi )}NT
i=1 independently

and identically distributed (i.i.d.) according to an unknown distribution P
over Z = X × Y. Simple case: binary classification, where Y = {−1, 1}.

Output

A hypothesis (model) h that is able to accurately predict the labels of
(unseen) examples drawn from P.

Definition (True risk)

Given a loss function ` measuring the agreement between the prediction
h(x) and the true label y , we define the true risk by:

R`(h) = Ez∼P [`(h, z)] .
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Deriving generalization guarantees
Basic notions of statistical learning theory

Definition (Empirical risk)

The empirical risk of an hypothesis h is the average loss suffered on the
training sample T :

R`T (h) =
1

NT

NT∑
i=1

`(h, zi ).

Generalization guarantees

Under some conditions, we may be able to bound the deviation between
the true risk and the empirical risk of an hypothesis, i.e., how much we
“trust” R`T (h):

Pr[|R`(h)− R`T (h)| > µ] ≤ δ. (PAC bounds)
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Deriving generalization guarantees
Basic notions of statistical learning theory

h1

h2

Occam’s razor principle

“Pick simplest explanation consistent with past data”.

In practice: a trade-off between the complexity of h and the
confidence we have in its generalization performance.

Regularized risk minimization

hT = arg min
h∈H

R`T (h) + λr(h),

where H is some hypothesis class (e.g., linear separators), r(h) is a
regularizer (usually some norm ‖h‖) that penalizes “complex” hypotheses,
and λ is the trade-off parameter.
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Deriving generalization guarantees
Loss functions for binary classification
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Deriving generalization guarantees
Back to metric learning

Metric learning as regularized risk minimization

Most metric learning formulations can be seen as regularized risk
minimization.

Example: S&J formulation

min
M�0,ξ≥0

‖M‖2
F + C

∑
i ,j ,k

ξijk

s.t. d2
M(xi , xk)− d2

M(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R

Equivalent formulation

min
M�0

‖M‖2
F + C

∑
i ,j ,k

[1− d2
M(xi , xk) + d2

M(xi , xj)]+,

where [·]+ = max(0, ·) is the hinge loss.
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Deriving generalization guarantees
Back to metric learning

Metric learning is a special, challenging problem

1 Work with pairs or triplets built from individual i.i.d. examples.
Violates the i.i.d. assumption at the pair/triplet level.

2 In fact, can be seen as some sort of binary classification problem on
pairs of examples. The label of individual examples does not matter:
we are mostly interested in the “pair label” (similar/dissimilar).

3 The question of generalization is two-fold!
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Deriving generalization guarantees
Back to metric learning

Underlying

distribution

Metric learning

algorithm

Metric-based

algorithm

Data

sample

Learned

metric

Learned

predictor
Prediction

Consistency guarantees for the learned metric

Generalization guarantees for the predictor that uses the metric
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Deriving generalization guarantees
Consistency guarantees for the learned metric: uniform stability [Jin et al., 2009]

Definition (Uniform stability for metric learning)

A learning algorithm has a uniform stability in κ/NT , where κ is a positive
constant, if

∀(T , z),∀i , sup
z1,z2

|`(AT , z1, z2)− `(AT i,z , z1, z2)| ≤ κ

NT
,

where AT is the metric learned by A from T , and T i ,z is the set obtained
by replacing zi ∈ T by a new example z .

Theorem (Uniform stability bound)

For any algorithm A with uniform stability κ/NT , with probability 1− δ
over the random sample T , we have:

R`(AT ) ≤ R`T (AT ) +
2κ

NT
+ (2κ+ B)

√
ln(2/δ)

2NT
,

where B is a problem-dependent constant.
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Deriving generalization guarantees
Consistency guarantees for the learned metric: uniform stability [Jin et al., 2009]

Applicability

Can essentially be applied to regularized risk minimization procedures that
are convex (need optimality of the solution) with smooth regularization
(typically the Frobenius norm).

Stability of SLLC

κ ≈ 1

γ
(

1

βγ
+

2

α
),

where α the proportion of reference points in the training sample.

Stability of GESL

κ ≈ 2(2 + α)W 2

β
,

where W is a bound on the string sizes.
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Deriving generalization guarantees
Consistency guarantees for the learned metric: robustness [Bellet and Habrard, 2012]

Sparse algorithms are not stable [Xu et al., 2012]

Rules out formulations that use the 1-norm (sparse entries) or the nuclear
norm (sparse spectrum). Need other framework.

Definition (Robustness for metric learning)

An algorithm A is (K , ε(·)) robust for K ∈ N and ε(·) : (Z × Z)NT → R if
Z can be partitioned into K disjoints sets, denoted by {Ci}Ki=1, such that
the following holds for all T ∈ ZNT :
∀(z1, z2) ∈ PT ,∀z , z ′ ∈ Z,∀i , j ∈ [K ] : if z1, z ∈ Ci and z2, z

′ ∈ Cj then

|`(APT
, z1, z2)− `(APT

, z , z ′)| ≤ ε(PT ),

where PT are the pairs built from T .
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Deriving generalization guarantees
Consistency guarantees for the learned metric: robustness [Bellet and Habrard, 2012]
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Deriving generalization guarantees
Consistency guarantees for the learned metric: robustness [Bellet and Habrard, 2012]

Theorem (Robustness bound)

If a learning algorithm A is (K , ε(·))-robust, then for any δ > 0, with
probability at least 1− δ we have:

|R`(APT
)− R`PT

(APT
)| ≤ ε(PT ) + 2B

√
2K ln 2 + 2 ln(1/δ)

NT
.

Applicability

Can essentially be applied to regularized risk minimization procedures that
are convex with various regularizers (typically bounded below by some
p-norm). Can make use of equivalence of norms. Less specific arguments.

Results for some general form

min
M�0

∑
(zi ,zj )∈PT

`(d2
M, zi , zj) + C‖M‖
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Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

Definition (Balcan et al., 2008)

A similarity function K ∈ [−1, 1] is an (ε, γ, τ)-good similarity function
if there exists an indicator function R(x) defining a set of “reasonable
points” such that the following conditions hold:

1 A 1− ε probability mass of examples (x , y) satisfy:

E(x ′,y ′)∼P
[
yy ′K (x , x ′)|R(x ′)

]
≥ γ.

2 Prx ′ [R(x ′)] ≥ τ. ε, γ, τ ∈ [0, 1]
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Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

A B

C DE

F

G H

A B C D E F G H
A 1 0.40 0.50 0.22 0.42 0.46 0.39 0.28
B 0.40 1 0.22 0.50 0.42 0.46 0.22 0.37
E 0.42 0.42 0.70 0.70 1 0.95 0.78 0.86

Margin γ 0.3277 0.3277 0.0063 0.0063 0.0554 0.0106 0.0552 0.0707
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Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

Strategy

If R is known, use K to map the examples to the space φ of “the similarity
scores with the reasonable points” (similarity map).

E

F
G

H

A

B

C
D

K(x,A)

K(x,B)

K
(x

,E
)

114 / 122



Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

A trivial linear classifier

By definition of (ε, γ, τ)-goodness, we have a linear classifier in φ that
achieves true risk ε at margin γ.

E

F
G

H

A

B

C
D

K(x,A)

K(x,B)

K
(x

,E
)
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Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

Theorem (Balcan et al., 2008)

If R is unknown, given K is (ε, γ, τ)-good and enough points to create a
similarity map, with high probability there exists a linear separator α that
has true risk ε at margin γ.

Question

Can we find this linear classifier in an efficient way?

Answer

Basically, yes: solve a Linear Program with 1-norm regularization. We get
a sparse linear classifier.
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Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: SLLC and GESL

GESL and SLLC have guarantees on the linear classifier

SLLC and GESL optimize (a stricter version of) the (ε, γ, τ)-goodness.
Their empirical/true risk are related to the empirical/true goodness.

We have shown risk bounds for the metric learned by these algorithms.

By the theory of (ε, γ, τ)-goodness, this implies guarantees for the
linear classifier using the metric!

Example: uniform stability bound for SLLC

With probability 1− δ, we have:

ε ≤ εT +
κ

NT
+ (2κ+ 1)

√
ln 1/δ

2NT
,

where εT is the empirical goodness on T .
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Summary and outlook
A quick advertisement before we conclude

Recent survey

All the topics, methods and references covered in this tutorial (and others)
are discussed at more length in my recent survey (joint work with Amaury
Habrard and Marc Sebban).

Reference - available from arXiv

Bellet, A., Habrard, A., and Sebban, M. (2013). A Survey on Metric
Learning for Feature Vectors and Structured Data. Technical report,
arXiv:1306.6709

Slides

I will also put the slides online. Check my webpage:
http://www-bcf.usc.edu/~bellet/
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Summary and outlook
Summary

Metric learning for numerical data

Has now reached a good level of maturity.

Can deal with large spectrum of settings in a scalable way:

online methods for large-scale metric learning.
tackle complex tasks with nonlinear metric learning.
difficult settings such as ranking, multi-task, domain adaptation.

Metric learning for structured data

Much less work.

Advances in metric learning for numerical data have not yet
propagated to structured data.

Recent methods take inspiration from these. Promising direction.
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Summary and outlook
Outlook

Interesting open questions

Scalability in both n and d .

More theoretical understanding. For instance, no link between quality
of the learned metric and generalization performance of k-NN.

What is unsupervised metric learning? In particular, what does it
mean for a metric to be good for clustering?

Take the structure of data into account (promising example of
histogram data).

Adapt metrics to changing data (lifelong learning, detect concept
drifts).

Learn richer metrics: notion of similarity is often multimodal. In
particular, there are several ways in which two objects can be seen as
similar, and there are several degrees of similarity (as opposed to the
binary view similar vs. dissimilar).
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Thanks a lot for your attention!
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