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Optimization

in machine learning:
• optimization is one of the central tools
• methodology:

• choose a model with some adjustable parameters
• choose a goodness of fit measure of the model to some data
• tune the parameters in order to maximize the goodness of fit

• examples: artificial neural networks, support vector
machines, etc.

in other fields:
• operational research: project planning, routing, scheduling,

etc.
• design: antenna, wings, engines, etc.
• etc.
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Easy or Hard?

is optimization computationally difficult?

the convex case is relatively easy:
• minx∈C J(x) with C convex and J convex
• polynomial algorithms (in general)
• why?

• a local minimum is global
• the local tangent hyperplane is a global lower bound

the non convex case is hard:
• multiple minima
• no local to global inference
• NP hard in some cases
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In machine learning

convex case:
• linear models with(out) regularization (ridge, lasso)
• kernel machines (SVM and friends)
• nonlinear projections (e.g., semi-define embedding)

non convex:
• artificial neural networks (such as multilayer perceptrons)
• vector quantization (a.k.a. prototype based clustering)
• general clustering
• optimization with respect to meta parameters:

• kernel parameters
• discrete parameters, e.g., feature selection

in this lecture, non convex problems:
• combinatorial optimization
• mixed optimization
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Particular cases

Pure combinatorial optimization problems:
• a solution spaceM: finite but (very) large
• an error measure E fromM to R
• goal: solve

M∗ = arg min
M∈M

E(M)

• example: graph clustering

Mixed problems:
• a solution spaceM× Rp

• an error measure E fromM× Rp to R
• goal: solve

(M∗,W ∗) = arg min
M∈M,W∈Rp

E(M,W )

• example: clustering in Rn
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Graph clustering

Goal: find an optimal clustering of a graph with N nodes in K
clusters

M: set of all partitions of {1, . . . ,N} in K classes (the
asymptotic behavior of |M| is roughly K N−1 for a fixed K
with N →∞ )
assignment matrix: a partition inM is described by N × K
matrix M such that Mik ∈ {0,1} and

∑K
k=1 Mik = 1

many error measures are available:
• Graph cut measures (node normalized, edge normalized,

etc.)
• Modularity
• etc.
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Graph clustering

original graph

four clusters
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Graph visualization

woman
bisexual man
heterosexual man

2386 persons:
unreadable

maximal modularity
clustering in 39
clusters
hierarchical display
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Vector quantization
N observations (xi)1≤i≤N in Rn

M: set of all partitions
quantization error:

E(M,W ) =
N∑

i=1

K∑
k=1

Mik‖xi − wk‖2

the “continuous” parameters are the prototypes wk ∈ Rn

the assignment matrix notation is equivalent to the
standard formulation

E(M,W ) =
N∑

i=1

‖xi − wk(i)‖2,

where k(i) is the index of the cluster to which xi is assigned
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Example
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Combinatorial optimization

a research field by itself
many problems are NP hard...

and one therefore relies on
heuristics or specialized approaches:
• relaxation methods
• branch and bound methods
• stochastic approaches:

• simulated annealing
• genetic algorithms

in this presentation: deterministic annealing
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Outline
Introduction

Mixed problems
Soft minimum
Computing the soft minimum
Evolution of β

Deterministic Annealing
Annealing
Maximum entropy
Phase transitions
Mass constrained deterministic annealing

Combinatorial problems
Expectation approximations
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Optimization strategies

mixed problem transformation

(M∗,W ∗) = arg min
M∈M,W∈Rp

E(M,W ),

remove the continuous part

min
M∈M,W∈Rp

E(M,W ) = min
M∈M

(
M 7→ min

W∈Rp
E(M,W )

)
or the combinatorial part

min
M∈M,W∈Rp

E(M,W ) = min
W∈Rp

(
W 7→ min

M∈M
E(M,W )

)

this is not alternate optimization
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Alternate optimization

elementary heuristics:
1. start with a random configuration M0 ∈M
2. compute W i = arg minW∈Rp E(M i−1,W )
3. compute M i = arg minM∈M E(M,W i)
4. go back to 2 until convergence

e.g., the k-means algorithm for vector quantization:
1. start with a random partition M0 ∈M
2. compute the optimal prototypes with

W i
k = 1∑N

j=1 M i−1
jk

∑N
j=1 M i−1

jk xj

3. compute the optimal partition with M i
jk = 1 if and only if

k = arg min1≤l≤K ‖xj −W i
l ‖2

4. go back to 2 until convergence

alternate optimization converges to a local minimum
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Combinatorial first

let consider the combinatorial first approach:

min
M∈M,W∈Rp

E(M,W ) = min
W∈Rp

(
W 7→ min

M∈M
E(M,W )

)
not attractive a priori, as W 7→ minM∈M E(M,W ):
• has no reason to be convex
• has no reason to be C1

vector quantization example:

F (W ) =
N∑

i=1

min
1≤k≤K

‖xi − wk‖2

is neither convex nor C1
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Example
Clustering in 2 clusters elements from R

x

back to the example
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Example

ln F (W )

multiple local minima and
singularities: minimizing
F (W ) is difficult
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Soft minimum

a soft minimum approximation of minM∈M E(M,W )

Fβ(W ) = −1
β

ln
∑

M∈M
exp(−βE(M,W ))

solves the regularity issue: if E(M, .) is C1, then Fβ(W ) is
also C1

if M∗(W ) is such that for all M 6= M∗(W ),
E(M,W ) > E(M∗(W ),W ), then

lim
β→∞

Fβ(W ) = E(M∗(W ),W ) = min
M∈M

E(M,W )
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Example

M

E(M,W )
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Example

β = 10−2

M

exp(−βE(M,W ))
exp(−βE(M∗,W ))
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Example

β = 10−1.5

M

exp(−βE(M,W ))
exp(−βE(M∗,W ))
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Example

β = 10−1

M
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Example

β = 10−0.5

M
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Example

β = 100

M
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Example

β = 100.5

M
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Example

β = 101

M
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Example
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Example

β = 102

M

exp(−βE(M,W ))
exp(−βE(M∗,W ))
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Example

Fβ

β

1.00e−02 3.16e−02 1.00e−01 3.16e−01 1.00e+00 3.16e+00 1.00e+01 3.16e+01 1.00e+02

21 / 107 F. Rossi Mixed problems



Discussion

positive aspects:
• if E(M,W ) is C1 with respect to W for all M, then Fβ is C1

• limβ→∞ Fβ(W ) = minM∈M E(M,W )
• ∀β > 0,

−1
β

ln |M| ≤ Fβ(W )− min
M∈M

E(M,W ) ≤ 0

• when β is close to 0, Fβ is generally easy to minimize

negative aspects:
• how to compute Fβ(W ) efficiently?
• how to solve minW∈Rp Fβ(W )?
• why would that work in practice?

philosophy: where does Fβ(W ) come from?
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Computing Fβ(W )

in general computing Fβ(W ) is intractable: exhaustive
calculation of E(M,W ) on the whole setM

a particular case: clustering with an additive cost, i.e.

E(M,W ) =
N∑

i=1

K∑
k=1

Mikeik (W ),

where M is an assignment matrix (and e.g.,
eik (W ) = ‖xi − wk‖2)
then

Fβ(W ) = −1
β

N∑
i=1

ln
K∑

k=1

exp(−βeik (W ))

computational cost O(NK ) (compared to ' K N−1)
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Proof sketch

let Zβ(W ) be the partition function given by

Zβ(W ) =
∑

M∈M

exp(−βE(M,W ))

assignments inM are independent and the sum can be
rewritten

Zβ(W ) =
∑

M1.∈CK

. . .
∑

MN.∈CK

exp(−βE(M,W )),

with CK = {(1,0, . . . ,0), . . . , (0, . . . ,0,1)}
then

Zβ(W ) =
N∏

i=1

∑
Mi.∈CK

exp(−β
∑

k

Mik eik (W ))
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Independence

additive cost corresponds to some form of conditional
independence
given the prototypes, observations are assigned
independently to their optimal clusters
in other words: the global optimal assignment is the
concatenation of the individual optimal assignment
this is what makes alternate optimization tractable in the
K-means despite its combinatorial aspect:

min
M∈M

N∑
i=1

K∑
k=1

Mik‖xi − wk‖2
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Minimizing Fβ(W )

assume E to be C1 with respect to W , then

∇Fβ(W ) =

∑
M∈M exp(−βE(M,W ))∇W E(M,W )∑

M∈M exp(−βE(M,W ))

at a minimum ∇Fβ(W ) = 0⇒ solve the equation or use
gradient descent
same calculation problem as for Fβ(W ): in general, an
exhaustive scan ofM is needed

if E is additive

∇Fβ(W ) =
N∑

i=1

∑K
k=1 exp(−βeik (W ))∇W eik (W )∑K

k=1 exp(−βeik (W ))

27 / 107 F. Rossi Mixed problems



Minimizing Fβ(W )

assume E to be C1 with respect to W , then

∇Fβ(W ) =

∑
M∈M exp(−βE(M,W ))∇W E(M,W )∑

M∈M exp(−βE(M,W ))

at a minimum ∇Fβ(W ) = 0⇒ solve the equation or use
gradient descent
same calculation problem as for Fβ(W ): in general, an
exhaustive scan ofM is needed
if E is additive

∇Fβ(W ) =
N∑

i=1

∑K
k=1 exp(−βeik (W ))∇W eik (W )∑K

k=1 exp(−βeik (W ))

27 / 107 F. Rossi Mixed problems



Fixed point scheme

a simple strategy to solve ∇Fβ(W ) = 0
starting from a random value of W :

1. compute

(expectation phase)

µik =
exp(−βeik (W ))∑K
l=1 exp(−βeil(W ))

2. keeping the µik constant, solve for W

(maximization phase)

N∑
i=1

K∑
k=1

µik∇W eik (W ) = 0

3. loop to 1 until convergence

generally converges to a minimum of Fβ(W ) (for a fixed β)
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Vector quantization

if eik (W ) = ‖xi − wk‖2 (vector quantization),

∇wk Fβ(W ) = 2
N∑

i=1

µik (W )(wk − xi),

with

µik (W ) =
exp(−β‖xi − wk‖2)∑K
l=1 exp(−β‖xi − wl‖2)

setting ∇Fβ(W ) = 0 leads to

wk =
1∑N

i=1 µik (W )

N∑
i=1

µik (W )xi
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Links with the K-means

if µil = δk(i)=l , we obtained the prototype update rule of the
K-means
in the K-means, we have

k(i) = arg min
1≤l≤K

‖xi − wk‖2

in deterministic annealing, we have

µik (W ) =
exp(−β‖xi − wk‖2)∑K
l=1 exp(−β‖xi − wl‖2)

this is a soft minimum version of the crisp rule of the
k-means
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Links with EM

isotropic Gaussian mixture with a unique and fixed
variance ε

pk (x |wk ) =
1

(2πε)p/2 e−
1
2ε‖xi−wk‖2

given the mixing coefficients δk , responsibilities are

P(xi ∈ Ck |xi ,W ) =
δke−

1
2ε‖xi−wk‖2∑K

l=1 δle−
1
2ε‖xi−wl‖2

identical update rules for W
β can be seen has an inverse variance: quantify the
uncertainty about the clustering results
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So far...

if E(M,W ) =
∑N

i=1
∑K

k=1 Mikeik (W ), one tries to reach
minM∈M,W∈Rp E(M,W ) using

Fβ(W ) = −1
β

N∑
i=1

ln
K∑

k=1

exp(−βeik (W ))

Fβ(W ) is smooth
a fixed point EM-like scheme can be used to minimize
Fβ(W ) for a fixed β

but:
• the k-means algorithm is also a EM like algorithm: it does

not reach a global optimum
• how handle to handle β →∞?
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Limit case β → 0
limit behavior of the EM scheme:
• µik = 1

K for all i and k (and W !)
• W is therefore a solution of

N∑
i=1

K∑
k=1

∇W eik (W ) = 0

• no iteration needed

vector quantization:
• we have

wk =
1
N

N∑
i=1

xi

• each prototype is the center of mass of the data: only one
cluster!

in general the case β → 0 is easy (unique minimum under
mild hypotheses)
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Example
Clustering in 2 clusters elements from R

x

back to the example
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simple soft minimum with
β = 10−1
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Example

more complex soft
minimum with β = 0.5
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Increasing β

when β increases, Fβ(W ) converges to minM∈M E(M,W )

optimizing Fβ(W ) becomes more and more complex:
• local minima
• rougher and rougher: Fβ(W ) remains C1 but with large

values for the gradient at some points

path following strategy (homotopy):
• for an increasing series (βl)l with β0 = 0
• initialize W ∗

0 = arg minW F0(W ) for β = 0 by solving∑N
i=1
∑K

k=1∇W eik (W ) = 0
• compute W ∗

l via the EM scheme for βl starting from W ∗
l−1

a similar strategy is used in interior point algorithms
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Example
Clustering in 2 classes of 6 elements from R

x
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Behavior of Fβ(W )

minM∈M E(M,W )
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Behavior of Fβ(W )

Fβ(W ), β = 10−2
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Behavior of Fβ(W )
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Behavior of Fβ(W )

Fβ(W ), β = 10−1.5
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Behavior of Fβ(W )

Fβ(W ), β = 10−1.25
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Behavior of Fβ(W )

Fβ(W ), β = 10−1
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Behavior of Fβ(W )

Fβ(W ), β = 1
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One step closer to the final algorithm

given an increasing series (βl)l with β0 = 0:
1. compute W ∗

0 such that
∑N

i=1
∑K

k=1∇W eik (W ∗
0 ) = 0

2. for l = 1 to L:
2.1 initialize W ∗l to W ∗l−1

2.2 compute µik =
exp(−βeik (W

∗
l ))∑K

l=1 exp(−βeil (W∗l ))

2.3 update W ∗l such that
∑N

i=1

∑K
k=1 µik∇W eik (W ∗l ) = 0

2.4 good back to 2.2 until convergence

3. use W ∗
L as an estimation of

arg minW∈Rp (minM∈M E(M,W ))

this is (up to some technical details) the deterministic
annealing algorithm for minimizing
E(M,W ) =

∑N
i=1
∑K

k=1 Mikeik (W )
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What’s next?

general topics:
• why the name annealing?
• why should that work? (and other philosophical issues)

specific topics:
• technical “details” (e.g., annealing schedule)
• generalization:

• non additive criteria
• general combinatorial problems
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Annealing

from Wikipedia:
Annealing is a heat treatment wherein a material is
altered, causing changes in its properties such as
strength and hardness. It is a process that produces
conditions by heating to above the re-crystallization
temperature and maintaining a suitable temperature,
and then cooling.

in our context, we’ll see that
• T = 1

kBβ
acts as a temperature and models some thermal

agitation
• E(W ,M) is the energy of a configuration the system while

Fβ(W ) corresponds to the free energy of the system at a
given temperature

• increasing β reduces the thermal agitation
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Simulated Annealing

a classical combinatorial optimization algorithm for
computing minM∈M E(M)

given an increasing series (βl)l
1. choose a random initial configuration M0
2. for l = 1 to L

2.1 take a small random step from Ml−1 to build Mc
l (e.g.,

change the cluster of an object)
2.2 if E(Mc

l ) < E(Ml−1) then set Ml = Mc
l

2.3 else set Ml = Mc
l with probability

exp(−βl(E(Mc
l )− E(Ml−1)))

2.4 else set Ml = Ml−1 in the other case

3. use ML as an estimation of arg minM∈M E(M)

naive vision:
• always accept improvement
• “thermal agitation” allows to escape local minima
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Statistical physics

consider a system with state spaceM
denote E(M) the energy of the system when in state M
at thermal equilibrium with the environment, the probability
for the system to be in state M is given by the Boltzmann
(Gibbs) distribution

PT (M) =
1

ZT
exp

(
−E(M)

kBT

)
with T the temperature, kB Boltzmann’s constant, and

ZT =
∑

M∈M
exp

(
−E(M)

kBT

)
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Back to annealing

physical analogy:
• maintain the system at thermal equilibrium:

• set a temperature
• wait for the system to settle at this temperature

• slowly decrease the temperature:
• works well in real systems (e.g., crystallization)
• allows the system to explore the state space

computer implementation:
• direct computation of PT (M) (or related quantities)
• sampling from PT (M)
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Simulated Annealing
Revisited

simulated annealing samples from PT (M)!
more precisely: the asymptotic distribution of Ml for a fixed
β is given by P1/kbβ

how?
• Metropolis-Hastings Markov Chain Monte Carlo
• principle:

• P is the target distribution
• Q(.|.) is the proposal distribution (sampling friendly)
• start with x t , get x ′ from Q(x |x t)
• set x t+1 to x ′ with probability

min
(

1,
P(x ′)Q(x t |x ′)
P(x t)Q(x ′|x t)

)
• keep x t+1 = x t when this fails
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Simulated Annealing
Revisited

in SA, Q is the random local perturbation
major feature of Metropolis-Hastings MCMC:

PT (M ′)
PT (M)

= exp
(
−E(M ′)− E(M)

kBT

)
ZT is not needed
underlying assumption, symmetric proposals

Q(x t |x ′) = Q(x ′|x t)

rationale:
• sampling directly from PT (M) for small T is difficult
• track likely area during cooling
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Mixed problems

Simulated Annealing applies to combinatorial problems
in mixed problems, this would means removing the
continuous part

min
M∈M,W∈Rp

E(M,W ) = min
M∈M

(
M 7→ min

W∈Rp
E(M,W )

)
in the vector quantization example

E(M) =
N∑

i=1

K∑
k=1

Mik

∥∥∥∥∥∥xi −
1∑N

j=1 Mjk

N∑
j=1

Mjkxj

∥∥∥∥∥∥
2

no obvious direct relation to the proposed algorithm
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Statistical physics

thermodynamic (free) energy: the useful energy available
in a system (a.k.a., the one that can be extracted to
produce work)
Helmholtz (free) energy is FT = U − TS, where U is the
internal energy of the system and S its entropy
one can shown that

FT = −kBT ln ZT

the natural evolution of a system is to reduce its free
energy
deterministic annealing mimicks the cooling process of a
system by tracking the evolution of the minimal free energy
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Gibbs distribution

still no use of PT ...

important property:
• f a function defined onM

EPT (f (M)) =
1

ZT

∑
M∈M

f (M)exp
(
−E(M)

kBT

)
• then

lim
T→0

EPT (f (M)) = f (M∗),

where M∗ = arg minM∈M E(M)

useful to track global information
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Membership functions

in the EM like phase, we have

µik =
exp(−βeik (W ))∑K
l=1 exp(−βeil(W ))

this does not come out of thin air:

µik = EPβ,W (Mik ) =
∑

M∈M
MikPβ,W (M)

µik is therefore the probability for xi to belong to cluster k
under the Gibbs distribution
at the limit β →∞, the µik peak to Dirac like membership
functions: they give the “optimal” partition
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Example
Clustering in 2 classes of 6 elements from R

x
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Membership functions
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Summary
two principles:
• physical systems tend to reach a state of minimal free

energy at a given temperature
• when the temperature is slowly decreased, a system tends

to reach a well organized state
annealing algorithms tend to reproduce this slow cooling
behavior
simulated annealing:
• uses Metropolis Hasting MCMC to sample the Gibbs

distribution
• easy to implement but needs a very slow cooling

deterministic annealing:
• direct minimization of the free energy
• computes expectations of global quantities with respect to

the Gibbs distribution
• aggressive cooling is possible, but ZT computation must be

tractable
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Maximum entropy

another interpretation/justification of DA
reformulation of the problem: find a probability distribution
onM which is “regular” and gives a low average error

in other words: find PW such that
•
∑

M∈M PW (M) = 1
•
∑

M∈M E(W ,M)PW (M) is small
• the entropy of PW , −

∑
M∈M ln PW (M)PW (M) is high

entropy plays a regularization role
this leads to the minimization of∑

M∈M
E(W ,M)PW (M) +

1
β

∑
M∈M

ln PW (M)PW (M)

where β sets the trade-off between fitting and regularity
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Maximum entropy

some calculations show that the minimum over PW is given
by

Pβ,W (M) =
1

Zβ,W
exp(−βE(M,W )),

with
Zβ,W =

∑
M∈M

exp(−βE(M,W )).

plugged back into the optimization criterion, we end up
with the soft minimum

Fβ(W ) = −1
β

ln
∑

M∈M
exp(−βE(M,W ))
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So far...

three derivations of the deterministic annealing:
• soft minimum
• thermodynamic inspired annealing
• maximum entropy principle

all of them boil down to two principles:
• replace the crisp optimization problem in theM space by a

soft one
• track the evolution of the solution when the crispness of the

approximation increases

now the technical details...
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Fixed point

remember the EM phase:

µik (W ) =
exp(−β‖xi − wk‖2)∑K
l=1 exp(−β‖xi − wl‖2)

wk =
1∑N

i=1 µik (W )

N∑
i=1

µik (W )xi

this is a fixed point method, i.e., W = Uβ(W ) for a data
dependent Uβ

the fixed point is generally stable, except during a phase
transition
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Phase transition

w1

w
2

2 4 6 8

2
4

6
8

1 2 3 7 7.5 8.25

x
P

ro
ba

bi
lit

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before phase transition

62 / 107 F. Rossi Deterministic Annealing
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Stability
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Stability

unstable fixed point:
• even during a phase transition, the exact previous fixed

point can remain a fixed point
• but we want the transition to take place: this is a new

cluster birth!
• fortunately, the previous fixed point is unstable during a

phase transition

modified EM phase:
1. initialize W ∗

l to W ∗
l−1 + ε

2. compute µik =
exp(−βeik (W∗l ))∑K
l=1 exp(−βeil (W∗l ))

3. update W ∗
l such that

∑N
i=1
∑K

k=1 µik∇W eik (W ∗
l ) = 0

4. good back to 2.2 until convergence

the noise is important to prevent missing phase transition
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Annealing strategy

neglecting symmetries, there are K − 1 phase transitions
for K clusters
tracking W ∗ between transitions is easy

trade-off:
• slow annealing: long running time but no transition is

missed
• fast annealing: quicker but with higher risk to miss a

transition
but critical temperatures can be computed:
• via a stability analysis of fixed points
• corresponds to a linear approximation of the fixed point

equation Uβ around a fixed point
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but critical temperatures can be computed:
• via a stability analysis of fixed points
• corresponds to a linear approximation of the fixed point

equation Uβ around a fixed point
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Critical temperatures

for vector quantization
first temperature:
• the fixed point stability related to the variance of the data
• the critical β is 1/2λmax where λmax is the largest

eigenvalue of the covariance matrix of the data

in general:
• the stability of the whole system is related to the stability of

each cluster
• the µik play the role of membership functions for each

cluster
• the critical β for cluster k is 1/2λk

max where λk
max is the

largest eigenvalue of∑
i

µik (xi − wk )(xi − wk)T
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A possible final algorithm

1. initialize W 1 = 1
N
∑N

i=1 xi

2. for l = 2 to K :
2.1 compute the critical βl
2.2 initialize W l to W l−1

2.3 for t values of β around βl

2.3.1 add some small noise to W l

2.3.2 compute µik =
exp(−β‖xi−W l

k‖
2)∑K

t=1 exp(−β‖xi−W l
t ‖

2)

2.3.3 compute W l
k = 1∑N

i=1 µik

∑N
i=1 µik xi

2.3.4 good back to 2.3.2 until convergence

3. use W K as an estimation of
arg minW∈Rp (minM∈M E(M,W )) and µik as the
corresponding M
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Computational cost

N observations in Rp and K clusters
prototype storage: Kp
µ matrix storage: NK
one EM iteration costs: O(NKp)
we need at most K − 1 full EM runs: O(NK 2p)
compared to the K-means:
• more storage
• no simple distance calculation tricks: all distances must be

computed
• roughly corresponds to K − 1 k-means, not taking into

account the number of distinct β considered during each
phase transition

neglecting the eigenvalue analysis (in O(p3))...
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Collapsed prototypes

when β → 0, only one cluster
waste of computational resources: K identical calculations
this is a general problem:
• each phase transition adds new clusters
• prior to that prototypes are collapsed
• but we need them to track cluster birth...

a related problem: uniform cluster weights
in a Gaussian mixture

P(xi ∈ Ck |xi ,W ) =
δke−

1
2ε‖xi−wk‖2∑K

l=1 δle−
1
2ε‖xi−wl‖2

prototypes are weighted by the mixing coefficients δ
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Mass constrained DA
we introduce prototype weights δk and plug them into the
soft minimum formulation

Fβ(W , δ) = −1
β

N∑
i=1

ln
K∑

k=1

δk exp(−βeik (W ))

Fβ is minimized under the constraint
∑K

k=1 δk = 1
this leads to

µik (W ) =
δk exp(−β‖xi − wk‖2)∑K
l=1 δl exp(−β‖xi − wl‖2)

δk =
N∑

i=1

µik (W )/N

wk = N
N∑

i=1

µik (W )xi/δk
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MCDA

increases the similarity with EM for Gaussian mixtures:
• exactly the same algorithm for a fixed β
• isotropic Gaussian mixture with variance 1

2β

however:
• the variance is generally a parameter in the Gaussian

mixtures
• different goals: minimal distortion versus maximum

likelihood
• no support for other distributions in DA
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Cluster birth monitoring

avoid wasting computational resources:
consider a cluster Ck with a prototype wk

prior a phase transition in Ck :
• duplicate wk into w ′k
• apply some noise to both prototypes
• split δk into δk

2 and δ′k
2

• apply the EM like algorithm and monitor ‖wk − w ′k‖
• accept the new cluster if ‖wk − w ′k‖ becomes “large”

two strategies:
• eigenvalue based analysis (costly, but quite accurate)
• opportunistic: always maintain duplicate prototypes and

promote diverging ones
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Final algorithm

1. initialize W 1 = 1
N
∑N

i=1 xi

2. for l = 2 to K :
2.1 compute the critical βl
2.2 initialize W l to W l−1

2.3 duplicate the prototype of the critical cluster and split the
associated weight

2.4 for t values of β around βl

2.4.1 add some small noise to W l

2.4.2 compute µik =
δk exp(−β‖xi−W l

k‖
2)∑K

t=1 δt exp(−β‖xi−W l
t ‖

2)

2.4.3 compute δk =
∑N

i=1 µik (W )/N
2.4.4 compute W l

k = N
δk

∑N
i=1 µik xi

2.4.5 good back to 2.4.2 until convergence

3. use W K as an estimation of
arg minW∈Rp (minM∈M E(M,W )) and µik as the
corresponding M
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Example
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Example

β

E
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Error evolution and cluster births
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Clusters
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Summary

deterministic annealing addresses combinatorial
optimization by smoothing the cost function and tracking
the evolution of the solution while the smoothing
progressively vanishes
motivated by:
• heuristic (soft minimum)
• statistical physics (Gibbs distribution)
• information theory (maximal entropy)

in practice:
• rather simple multiple EM like algorithm
• a bit tricky to implement (phase transition, noise injection,

etc.)
• excellent results (frequently better than those obtained by

K-means)
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Combinatorial only

the situation is quite different for a combinatorial problem

arg min
M∈M

E(M)

no soft minimum heuristic
no direct use of the Gibbs distribution PT ; one need to rely
on EPT (f (M)) for interesting f
calculation of PT is not tractable:
• tractability is related to independence
• if

E(M) =
∑
M1

. . .
∑
MD

(E(M1) + . . .+ E(MD))

then independent optimization can be done on each
variable...
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Graph clustering

a non oriented graph with N nodes and weight matrix A (Aij
is the weight of the connection between nodes i and j)
maximal modularity clustering:
• node degree ki =

∑N
j=1 Aij , total weight m = 1

2

∑
i,j Aij

• null model Pij =
ki kj
2m , Bij =

1
2m (Aij − Pij)

• assignment matrix M
• Modularity of the clustering

Mod(M) =
∑
i,j

∑
k

Mik Mjk Bij

difficulty: coupling MikMjk (non linearity)
in the sequel E(M) = −Mod(M)
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Strategy for DA

choose some interesting statistics:
• EPT (f (M))
• for instance EPT (Mik ) for clustering

compute an approximation of EPT (f (M)) at high
temperature T
track the evolution of the approximation while lowering T
use limT→0 EPT (f (M)) = f (arg minM∈M E(M)) to claim
that the approximation converges to the interesting limit
rationale: approximating EPT (f (M)) for a low T is probably
difficult, we use the path following strategy to ease the task
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Expectation approximation

computing

EPZ (f (Z )) =

∫
f (Z )dPZ

has many applications
for instance, in machine learning:
• performance evaluation (generalization error)
• EM for probabilistic models
• Bayesian approaches

two major numerical approaches:
• sampling
• variational approximation
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Sampling

(strong) law of large numbers

lim
N→∞

1
N

N∑
i=1

f (zi) =

∫
f (Z )dPZ

if the zi are independent samples of Z
many extensions, especially to dependent samples (slower
convergence)
MCMC methods: build a Markov chain with stationary
distribution PZ and take the average of f on a trajectory

applied to EPT (f (M)): this is simulated annealing!
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Variational approximation

main idea:
• the intractability of the calculation of EPZ (f (Z )) is induced

by the complexity of PZ
• let’s replace PZ by a simpler distribution QZ ...
• ...and EPZ (f (Z )) by EQZ (f (Z ))

calculus of variation:
• optimization over functional spaces
• in this context: choose an optimal QZ in a space of

probability measures Q with respect to a goodness of fit
criterion between PZ and QZ

probabilistic context:
• simple distributions: factorized distributions
• quality criterion: Kullback-Leibler divergence
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Variational approximation
assume Z = (Z1, . . . ,ZD) ∈ RD and f (Z ) =

∑D
i=1 fi(Zi)

for a general PZ , f structure cannot be exploited in
EPZ (f (Z ))

variational approximation
• choose Q a set of tractable distributions on R
• solve

Q∗ = arg min
Q=(Q1×...×QD)∈QD

KL (Q||PZ )

with
KL (Q||PZ ) = −

∫
ln

dPZ

dQ
dQ

• approximate EPZ (f (Z )) by

EQ∗ (f (Z )) =
D∑

i=1

EQ∗i (fi(Zi))
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Application to DA

general form: Pβ(M) = 1
Zβ

exp(−βE(M))

intractable because E(M) is not linear in M = (M1, . . . ,MD)

variational approximation:
• replace E by F (W ,M) defined by

F (W ,M) =
D∑

i=1

WiMi

• use for QW ,β

QW ,β =
1

ZW ,β
exp(−βF (W ,M))

• optimize W via KL (QW ,β ||Pβ)
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Fitting the approximation

a complex expectation calculation is replaced by a new
optimization problem
we have

KL
(
QW ,β||Pβ

)
= ln Zβ−ln ZW ,β+βEQW ,β (E(M)− F (W ,M))

tractable by factorization on F , except for Zβ
solved by ∇W KL

(
QW ,β||Pβ

)
= 0

• tractable because Zβ do not depend on W
• generally solved via a fixed point approach (EM like again)

similar to variational approximation in EM or Bayesian
methods

89 / 107 F. Rossi Combinatorial problems



Example

in the case of (graph) clustering, we use

F (W ,M) =
N∑

i=1

K∑
k=1

WikMik

a crucial (general) property is that, when i 6= j

EQW ,β

(
MikMjl

)
= EQW ,β (Mik )EQW ,β

(
Mjl
)

a (long and boring) series of equations leads to the general
mean field equations

∂EQW ,β (E(M))

∂Wjl
=

K∑
k=1

∂EQW ,β

(
Mjk
)

∂Wjl
Wjk , ∀j , l .
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Example

classical EM like scheme to solve the mean field
equations:

1. we have
EQW,β (Mik ) =

exp(−βWik )∑K
l=1 exp(−βWil)

2. keep EQW,β (Mik ) fixed and solve the simplified mean field
equations for W

3. update EQW,β (Mik ) based on the new W and loop on 2 until
convergence

in the graph clustering case

Wjk = 2
∑
i,j

EQW ,β (Mik )Bij
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Summary

deterministic annealing for combinatorial optimization
given an objective function E(M)
• choose a linear parametric approximation of E(M),

F (W ,M) with the associated distribution
QW ,β = 1

ZW,β
exp(−βF (W ,M))

• write the mean field equations, i.e.

∇W
(
− ln ZW ,β + βEQW,β (E(M)− F (W ,M))

)
= 0

• use a EM like algorithm to solve the equations:
• given W , compute EQW,β (Mik )
• given EQW,β (Mik ), solve the equations

back to our classical questions:
• why would that work?
• how to do that in practice?
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Physical interpretation

back to the (generalized) Helmholtz (free) energy

Fβ = U − S
β

the free energy can be generalized to any distribution Q on
the states, by

Fβ,Q = EQ (E(M))− H(Q)

β
,

where H(Q) = −
∑

M∈MQ(M) ln Q(M) is the entropy of Q
the Boltzmann-Gibbs distribution minimizes the free
energy, i.e.

FT ≤ FT ,Q
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Physical interpretation

in fact we have

FT ,Q = FT +
1
β

KL (Q||P) ,

where P is the Gibbs distribution
minimizing KL (Q||P) ≥ 0 over Q corresponds to finding
the best upper bound of the free energy on a class of
distribution
in other words: given the system states must be distributed
according to a distribution in Q, find the most stable
distribution

95 / 107 F. Rossi Combinatorial problems



Mean field
E(M) is difficult to handle because of coupling
(dependencies) while F (W ,M) is linear and corresponds
to a de-coupling in which dependencies are replaced by
mean effects
example:
• modularity

E(M) =
∑

i

∑
k

Mik

∑
j

Mjk Bij


• approximation

F (W ,M) =
∑

i

∑
k

Mik Wik

• the complex influence of Mij on E is replaced by a single
parameter Wik : the mean effect associated to a change in
Mij
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In practice

homotopy again:
• at high temperature (β → 0):

• EQW,β (Mik ) =
1
K

• the fixed point equation is generally easy to solve; for
instance in graph clustering

Wjk =
2
K

∑
i,j

Bij

• slowly decrease the temperature
• use the mean field at the previous higher temperature as a

starting point for the fixed point iterations
phase transitions:
• stable versus unstable fixed points (eigenanalysis)
• noise injection and mass constrained version
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A graph clustering algorithm

1. initialize W 1
jk = 2

K
∑

i,j Bij

2. for l = 2 to K :
2.1 compute the critical βl
2.2 initialize W l to W l−1

2.3 for t values of β around βl

2.3.1 add some small noise to W l

2.3.2 compute µik = exp(−βWik )∑K
t=1 exp(−βWit )

2.3.3 compute Wjk = 2
∑

i,j µik Bij

2.3.4 good back to 2.3.2 until convergence

3. threshold µik into an optimal partition of the original graph

mass constrained approach variant
stability based transition detection (slower annealing)
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Modularity

Evolution of the modularity during annealing
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Phase transitions

first phase: 2
clusters

second phase: 4
clusters
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Zachary’s Karate
club
Four clusters

103 / 107 F. Rossi Combinatorial problems



DA Roadmap
How to apply deterministic annealing to a combinatorial
optimization problem E(M)?

1. define a linear mean field approximation F (W ,M)

2. specialize the mean field equations, i.e. compute

∂EQW,β (E(M))

∂Wjl
=

∂

∂Wjl

(
1

ZW ,β

∑
M

E(M)exp(−βF (W ,M))

)

3. identify a fixed point scheme to solve the mean field equations,
using EQW,β (Mi) as a constant if needed

4. wrap the corresponding EM scheme in an annealing loop: this is
the basic algorithm

5. analyze the fixed point scheme to find stability conditions: this
leads to an advanced annealing schedule
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Summary

deterministic annealing addresses combinatorial
optimization by solving a related but simpler problem and
by tracking the evolution of the solution while the simpler
problem converges to the original one
motivated by:
• heuristic (soft minimum)
• statistical physics (Gibbs distribution)
• information theory (maximal entropy)

works mainly because of the solution following strategy
(homotopy): do not solve a difficult problem from scratch,
but rather starting from a good guess of the solution
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Summary

difficulties:
• boring and technical calculations (when facing a new

problem)
• a bit tricky to implement (phase transition, noise injection,

etc.)
• tends to be slow in practice: computing exp is very costly

even on modern hardware (roughly 100 flop)
advantages:
• versatile
• appears as a simple EM like algorithm embedded in an

annealing loop
• very interesting intermediate results
• excellent final results in practice
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