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Introduction to Learning Theory

Supervised learning problem

Notations
LetSbe a set ofm training examples{(x1, y1), ..., (xm, ym)}.

Thexi values are typically vectors of the form< xi1, ..., xip >, whose
components are usually calledfeatures. Thexi are drawn from a feature
spaceX according to a given distributionDX .

The y values (y∈ Y) are drawn from a discrete set ofclasses
(classification) or are continuous values (regression).

We assume that there exists atarget function f such that
y = f (x),∀(x, y) ∈ X × Y.

Definition
A supervised learning algorithmL automatically outputs fromSa classifier
(or a hypothesis)h ∈ H about the target functionf .
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Introduction to Learning Theory

Empirical and generalization errors

Definition
The empirical error (or risk)̂ǫh of a hypothesish ∈ H is the proportion of
errors thath makes over the learning sampleS.

ǫ̂h =
1
|S|
∑

i

11h(xi) 6=yi

Definition
The (unknown) generalization error (or real risk)ǫh of a hypothesish is the
error probability ofh overX according toDX .

ǫh = Pxi∈X ,DX
[h(xi) 6= yi ]

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 4 / 113



Introduction to Learning Theory

What is a good theory? (Example 1)

h1

h2

h3 h4

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 5 / 113



Introduction to Learning Theory

What is a good theory? (Example 2)

Question
Let us observe the following sequence of integers:

1 2 3 5 ...

What comes next?
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Introduction to Learning Theory

What is a good theory? (Example 2)

1 2 3 5 ...?

Several solutionssare possible?

s = 7→ Why? ‘‘This is the next prime number’’

s = 8→ Why? ‘‘This is the next Fibonacci number’’
s.t. un+1 = un + un−1

s = 7→ Why? ‘‘This is the next element of the
binary series 1(1), 10(2), 11(3), 101(5),
111(7), 1011(11), 1111(15), etc.’’

s = 6→ Why? ‘‘It is the sequence of all integers,
except 4...’’

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 7 / 113



Introduction to Learning Theory

What is a good theory? (Example 3)

Question
What are the missing values?

A B C
1 2 3
C A B
2 3 1
B C ?
3 1 ?
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Introduction to Learning Theory

What is a good theory? (Example 3)

A natural solution is the following:

A B C
1 2 3
C A B
2 3 1
B C A
3 1 2

but...
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Introduction to Learning Theory

... if other learning data are available...

A B C D E F
1 2 3 4 5 6
C A B F D E
2 3 1 5 6 4
B C D E F A
3 1 4 6 2 5
D F E A B C
4 5 6 2 3 1
E D F B A C
5 6 2 1 4 3
F E A C B D
6 4 5 3 1 2

Moral of these examples
It is always possible to find a (possibly complex) consistent theory that
explains a phenomenon.

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 10 / 113



Introduction to Learning Theory

Question
(once again...) what is a good theory?

No free lunch:
if there is no restriction on the target concept,generalization is
impossible.
if there is no assumption on how the past is related to the future,
generalization is impossible.

Conclusion 1
We need to haveknowledgeabout the target concept⇒ Choose a class of
hypothesesH (inductive bias).

Conclusion 2
We need to makeassumptionsabout the phenomenon:

Stationarity: future observations are related to past ones.

Inductive principle: choose the simplest explanation consistent with past
data (Occam’s razor).
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Introduction to Learning Theory

Definition

Updated definition
Learning can be viewed as a problem of function estimation, whose goal is to
determine the simplest consistent (w.r.t. S) hypothesis h∈ H of the target
concept f∈ F .
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Introduction to Learning Theory

Bias/Variance trade-off

The real risk of the induced hypothesish w.r.t f comes from two main sources:

Definition
1 The inductive bias: nothing guarantees the equality between the target

concept spaceF and the selected class of hypothesesH. In other words,
even if the learner is able to provide an optimal hypothesish∗ fromH, h∗

andf can be different.⇒ approximation error .

2 The variance: since the learning process depends on the quality and the
quantity of learning data, the learner usually does not provide the optimal
hypothesish∗. The distance betweenh∗ and the induced hypothesish is
theestimation error.
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Introduction to Learning Theory

Bias/Variance trade-off

Graphically, we get:

variance
bias

H

h h∗ F

f
ǫh
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Introduction to Learning Theory

Bias/Variance trade-off

bias

Variance

ǫh

ǫ∗h

Capacity ofH
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Introduction to Learning Theory

Overfitting

h2h1

Question
Is h2 reasonable?

Statistical learning theory investigates under what conditions empirical risk
minimization (ERM) is admissible.
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Introduction to Learning Theory

Empirical Risk Minimization

Definition
The ERM principle is valid if the real risk of the hypothesish ∈ H induced
from S is close to the real risk of the optimal hypothesish∗ ∈ H.

h = arg min
hi∈H

ǫ̂hi

h∗ = arg min
hi∈H

ǫhi

Condition of validity of the ERM principle:

∀DX ,∀γ ≥ 0,∀δ ≤ 1, P(|ǫh − ǫh∗ | ≥ γ) ≤ δ
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Introduction to Learning Theory

Empirical Risk Minimization

Remark
Selecting h= arg minhi∈H

ǫ̂hi does not guarantee the discovery of the optimal
hypothesis h∗ = arg minhi∈H

ǫhi .

h h∗

H

ǫ

ǫ̂
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Introduction to Learning Theory

PAC model

The PAC model (Probably Approximately Correct) and the works of Valiant
(1984) provide a theoretical answer to this problem.

Definition
The ERM principle is valid if

ǫh m→∞ ǫh∗

ǫ̂h m→∞ ǫh∗

Question
Under what conditions do the empirical and real risks of the induced
hypothesis h converge towards the real risk of h∗?
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Introduction to Learning Theory

When|H| is finite

Hoeffding’s inequality (that gives an upper bound on the probability fora
random variable to deviate from its expected value) can be applied on the
convergence of the empirical risk of agivenhypothesish to its real risk.

Theorem
For a given h∈ H,∀γ ≥ 0,∀m > 0,∀DX

P(|ǫh − ǫ̂h| ≥ γ) < 2e−2γ2m

From this theorem, we can bound the difference between the empirical risk
and the real risk ofany hypothesis ofH. Since we have a union of
independent events, we get:

Theorem
∀h ∈ H,∀DX ,∀γ ≥ 0,∀m > 0,

P(|ǫh − ǫ̂h| ≥ γ) < 2|H|e−2γ2m
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Introduction to Learning Theory

When|H| is finite

Therefore, we know that

P(|ǫh − ǫ̂h| ≥ γ) < 2|H|e−2γ2m

and we want to satisfy that

P(|ǫh − ǫh∗ | ≥ γ) ≤ δ

By equating the two upper bounds, we get:

γ ≥
(

1
2m

ln
2|H|

δ

)1/2
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Introduction to Learning Theory

When|H| is finite

So, with a probability≥ 1− δ, ∀h ∈ H:

ǫh − γ < ǫ̂h < ǫh + γ

Therefore,

ǫh ≤ ǫ̂h + γ

≤ ǫ̂h∗ + γ (becauseh∗ = arg minh∈H ǫ̂h)

< (ǫh∗ + γ) + γ

= ǫh∗ + 2γ
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Introduction to Learning Theory

Plugging the expressionγ ≥
(

1
2mln2|H|

δ

)1/2
we get with probability≥ 1− δ:

ǫh ≤ ǫh∗ +

(

2
m

ln
2|H|

δ

)1/2

So, by fixingγ =
(

2
mln2|H|

δ

)1/2
we deduce thatm = 2

ǫ2 ln2|H|
δ .

Theorem
The ERM principle requiring that

∀γ ≥ 0, δ ≤ 1, P(|ǫh − ǫh∗ | ≥ γ) ≤ δ

is valid if m≥ 2
ǫ2 ln2|H|

δ .

Conclusion
There is nothing so practical as a good theory !! [Kurt Lewin]
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Introduction to Learning Theory

When|H| is infinite

We can exploit the VC dimensiondH (for Vapnik-Chervonenkis dimension)
that is a measure of thecapacityof the class of hypothesesH.

Definition
The VC dimensiondH of a class of hypothesesH is defined as the
cardinality of the largest set of points that a hypothesish ∈ H can
shatter.

A set of points isshattered if for all assignments of labels to those
points, there exists a hypothesish ∈ H that makes no error of
classification when evaluating that set of data points.
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Introduction to Learning Theory

When|H| is infinite

From the VC dimensiondH, we can define an upper bound on the real error:

Theorem
LetH be a class of hypotheses,∀h ∈ H,∀δ ≥ 0,∀m > 0, the following bound
holds:

ǫh ≤ ǫ̂h +

√

dH(ln 2m
dH

+ 1) + 1− ln δ
4

m

Remark
Theoretical upper bounds are often pessimistic... For instance, with the class
H of 2D-linear separators, and fixingγ = 0.01andδ = 0.05, we get
m≥ 1600...
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Introduction to Learning Theory

Conclusion

Due to the bias/variance trade-off, the choice of asingle“good”
hypothesis is constrained by a compromise to found between a variance
control and a bias control.

How can we try to reduce one of the two quantities while controlling (or
reducing) the other?

Ensemble methodsare very effective techniques to achieve this task.
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Ensemble Methods

Ensemble Methods

Definition
Ensemble methods are learning algorithms that construct a set of classifiers
h1, . . . , hT whose individual decisions are combined in some way to classify
new examples.

Necessary and sufficient conditions for an ensemble of classifiers to be
efficient:

the individual classifiers (or hypotheses) are accurate,i.e. they have an
error rate of better than random guessing.

the classifiers are diverse,i.e. they make different errors on new data
points.

Question
Is it possible to construct good ensembles?
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Ensemble Methods

Why and how do we get various classifiers?

?

?

y

?

Different learning techniques(e.g.k-NNs, linear separator, decision
trees, SVMs, etc.) on the same learning sampleS.

Different learning parameters(e.g.number of neighborsk) on the same
learning sampleS.

Different learning sampleSwith the same learning technique.

Different representationsof the same learning set.
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Ensemble Methods

Limitations of a single classifier[Dietterich 2002](1/3)

Statistical problem (variance): Without sufficient data, the learning
algorithm can find many different hypotheses inH that all give the same
empirical accuracy onS.

h1h2
h3

h1

h2

h3

hc
f

H

By constructing an ensemble out of all of these accurate classifiers, the
algorithm can “average” their votes and reduce the risk of choosing the
wrong classifier.
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Ensemble Methods

Limitations of a single classifier (2/3)

Representational problem (bias): In most applications of machine
learning, the true functionf cannot be represented by any of the
hypotheses inH.

h1h2

h3

hc

h1

h2 h3

hc

f

H

By forming weighted sums of hypotheses drawn fromH, it may be
possible to expand the space of representable functions.
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Ensemble Methods

Limitations of a single classifier (3/3)

Computational problem: Many learning algorithms work by
performing some form of local search that may get stuck in local optima.
An ensemble constructed by running the local search from many
different starting points may provide a better approximation to the
unknown function.

h1

h2
h3

hc
f

H
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Ensemble Methods

Ensemble Methods

A clustering of the ensemble methods can be performed according to the
origin of the diversity of the hypotheses[Džeroski &Ženko 2004]

Heterogeneous ensemble methods: several classifiersh1, . . . hT are
generated by applyingdifferent learning algorithmsL1, . . . , LT to a
single training dataset, i.e. to a constant distributionD of the training
data.

Homogeneous ensemble methods: several hypothesesh1, . . . hT are
generated from asingle learning algorithmL. The diversity of the
hypotheses is obtained bymodifying the statistical distributionDt of the
training examples used to buildht.
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Ensemble Methods Heterogeneous ensemble methods

Heterogeneous ensemble methods

The diversity comes from the learning algorithms

Stacking [Wolpert, D.H. 1992]

Cascade Generalization[Gamma, J. & Brazdil, P. 2000]
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Ensemble Methods Heterogeneous ensemble methods

Stacking

........

........ new feature vector

learned base hypotheses

meta−hypothesis

x =< x1, ..., xp >

x =< s1, ..., sT >

L1 LT

h1 hT

s1 sT

LM

hM

y(x)?

1 LearnT hypothesesh1, . . . , hT

with T different learning
algorithmsL1, . . . , LT.

2 The decisions (scores) of
h1, . . . , hT onx are seen as new
features

3 Learn a meta hypothesis in this
newT dimensional space.
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Ensemble Methods Heterogeneous ensemble methods

Cascade Generalization

.
...........

x =< x1, ..., xp >

< x1, ..., xp, s1 >

< x1, ..., xp, s1, s2 >

L1

h1

h2

h3

s1

s2

1 Learn a hypothesish1 with a
learning algorithmL1. Classify the
learning examples withh1.

2 Learn a hypothesish2 with a
learning algorithmL2 from the
original features and the label (or
the score) predicted at the previous
step. Classify the learning
examples withh2.

3 Repeat the process.
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Ensemble Methods Homogeneous ensemble methods

Homogeneous ensemble methods

Thediversity comes from the distribution of the learning examples.

We consider now the problem of combining several classifiers built from
different subsets of the training data.

All classifiers are generally of the same type.

Why resampling the training data? It allows us to build more robust
estimates by reducing the variance of the estimator.
Homogeneous ensemble methods:

Bagging[Breiman 1996]
Random Forests[Breiman 2001]
Boosting[Freund & Schapire 1999]
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Ensemble Methods Homogeneous ensemble methods

Bagging

BAGGING

Input : A learning sampleS= {(x1, y1), ..., (xm, ym)}
Input : A total numberT of bagging rounds
Input : A learning algorithmL returning a binary classifier
Output : A combined classifier
for all t from 1 to T do

St = Resample(S) // Randomly sampleSwith replacement;
ht(x) = L(St) // Build a classifier onSt using learning algorithmL;

Return HT such that
HT(x) = sign

(
∑

t ht(x)
)
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Ensemble Methods Homogeneous ensemble methods

Random Forests

Definition
A decision tree is a tree that can be learned by splittingS into subsets based
on a feature value test. This process is repeated on each derived subset in a
recursive manner.

Example: the decision to play or not play based on climate conditions.

Play 9

Don’t play 5

outlook?

overcast rainsunny

Play 2

Don’t play 3 Don’t play 0 Don’t play 2

Play 4 Play 3

Play 2 Play 0 Play 0 Play 3

Don’t play 0 Don’t play 3 Don’t play 2 Don’t play 0

humidity?
<=70 >70

windy?
true false
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Ensemble Methods Homogeneous ensemble methods

Random Forests

Definition
Decision Trees+ Random Feature Selection+ Bagging = Random Forests

Aim : generate diversity in decision trees.
The general approach is like bagging:

build model on successive resampling (with replacement) ofS;
make a majority vote to form the combined classifier.

Decision trees are built with no pruning.

While growing the tree, the feature selected from splitting maximizes the
impurity (information gain, gini index) among a random selection ofF
features out ofp possible attributes (typical values areF = ⌈log2p⌉ or
F = ⌈√p⌉.
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Boosting

Introduction to boosting
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Boosting

Boosting [Freund & Schapire 1999]

Let us start from an example [Freund & Schapire 1999]....

Aim : A horse-racing gambler, hoping to maximize his winnings, decides
to create a computer program that will accurately predict the winner of a
horse race.

Strategy 1: ask a highly successful expert gambler to explain his betting
strategy. Not surprisingly, the expert is unable to articulate a large set of
rules for selecting a horse.

Strategy 2: But, when presented with the data for a specific set of races,
he is able to express some rules such as:

h1 : ‘‘Bet on the horse that has recently won the
most races’’ .
h2 : ‘‘Bet on the horse with the most favored
odds’’ .
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Boosting

Boosting

In order to use these rules to maximum advantage, there are two problems
faced by the gambler:

1 How to choose the collections of races presented to the expert so as to
extract rules that will be the most useful?

2 Once we have collected many rules, how to combine them into a single,
highly accurate prediction rule?

Solutions:

1 If the combination is not weighted and the learning examples are
randomly selected→ Bagging.

2 If the combination is weighted and the selection of the learning examples
is driven by a “hard” examples→ Boosting.
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Boosting

Strong vs Weak Learnability

Definition
Boosting is a general method for improving (under some constraints) the
accuracy of any given learning algorithm.

Boosting combinesweakhypotheses (i.e. just better than a random guessing)
into astronghypothesis.
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Boosting

Strong vs Weak Learnability

Boosting has its roots in the theoretical PAC learning model.

Definition
A learning algorithmL is strong PACiff:

with a polynomial number of learning examplesS,

∀ distributionD overS,

with a high probability 1− δ (δ > 0),

L is able to induce a hypothesish with a generalization error≤ ǫ (ǫ > 0).
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Boosting

Strong vs Weak Learnability

Definition
A learning algorithmL is weak PAC[Kearns, M. & Valiant, L.G. 1988]iff:

Same definition asstrong PACexcept the fact that the generalization
error just has to be slightly better than a random guessing.

i.e. ǫ ≥ 1
2 − γ.

Question
Can a weak learning algorithm which performs just slightly better than
random guessing in the PAC model be “boosted” into an arbitrarily accurate
“strong” learning algorithm?
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Boosting

First boosting algorithm (1/4)

Step 1: Extract fromSa learning sampleS1. Use a learning algorithmL to
produce a first hypothesish1.

h1
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Boosting

First boosting algorithm (2/4)

Step 2: Generate a second learning sampleS2, in which an instance has a
roughly equal chance of being correctly or incorrectly classified byh1. L is
used again to infer a new hypothesish2.

h1

h2
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Boosting

First boosting algorithm (3/4)

Step 3: Generate a third learning sampleS3 by removing fromS the
instances on whichh1 andh2 agree. Once again,L is used to induce a third
hypothesish3.

h
1

h2

h3
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Boosting

First boosting algorithm (4/4)

The final hypothesis takes the ”majority vote” of h1, h2 and h3.

H
1

h2h3

h 1
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Boosting ADABOOST

ADABOOST
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Boosting ADABOOST

ADABOOST ([Freund & Schapire 1996a])

Input : A learning sample S, a number of iterations T, a weak learnerL
Output : A global hypothesis HT
for all i from 1 to mdo

D1(xi) = 1/m;

for all t from 1 to T do
ht = L(S, Dt);
ǫ̂t =

∑

xi t.q. yi 6=ht(xi)
Dt(xi);

αt = 1
2 ln 1−ǫ̂t

ǫ̂t
;

for all i from 1 to mdo
Dt+1(xi) = Dt(xi) exp(−αtyiht(xi)) /Zt;
/* Zt is a normalization coefficient*/

f (x) =
∑T

t=1 αtht(x);
Return HT such that

HT(x) = sign(f (x))
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Boosting ADABOOST

Toy example (1/5)

Learning sampleS

DistributionD1

Weak Hypotheses: linear separators parallel to the axis
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Boosting ADABOOST

Toy example (2/5)

Step 1

DistributionD2

ǫ̂1 = 0.30
α1 = 0.42

h1
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Boosting ADABOOST

Toy example (3/5)

Step 2

DistributionD3

ǫ̂2 = 0.21
α2 = 0.65

h2
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Boosting ADABOOST

Toy example (4/5)

Step 3

ǫ̂3 = 0.14
α3 = 0.92

h3
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Boosting ADABOOST

Toy example (5/5)

Final Classifier

)

=

+0.65× +0.92×0.42×Hfinal = sign(
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Boosting Theoretical Results

Theoretical results on the
empirical risk
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Boosting Theoretical Results

Theoretical results on the empirical risk

Theorem
Upper bound on the empirical error of HT

ǫ̂HT =
1
m
|{i/H(xi | 6= yi}) ≤

1
m

∑

i

exp(−yi f (xi)) =
∏

t

Zt

This theorem means that to minimize the empirical error, we have to
minimize the product of theZt.
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Boosting Theoretical Results

Theoretical results on the empirical risk

The previous theorem is proven in two steps.

Step 1: ǫ̂HT ≤ 1
m

∑

i exp(−yi f (xi))

Proof.

ǫ̂HT =
1
m

∑

i

11HT(xi) 6=yi

=
1
m

∑

i

11yi f (xi)<0

≤ 1
m

∑

i

exp(−yi f (xi))
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Boosting Theoretical Results

Theoretical results on the empirical risk

Step 2: 1
m

∑

i exp(−yi f (xi)) =
∏

t Zt. To simplify, let us replacexi by i.

Proof.

DT+1(i) =
DT(i)exp(−αTyihT(i))

ZT

=
D1(i)exp(

∑

t −αtyiht(i))
∏T

t=1 Zt

=
1
m

exp(
∑T

t=1−αtyiht(i))
∏T

t=1 Zt

=
1
m

exp(−yi f (i))
∏T

t=1 Zt
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Boosting Theoretical Results

Theoretical results on the empirical risk

Proof.
since

∑

i DT+1(i) = 1 because it is a statistical distribution, we get

T
∏

t=1

Zt =
1
m

∑

i

exp(−yi f (i))
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Boosting Theoretical Results

ADABOOST ([Freund & Schapire 1996a])

Input : A learning sample S, a number of iterations T, a weak learnerL
Output : A global hypothesis HT
for all i from 1 to mdo

D1(xi) = 1/m;

for all t from 1 to T do
ht = L(S, Dt);
ǫ̂t =

∑

xi t.q. yi 6=ht(xi)
Dt(xi);

αt = 1
2 ln 1−ǫ̂t

ǫ̂t
;

for all i = 1 from 1 to mdo
Dt+1(xi) = Dt(xi) exp(−αtyiht(xi)) /Zt;
/* Zt is a normalization coefficient*/

f (x) =
∑T

t=1 αtht(x);
Return HT such that

HT(x) = sign(f (x))
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Boosting Theoretical Results

Theoretical results on the empirical risk

Theorem
To minimize Zt, αt must be equal to:

αt =
1
2

ln

(

1− ǫ̂t

ǫ̂t

)
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Boosting Theoretical Results

Theoretical results on the empirical risk

Proof.

Let us assume that the outputs ofht are−1 or+1. LetW−1 andW+1 be two
sums such that

Wb =
∑

x∈LS:y(x)ht(x)=b

Dt(x)

Zt =
∑

x∈LS

Dt(x)e−αty(x)ht(x)

=
∑

b

∑

x∈LS:y(x)ht(x)=b

Dt(x)e−αtb = W−1eαt + W+1e−αt

Zt is minimal when

αt =
1
2

ln

(

W+1

W−1

)

=
1
2

ln

(

1− ǫ̂t

ǫ̂t

)
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Boosting Theoretical Results

Theoretical results on the empirical risk

Information
Freund and Schapire have proposed another value forαt, such that:

αt =
1
2

ln

(

W+1 + 1
2W0

W−1 + 1
2W0

)

where W0 corresponds to the density of the learning examples that can not be
classified by ht (e.g.: points on the separator).
Assuming that half of W0 is correctly classified, and half is misclassified, we
get this new value forαt calling on the same proof.
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Boosting Theoretical Results

ADABOOST ([Freund & Schapire 1996a])

Input : A learning sample S, a number of iterations T, a weak learnerL
Output : A global hypothesis HT
for all i from 1 to mdo

D1(xi) = 1/m;

for all t from 1 to T do
ht = L(S, Dt);
ǫ̂t =

∑

xi t.q. yi 6=ht(xi)
Dt(xi);

αt = 1
2 ln 1−ǫ̂t

ǫ̂t
;

for all i = 1 from 1 to mdo
Dt+1(xi) = Dt(xi) exp(−αtyiht(xi)) /Zt;
/* Zt is a normalization coefficient*/

f (x) =
∑T

t=1 αtht(x);
Return HT such that

HT(x) = sign(f (x))
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Boosting Theoretical Results

Theoretical results on the empirical risk

Theorem
Exponential decrease of the empirical risk

∏

t

(Zt) =
∏

t

(2
√

ǫ̂t(1− ǫ̂t) =
∏

t

√

1− 4γ2
t < exp(−2

∑

t

γ2
t )

whereǫ̂t = 1
2 − γt (weak hypothesis)

This theorem means that the empirical risk exponentially decreases
towards 0 with the numberT of iterations.
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Boosting Theoretical Results

Theoretical results on the empirical risk

Proof.

Zt =
∑

x

Dt(x)exp−αtyxht(x) = W+1e−αt + W−1eαt

= (1− ǫ̂t)e
− 1

2 ln
“

1−ǫ̂t
ǫ̂t

”

+ ǫ̂te
1
2 ln

“

1−ǫ̂t
ǫ̂t

”

= 2
√

ǫ̂t(1− ǫ̂t)

Then,

∏

t

(Zt) =
∏

t

(2
√

ǫ̂t(1− ǫ̂t) =
∏

t

√

4(
1
2
− γt)(1− 1

2
+ γt) =

∏

t

√

1− 4γ2
t

= eln(
Q

t

√
1−4γ2

t ) = e
1
2

P

t ln(1−4γ2
t ) ≤ e−2

P

t γ
2
t

becauseln(1− x) = −x− x2

2 − x3

3 − . . . − xn

n + 0(xn+1)
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Boosting Theoretical Results

Expected behavior of boosting

Iterations

error

generalization

learning

Expected behavior
ǫ̂HT decreases towards (eventually) 0.

ǫHT first decreases; then HT becomes too complex→ overfitting
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Boosting Theoretical Results

Overfitting

Definition
Overfitting : artificially good agreement with the learning data.

overfitting

Empirical risk

capacity of the model

Real risk
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Boosting Theoretical Results

Observed behavior of boosting

Iterations

error

learning

generalisation

Observed behavior
ǫ̂HT decreases towards (eventually) 0.

ǫHT drops and continues to decrease even whenǫ̂T has reached 0!!
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Boosting Theoretical Results

Experimental proof

Experimental proof with
ADABOOST
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Boosting Theoretical Results

What are the theoretical reasons
that justify this behavior?
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Boosting Theoretical Results

Explanation in terms of margins of the training examples

ǫ̂HT only takes into account the fact that the classification of an example
is correct or not correct.

ǫ̂HT should also take into account the confidence into the classification of
each example.

Definition
The margin of an example is defined to be

margin(x) =
y
∑

t αtht(x)
∑

t αt
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Boosting Theoretical Results

Explanation in terms of margins of the training examples

high conf.
incorrect

high conf.
correct

low
conf.

−1 +10 correctincorrect

HTHT
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Boosting Theoretical Results

Empirical observation
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Boosting Theoretical Results

Intuition

Larger margins on the training set translate into a superior upper bound
on the generalization error.

Boosting tends to increase the margins of the learning examples

Despite the increase of its complexity, the final performing classifier is
becoming easier and easier to build because of the increase of the
margins.
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Boosting Theoretical Results

Theoretical results in
generalization

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 78 / 113



Boosting Theoretical Results

Theoretical results in generalization

Theorem ([Schapire, Freund, Bartlett & Lee 1997])
LetH be a class of classifiers with VC dimdh (i.e. the capacity ofH). For any
δ > 0 andθ > 0, with probability1− δ, any classifier ensembleHT built from
mlearning examples satisfies:

ǫHT ≤ P̂r(margin(x) ≤ θ) + O
(
√

dh

m
log2(m/dh)

θ2 + log(1/δ)

)

This bound depends on:
constant parametersm, dh, θ andδ.
the distribution of the margins of the learning examplesP̂r.

Theorem

P̂r(margin(x) ≤ θ) exponentially decreases towards0 with T.
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Boosting Theoretical Results

Margin maximization

Formally,[Schapire, Freund, Bartlett & Lee 1997]proved the following
theorem:

Theorem
Let margin(x) = yf(x) the margin of an example:

P(yf(x) ≤ θ) ≤ 2T
∏

t

√

ǫ̂1−θ
t (1− ǫ̂t)1+θ

If ǫ̂t ≤ 1
2 − γ, then∀θ < γ, this bound exponentially with T.
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Boosting Theoretical Results

Margin maximization

Proof.
If yf(x) ≤ θ theny

∑

t αtht(x) ≤ θ
∑

t αt

⇒ exp−y
P

t αtht(x)+θ
P

t αt ≥ 1

P̂r(yf(x) ≤ θ) ≤ P̂r(exp−y
P

t αtht(x)+θ
P

t αt)

=
expθ

P

t αt

m

∑

i

exp−yi
P

t αtht(xi)

= expθ
P

t αt
∏

t

Zt
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Boosting Theoretical Results

Margin maximization

Proof.
By replacingαt andZt by their expressions witĥǫt, we get:

= exp
P

t θ
1
2 ln( 1−ǫ̂t

ǫ̂t
)2T
∏

t

√

ǫ̂t(1− ǫ̂t)

= 2T
∏

√

(1− ǫ̂t)θ ǫ̂t(1− ǫ̂t)

ǫ̂θ
t

= 2T
∏

t

√

ǫ̂1−θ
t (1− ǫ̂t)1+θ

Considering that̂ǫt ≤ 1
2 − γ, this upper bound can be rewritten such that:

(

√

(1− 2γ)1−θ(1 + 2γ)1+θ

)T

If θ < γ then we can prove that the expression between brackets is< 1 and so
the probability to have a small margin decreases withT.
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Boosting Theoretical Results

First conclusions

ADABOOST works in practice...

and is theoretically well-founded!

Question
What has been the impact of boosting in the machine learning community?
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Boosting Theoretical Results

Impact of boosting in Machine Learning

Number of articles presented at important ML conferences such as ICML,
ECML, COLT, ALT from 1996 to 2008 whose title contained the word
“boosting”.
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Boosting Theoretical Results

Impact of boosting in Machine Learning

About R.Schapire... (Google Scholar)

h-index (h-number) of R. Schapire: 39

Nb of citations: 13953

Maximal nb of citations for an article : 2126

Most cited article: Experiments with a new boosting algorithm

www.boosting.org (Gunnar Ratsch)
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Boosting Theoretical Results

Some platforms for testing boosting

Some platforms:

Yoav Freund’s home page
http://www.cs.ucsd.edu/ ˜ yfreund/adaboost

Ran El-Yaniv’s home page
http://www.cs.technion.ac.il/ ˜ rani/LocBoost/

WEKA (University of Waikato)
http://www.cs.waikato.ac.nz/ml/weka/
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Boosting SVM versus boosting

SVM versus Boosting
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Boosting SVM versus boosting

SVM versus Boosting [Freund & Schapire 1999]

SVM vs Boosting
SVMs andADABOOST search for a linear separator in a high dimensional
space.
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Boosting SVM versus boosting

SVM versus Boosting [Freund & Schapire 1999]

SVM vs Boosting
Overfitting is avoided thanks to the margin maximization.

Let h(x) be the vector of weak hypotheses(h1(x), h2(x), . . . , hT(x)). We
aim at selecting the vector of coefficientsα = (α1, α2, . . . , αT).

Boosting chooses the coefficientsαt such that the bound

P̂r(margin(x) ≤ θ) + O(
√

dh
mθ ) is minimized.

Freund and Schapire have shown that to deal with this problem, we have
to increase the margin of each learning example.

Therefore, boosting also aims at maximizing the minimal margin of the
learning examples.
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Boosting SVM versus boosting

SVM versus Boosting [Freund & Schapire 1999]

margin(x) =
y

P

t αtht(x)
P

t αt
.

The shared goal is to maximize the minimal margin:

max
α

min
i

(α.h(xi))yi

||α||.||h(xi)||
where

for boosting, the norms of the denominator are defined as follows:
||α||1 =

∑

t |αt| and||h(x)||∞ = maxt|ht(x)|
(NB: if ht(x) ∈ {−1, +1} then||h(x)||∞ = 1)

for SVMs, ||α||2 =
√

∑

t α
2
t and||h(x)||2 =

√
∑

t ht(x)2.

Marc Sebban (LAHC) Boosting: theoretical foundations and algorithms december 2009 90 / 113



Boosting SVM versus boosting

SVM versus Boosting [Freund & Schapire 1999]

Despite these resemblances...

1 The norms are different. The difference between the L1-norm,
L2-norm andl∞ is not significant when one considers low dimensional
space. However, this is not the case with boosting and overall with
SVMs.

2 The computational constraints are different
SVMs correspond to a quadratic programming problem.
Boosting is a matter for linear programming.

3 The management of large spaces is different.
SVM exploitkernelsthat allow to perform calculations in small spaces
that are equivalent to inner products in potential very large spaces.
Boosting uses a greedy strategy. Each new weak hypothesis ofh(x) is
correlated with the class to predicty.
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Boosting Boosting and Game Theory

Boosting and Game Theory
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Boosting Boosting and Game Theory

Edge versus Margin

In a boosting algorithm, we optimize two sets of weights:

a distributionDt over the learning examples.

a distributionαt over the weak hypotheses.
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Boosting Boosting and Game Theory

Edge versus Margin

Definition
TheEdgeof a hypothesis for a given distributionDt on the examples is

m
∑

i=1

yiht(xi) × Dt(xi)

Definition
TheMargin of a learning examplexn for a current distributionαt on the
learned hypotheses is

T
∑

t=1

ynht(xn) × αt
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Boosting Boosting and Game Theory

Edge versus Margin

The objectives of boosting:

Edge
Edges of past hypotheses should be small after update. In other words, the
new hypothesis must learn something new.
Therefore,we aim atminimizing the maximum edgeof past hypotheses.

Margin
Choose a convex combination of weak hypotheses thatmaximizes the
minimum margin .

Question
Connection between objectives?
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Boosting Boosting and Game Theory

Edge versus Margin

Duality
Linear Programming Duality

min maxEdge= max minMargin

minDmaxt=1,...,T−1

m
∑

i=1

yiht(xi)Dt(xi) = maxαmini=1,...,m

T−1
∑

t=1

yiht(xi)αt

→ Adaboost and Game Theory
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Boosting Boosting and Game Theory

Game Theory

[Freund & Schapire 1996b]

Definition
A game between two players is defined by a matrixM.

The first player is called “row player”RP.

The second player is called “column player”CP.

To play,RP chooses a rowi of M andsimultaneously CPplays a
columnj.

The cellM(i, j) that is played is the loss ofRP.
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Boosting Boosting and Game Theory

Game Theory

Example
The game Rock-Paper-Scissors

M rock paper scissors
rock 0 1 -1

paper -1 0 1
scissors 1 -1 0

RP’s goal: minimize loss M(i, j).

CP’s goal: maximize this loss.

Zero sum game
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Boosting Boosting and Game Theory

Game Theory

Definition
Randomized play: players choose distributionsP andQ over rows and
columns.
The learner’s (expected) loss is:

∑

i,j

P(i)M(i, j)Q(j) = PTMQ

For the sake of simplicity, this quantity if often writtenM(P, Q).
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Boosting Boosting and Game Theory

Sequential game

MinMax Strategy
If CP chooses his strategy Q afterRP

CP will choose Q to maximize M(P, Q).

Knowing it,RP chooses his strategy P to minimize his maximal loss, i.e.
minPmaxQM(P, Q).

Such strategy P∗ is called minmax strategy.

MaxMin Strategy
If CP plays at first,RP can use this knowledge in his strategy.

CP aims at maximizing the minimal loss ofRP.

Therefore, the loss is maxQminPM(P, Q).

This strategy Q∗ is called maxmin strategy.
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Boosting Boosting and Game Theory

The MinMax Theorem (Von Neumann)

We expect the player who chooses its strategy last to have the advantage
since it plays knowing its opponent’s strategy exactly. Thus, we expect
maxQminPM(P, Q) ≤ minPmaxQM(P, Q)

Surprisingly, it turns out not to matter which player plays first. Von
Neumann’s well-known minmax theorem states that the outcome is the
same in either case so that

Theorem (Von Neuman)

maxQminPM(P, Q) = minPmaxQM(P, Q),∀M.
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Boosting Boosting and Game Theory

The MinMax Theorem (Von Neumann)

Theorem (Von Neuman)

maxQminPM(P, Q) = minPmaxQM(P, Q),∀M.

The common valuev of the two sides of the equality is called thevalue of the
game Mand can be found by linear programming.

TheRP has a (min-max) strategyP∗ such that regardless of the strategy
Q played byCP, the loss sufferedM(P∗, Q) ≤ v.

Symmetrically, it means thatCP has a (max-min) strategyQ∗ such that
regardless of the strategyP played byRP the lossM(P, Q∗) ≥ v.
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Boosting Boosting and Game Theory

The boosting game
Let g1, . . . , gN be the space of all weak classifiers.

CP is the weak learner, andRP is the booster.
Matrix M is defined as follows:

a row is a learning example, a column is weak classifier

M(i, j) =

{

1 if yi = gj(xi)
−1 otherwise

x1y1

xiyi

xmym

g1 gj gN

M(i, j)

A
D

A
B

O
O

S
T

Weak Learner
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Boosting Boosting and Game Theory

The Boosting Game

If ∀ distributionsP over the examples,∃gj satisfying the weak hypothesis,
then:

minPmaxQM(P, j) ≥ 1
2 + γ

and then (by minmax theorem):maxQminiM(i, Q) ≥ 1
2 + γ

Theorem
Applying Von Neuman’s theorem, it exists a weighted majority of classifiers
which correctly classifies all examples with positive margin.

Optimal margin→ “value” of the game.

Distribution over examples converges to (approximate)minmaxstrategy
for boosting game.

Weights on weak classifiers converge to (approximate)maxminstrategy.
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Boosting Advantages -Caveats of ADABOOST

Advantages -Caveats of
ADABOOST
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Boosting Advantages -Caveats of ADABOOST

Some experimental results...

Behavior of ADABOOST on a sample of 25 databases from the UCI
Machine Learning Repository
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Boosting Advantages -Caveats of ADABOOST

Practical advantages of ADABOOST

Fast.

Simple and easy to program.

No parameters to tune (exceptT).

Flexible - can combine with any learning algorithm.

Provably effective.
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Boosting Advantages -Caveats of ADABOOST

Caveats

Performances of ADABOOST depends on data and weak learner:
consistent with theory, ADABOOST can fail if:

weak classifiers too complex (e.g.kNN, ID3) → overfitting.
weak classifier too weak (γt → 0 too quickly)→ underfitting or low
margins + overfitting.

empirically, ADABOOST seems especially susceptible to the presence of
noise:

Presence of outliers→ exponential increase of their weights→ overfitting.
Presence of large bayesian error→ slows down the convergence.
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Boosting Advantages -Caveats of ADABOOST

Impact of outliers on ADABOOST behavior

Example: let us run ADABOOST on a linearly separable problem containing
5% of noise (by swapping the original label).
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Boosting Advantages -Caveats of ADABOOST

Hard predictions can slow learning

Example: let us run ADABOOST on an artificial sample whose bayesian error
is about 20%.
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Boosting Advantages -Caveats of ADABOOST

Demo with WEKA
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