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1 On-line perceptron training

The perceptron

single layer feed-forward neural network:

& N-dim. inputs

J adaptive weights

Sy =sign(J - &) binary output
(threshold unit)

Implements a
linearly separable
classification

of inputs

milestones:

Perceptron Convergence Theorem, Rosenblatt (1958)
Capacity, Winder (1963), Cover (1965), Satil (1852
PerceptronsMinsky and Papert (1969)

Statistical physics of perceptron weights, Gardner (1988)



Learning a linearly separable rule
from reliable examples

e unknownrule Sgi(&) = sign(B- &) = +1
defines the correct classification, parametrized through
ateacherperceptron with weights
Bc R, (B* = 1)
¢ only available informationexample data
D = {¢&" Sp="5Sr&")}, p=12,....P

(correct labels S provided by the teacher)

e training: choice of student weightgd

— J parametrizes hypothesis Sy (€) = sign(J - )

— supervised learningbased on the student
performance with respect to the training dala

— here:binary error measure

0 if Su(€")= Sg

el'(J) = e[ Su(&"),Sk] = .
1 if Sy(€") # Sk

compares student output and rule classification



(Seung et al., 1992)
e Off—line training: (Watkin et al., 1993)
(Opper and Kinzel, 1996)

— guided by the minimization of a cost functioH (J) ,

e.g. the training error

1 p
H(J) XX 515(\]) = F quz:l et

(empirical mean of the error measure w.rif) )

— Equilibrium Statistical Mechanics treatment:

—energy H of N degrees of freedom

— ensemble of systems in thermal equilibrium
at formal temperaturel /3

— disorder average over random training set (repli-
cas),
assume distributionP (&) of inputs

— macroscopic description, order parameters
— typical properties of large systemg] = aN

— training strategies
learnable rule: error free training; = 0
J insideversion space
— typical Gibbsstudent (6 — oo )
— maximum stability
— Bayes optimal student, c.m. of version space,



On-line training e.g. (Saad, 1998)
e single presentationof uncorrelatedrfew) { &, S% }

e Update of student weights:

Ip) =I(p=1) + AJ [I(p—1),&", Sg)]

disregards student performance on other examples
¢ learning dynamics in discrete time
e Statistical Physics approach:

— consider sequence of independent, randgin
— thermodynamic limit N — oo, P =aN
— recursion relation for order parameters

— disorder average over latest example
self—averaging properties

— continuous time limita = /N
ordinary differential equations for evolution of
order parameters

e AJ defines the actudkarning algorithm

— Hebbian learning
— error correction, perceptron algorithm
— optimaltraining prescription ?



Generalization
performance of the student (after training) with
respect to arbitrarypewinputs £ ¢ID

e In practice: empirical mean of error measure

geee

cust = 5 X [ Su(€), Sn(€)]

T=1

e in the theoretical analysis: averaggé...) overthe
(assumed) probability density’ (&) of inputs,

generalization error | ¢, = (e[Sy(&),SR(&)])

(here: e € {0,1},— ¢, isthe erromprobability)

the simplest model distribution:
Isotropic density P(&), & uncorrelated withB andJ

consider vectors ofhidependentdentically
distributed (.i.d.) components¢; with

<§j> =0, <§j§k> = Ojk

e.g. independent Gaussian variablgs, zero mean / unit variance



Geometric argument

projection of data into(J, B) —plane yields
Isotropic (radially symmetric) density of inputs

probability for disagreement:

gg = @/
1 ( J-B )
= — arccos
0 |J]|B]
1 R
|B| gy = _ arccos (\/Q)

overlap parameters R=3J-B, Q=J-J
sufficient to quantify the success of training
R=0, ¢ =1/2 random guessing

R=/Q, gg = 0 perfect generalization

(actual value of student norm) > R* is irrelevant)



Derivation for large IN

given: B, J, uncorrelated random inpuf with
(&) =0, (§&) =k
consider student/teachields

$=J'€=§Jj§j, y = B‘€:§Bj£j

sums of (many) independent random quantities

Central Limit Theorem (CLT):

jointdensity of (z,y) is,for N — oo ,a two—dimensional
Gaussian, fully specified by the first and second moments

() =% J; (&) =0, ({y) =% B;(§) =0
(#%) = % JiJe{e6) =2 Jf=Q
(') = 5 BiBi(&&) =% B = 1

(zy) = ﬁJjBk<£jfk> %Jij:R

<.[V]

Q R
R 1

covariance matrixC =

1
PQ,R(%?J) = 2#\/@ eXP




1 1 22 +Qy*—2Raxy

21/ () — R? =Py

P —
Note:

detalls of the input distribution are largely irrelevant
e.g. independent, binarg; = £1 with equal prob.

or independent, uniforne; € [—a,a] with (&) =1

generalization error:

ey = (Zodx Zody - Zodx :/Ody) P(x,y)

= ... (exercise)
_ ! arccos (R)
= 70

In the following, the isotropic distribution is also assuine
to describe the statistics of example data inputs, i.e.
vectors &" € ID consist of i.i.d. components with



properties:

—nospatial correlations, (&¥¢;) =0 if j#k

— no distinguished directions in input space

— notemporalcorrelations, (£/&7) =0 if u#wv

—no correlations with the ruleP(¢",B) = P(¢") P(B)

— single presentatiowithout repetition
no correlation of ¢ with J(u — 1) , i.e. the student
after training with examples, =1,2,..., u—1

consequences:
— average over data can be perfornséep by step
— actual choice ofB s irrelevant,

It IS not necessary to average over the teacher




Hebbian Learning revisited (Hebb,1949)

off—line interpretation (Vallet, 1989)

choice of student weights giveilD = { &", Sk }521

J(P) = &Sk

|| M

1
N i

equivalenton—line interpretation

dynamics upon single presentation of examples:
1 1 QH
) = Ip=l) + - € 5%

e from microscopics to macroscopiagcursionsfor

overlaps | R(p)=J(n)-B, Qp)=3I(n) I(n)

(B-¢&") Sk

_\,_/&__/

y" sign(y")

=]

J(p-1) - &) SR+ ; (&)

! sign(y") N

=l



o) average over latest example (...),
random input&” enters only through thigelds

o = Jp-1)-&", y' =B-¢

¢" and J(u—1), B are statistically independent! By the
same argument as on page 8, the CLT applies and one ob-
tains the joint density

(2m) 1 1 o + Quy** — 2 Raty"

P’ ") — -
(@, y") o |73 02

with @ = Q(p—1) and R = R(u—1) onther.h.s.

here we need:. (exercise)

Cly" D, =2/

(a# sign(y")), = 2/ R(p-1)

N | o

2= ==

QE R(p—1) + 1




o average over all previous examples: [...],

1 12
(LRG) m ) = (B8], = [R(u=1)]my + N@

define R” = |[R(v)|v mean overlap after examples

R = RFT 4 ( Q' = Q"+ (2?}2“‘1 + 1
N T

(exercise: explicit summation)

e continuous time limit, N — oo, o = u/N, dao = 1/N

i _ |2 dQ:QER(a)—I—l

do T do

initial conditions {abularrasg R(0) = Q(0) = 0
meanvalues after training with(aw N) examples

R(a) = goz Qla) = gOzQ—I—oz

7 s

typical behavior? magnitude of fluctuations?



e self-averaging propertiesof order parameters
simulations: finite N, J(0) =0, a = 1.0
50 independent sequences of random examples:

mean value ofQ(a = 1) standard deviation
Ler ., (N —00) 0.5
1.4+ ) * 0.4
0.3
1.2¢
0.2
1,
0.1
0.02 0.04 0. 06 0.08 0.1 0.12 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1/N 1/VN

(for our purposes:)

A quantity A(J) is called self-averaging if

— the width of its probability distribution vanishes

— the observation of a valuel different from its mean
occurs with vanishing probability

Inthe limit N — oo

For a rigorous discussion see (Reents,Urbanczik, 1998)

Exercise

calculate [R2(u)]ﬂ and show that [RQ(/L)L — [R(p)]} o< 1/N
for Hebbian learning. Hint: use the off-line interpretatiand ex-

ploit the independence of examples.



e deterministic differential equations

describe the actual values of order parameters
explicit average over history is not necessary

e learning curve

o —dependence of order parameté€i3, ()
of (well-behaved) functions thereof, e.g.

normalized overlap p = B R
JlBl V@
R(p) [RW)]M _ Rle) _ LRRE
[czm ~JlQW)], Q) (143a)

generalization error

1
gq(r) = — arccos

(1r5) ]

a=P/N



small o —behavior f random guessing):

—R(a)’\“goz 5’\“}—@04
P(Q)—m’\“ﬁ\/_ 97~ 9 773/2\/_

asymptotic behavior (a— o0)

1
pla) =~ [ gy R ——a 1/

4o \/ 2T

— ()

perfect generalizationfor P= a N, a — oo

Note:
R,QQ — oo with a@ — oo, but p=R//Q — 1
only thedirection of B Is found!



Modified Hebbian Learning

f(...)&" sign[B - &

A J(I(pi1), €, signlB-€1) =

modulation function f defines training algorithm
simplification: samef; = f in all componentsJ;

restriction: f may depend oavailable quantities
in principle:  f (J(p-1), &", signy*)
simplified : [ (Q(u-1), 2", signy")

) = 1) + & sianly”

1

(R(p)) = Rp=1) + = (f 1y ]),

2= =

(Q(p)) = Q(u=1) + — (2 fa" sign(y") + f*)

0

single example averageen r.h.s. over P(z*, y")
yield functions of R(u—1), Q(u—1)



assume and explaself-averagingproperties:

1
R' = R+ CFp(RTLQ)

Q' = Q7+ LF(RTLQ)

continuous time limit:

" = Fu(R.Q) = {fy5n)

™~ Fy(R.Q) = (2f 255 + )

alternatively:

= FAe Q) = (£5n [ I -] -

“Plug in and play”
e choose f to define the actual algorithm

e calculate r.h.s. of differential equations
(perform Gaussian integrals ove?(zx, )

e integrate (numerically) to obtai?(a), Q(a), €4()

e investigate (a« — oo) —asymptotics



Learning from mistakes
(Rosenblatt perceptron algorithm, 1959)

base training on the performance w.r.t. the new example:

J(p—1) if sign(J(p—1) - €") = Sk

I(p) =
J(pu-1) + + €"Sh else

modulation function
fa! signy!) = O (—2"Sk) =0 (—2"y"))

corresponding on—line dynamics: (Biehl and Riegler, 1994)

32: <@(—$y)5}z(\/— g)_;Q (—a )>:
S
Zg = (20(—ay)z Sk + O(—ay)) = ...

2 1

= |- (p—1)/Q + - arccos(p)



Numerical integration — p(a), Q(«a), &4(a)

0.5

0.4

Eg 03

0.2}

Perceptron
0.1¢ e

5 10 15 20 25

a=P/N

Perceptron algorithm realizes perfect generalization:

d
d—p:() for p=1 but ,R — oo asa — x
«v
asymptotics:
&= & (%)1/3 !’
for a— o0
Q = J5 (3)7 a8

a3 > a2
why is simple minded Hebbian trainingetterthan so-
phisticated perceptron training ? (resolved later)



Necessary condition for perfect generalization

stationary, normalized overlapfos =1 (x = \/@y)

dp ( Y px) P
i _ S _ 7
derlp=1 <f ! V@ @ 2Q) / >p1
1 _
_ @ <f2(Q,x,s1gn(a:))>
=30 _/ Dt fAQ,z,sign(z)) = 0
average over
1 1
})i_{% P(z,y) = \/727@{10 —592 d(x = VQy)
. dt e~t°/2
Gaussian measureDt = T

Successfulfine—tuningor p — 1,a —  , i.e. J~ B,
requires small agularchanges. Two possibilities:

e lim () — oo, diverging student length

p—>

o liy f(Q.a,sign(x)) = 0
— learning from mistakes only
—explicitannealing f = n(a)f with lim n(a) =0

a—00



Optimal on—line training

Off—line perceptron (error—free training with, = 0 )
realizes ¢, x a~' forlarge o

(e.g. repeatedbresentation of all examples)

e Which is the best performance available within the
limitations of modified Hebbian training?

e isit possible to achieve an asymptotic behavigroc o
on—line?

Variational approach: (Kinouchi and Caticha, 1992)

choose modulation functiorf (within the framework of
modified Hebbian learning)
such that the

[ decrease of ¢,

_ per example is maximized
Increase of p

(equivalent for the perceptron)



Increase of p upon presentation of a single example:

Ap P :
N = fSp (\/_ _ Q) — EF (before averaging)

necessary condition, (functional) derivative:

0 y pfﬂ) P,

Ap) = _Z 7 LA
5f<N b) = SR(\/@Q Qf !
formally: = fr = SR( ”?y —$)

(Note: second (sufficient) condition for maximum s> 0 )

Problem (1):
f* depends explicitly on teacher field ,

only S =sign(y) is available from the training data

Solution:
average over unavailable information, i.e. over the

conditional density  P(y|z, Sg) = OOP(:I:,y)@(ySR)
| dyP(z,y)O(y Sr)




One obhtains:

Jo = On (\/p@ W Dyesi —l’)

(for general input distributions)

2 2

_VRVISF e |ty
V2m o p o p__ TSR
\/1—,02 V@

(for isotropic, independent data)

Problem (2):

fopt 1S Of the modified Hebbian form,
but containsp as a parameter

fopt requires information about the actual
performance(p,e,) of the student

Any realistic algorithm can at the very besttimate p ,
— analysis ofoptimal on—line trainingprovides

e lower bounds fore, (o)

e insights in the general features of,; which allow
for successful learning

e suggestions for how to construct practical algorithms



Featuresof f,,

\/@ \
2\ p=0.4
7o p=08

-2 -1

xSr/VQ

e Learning from mistakes

most weight is given to examples withSi < 0

e Adaptive embedding

fopt INCreases with —zSp

e Performance dependent training
initially p =~ 0 : fopt /2 const.
asymptotically p — 1 : for = —(xSr)O(—zSg)

Hebbian learning— adaptive perceptropAdaTron)
training



Optimal on-line learning curve

Note: we can re—write differential equation for anfy which does
not depend ony explicitly:

f opt

d V@ :
£ = g<fSR (p<y>y(%5R)_x)_2f2>

(x>SR)

(£ fow =5 1) -

Ol

dp _ £<} 2 )

do Q\2 7o
o 1(Q — p?)3/? 70 dx exp [—%(1+p2)$2}
27 p oo V2T S (px)

Independent of() —equation!

Exercise

obtain the optimal learning curveg(a) ( g,4(a) )

by means of numerical integration, e.g. Wilathematica
Why is it difficult to use the initial conditionp(0) =0 ?



p(0) ~ 0
g
2.5 5 7.5 10 12.5 15 17.5 20
a=P/N
asymptotics
: dp L
obviously o = (0 (perfect generalization)

def. z = me, = arccos(p) , substitutey = px

_ll-l—cos2z
dz 1 2 F dy €Xp 2 cos? 2
— = ———tan“z |
do 27 oo /T P (y)

= ——2 : + O(zY) for z =0




Optimal on—line asymptotics differs from optimal
off-line result (*) by a factor 2 (exagt

(*) [Bayes optimal, c.m. in version space, opt. potential]
requires repeated presentation of all examples

here: single presentatiofe; > 0) , yet (almost) the same
student performance as a function af !

Practical algorithms with ¢, xc a™' ?

a) obtain a good estimate of (¢,) while learning

Note that here (ideal situation):

1 d 1d
mf — 0 =) = p(0) guarantees/Q(a) = sl
available, perfect estimatgQ = p

b) use a simplified version of optimal modulation, e.g.

})LH% fot = (—xSg)O(—x Sg) (parameter free)

(relaxation algorithm or AdaTron)

incorporates e learning from mistakes
e adaptive embedding



presentation of¢” :
1

Ip) = =) + o (—a" Sh) O(—a"Sh) &" %

field before/after training

unchangedif z# = J(u-1)-&" Sk > 0 already,
1

else: J(p) - &' = x“—ﬁxu g =0

misclassification is corrected by minimal changebf

(identical with the zero temperature limit @nh—line
Gibbslearning(kim and Sompolinksy, 1996)

Exercise
Show that the relaxation algorithm solves the followingmiation
problem:

minimize |J(x) — J(u—1)|> under the constraind(p) - € > 0

... diff. egs.... asymptotics (Biehl and Riegler, 1994)

(coincides with thavorst student in version spa¢gngel))



Cc) time—dep. learning rate (Barkai, Seung, Sompolinsky 1995)

normalized modified Hebbian learning: (I(p=1)* = 1)
Ip—) + 4 £ €" S
L+ & fansly+ % f2

Jp) =

= ) [ 1= (farsh ot s72)

1
+N nf& Sy + ONT?)

dp

o= —p (nfxSp+0’f/2) + (0 fySe)

For f = O(—xSg) one obtains (exercise)

dp 2 7’
\/_ (1—p") 5 P arccos(p)

7

e constanty

— const.

o n
59(04 — 00) = NG
e (optimized) power law annealingy(a) = 2\/%/04

1.27
egla — 00) & o



Learning a linearly separable rule
from reliable examples

e exact description of on—line learning dynamics:

— sequence of indep. random (isotropic) data

— thermodynamic limit N — oo :
typical behavior of large networks
continuous time limit

e Plug inand Play !

— Hebbian Learning(f =1) , ,(a — 00) a2

— Rosenblatt perceptro®(—zSz) , g, o< /3

e variational approach- optimal modulation function
— lower bound for typicale (o)
— asymptotics: e,(a — o0) = 0.88/«

e successful practical algorithms:

— performance estimation
— relaxation algorithmhn} Jopt
p—

— normalization, time dependent learning rate



Learning from noisy data (Biehl, Riegler, Stechert, 1995)

linearly separable rule  Sp = sign(B - £)
example data {&", 57}

where the S = &1 arenoisy(stochastically corrupted)
versions of S% = sign y*

e modified Hebbian training:

) = I —1) + Q1) 2", S5) &S

on-line dynamics:

dR d
dp ( pw) P o
S A
do = (/5 va Q) 2! ><x,y,sT>

analogous to previous case (reliable data)
(.- Vaysy IStheaverage over

(x,y) andthe randomness ity (to be specified)



e two performance measuregconsistent defs. in the literature!)

L 1
generalizationerror ¢, = (O(—xS5g) ), = — arccos(p)
’ A

compares student output with the true (learnable) rule
prediction error ep = (O(=257) ) (1457

compares with corrupted label of a new example

gg =0

for Jx B (unpredictable noise inS )
ep >0

e optimal modulation function

Jopt = ST (\{0@ <y>y\(x,sT) — <

average overP(y|z, St)

depends on the nature and strength of the considered noise
which is assumed to be known within the optimization
scheme



Two examples of stochastic corruption
(multiplicative) output noise
(additive)weight noise (input noise)

Output noise

o _ +S% with prob. 1 — A
r —S% with prob. A < 1/2 (inversion rate)

random flip for each example, independent of inggt

single example averages

(g(z, vy, ST)>(x,y,ST) =
A <g(:l?,y, _SR)> + (1 o >‘) <g(xaya+SR>>

predictionerror:  (0< A <1/2,0<¢,<1/2)

ep = A1l—¢y) + (1 =X)¢g

= A+ (1 —=2))g,

'V



Hebbian training (f =1)

dR
2
= Jﬁ (1—=2X)
T
dQ) 5
o = 2{@5r)gysy T1 = 2@(1—%)}2 +1

analytically solvable as forx =0 ...

(1 o WQA)%)UT

) a2 for o — oo

1
gqlar) = — arccos

(\/%(11— 2))2

perfect generalization still achieved
modified prefactor, diverges fok — 1/2 (random Sy = +1 )



Optimal modulation function

1,02 7’

fl 2)\\/ P 21_pQ

p (1—2)\) (7%@51)+A

fopt -

makes use of unavailable/unknown
p performance estimation

A noise level estimation (see below)

asymptoticse,(a) =

with ColN) =2 o3z | L T A = on e +

2x (optimal off-line result) !

20

17.5¢

12.5¢

0.5



optimal features

A =0.01
p=0.8
Jopt
\/@ 0.8
=09
p= 0.99

-2 1 1

I‘ST/ \/@
e performance dependence

¢ learning from mistakes

e confidence
large | x| indicate that a misclassificatiogign(z) = —Sr
IS most likely due to the presence of noise

Effective cut—off at negativer ~ —c ,
roughly given by the width of the Gaussian factor g,

c = -~ L=p = tan(me,) (performance dependent)
P
x 1/« (explicitly o —dependent)

suggests a simplified algorithm:see (kim,Sompolinsky, 1996)
fot = (—xS7)O(—xS7)O(x + ¢



(Mis—) Estimation of the noise level  (copelietal., 1997)

suboptimal modulation functiory, :
functional form of f,,; buttrue A replaced with A

R
J"A—f1 2A” l2i-2Q
P (1-20) @ ( S'fST) A
( VO\ A=)+
over—estimationA > A\ : g (a0 — o00) = CAA)
8

(perfect generalization !)

under—estimation\ < \ :

Noise robustness diagram

0.50 _
1) robust region
0.40 ) gsa — 00) =0
0.30 | / : . .

& / Il) imperfect generalization
0.20 - // " , 0 <eyla—o00)<1/2
07 / 1 lIl) stable fixed point p =10

“)/
0.00 - ggla = 00) =1/2
000 010 020 030 040 050
A

(0]

(also valid for theree committee machineith K h.u.)



On-line estimation of “hyper—parameter” A

A(p) = Ap=1)+

o (L= AG=1)O(~aS) — Au-1)O(+a"S)]

simple minded scheme:

— increases/decreases estimate if example is wrong/right
—o0obeys0 <A <1

— disregards confidence in student output

average over(z, y, St) , continuous time limitN — oo ,
self—averaging properties of(«)

system described by 3 coupled ODEs for ) and

€\

d\N 1 .
%zé(sp—/\)) (ie. A—eg,— )
0o3m T T T T T example:
K noise level \(«)
l estimateA(«)
0.2 & o ; .
\\ simulations
0.1 g 4 (N =1000)
ol T Teeeea ggla)




Weight noise
S determined according to a noisy version of the teacher

St = sign (B’”‘f“ where (B")? =1 and B"-B = w

yH _
(otherwise random and uncorrelated)

e.g. B" vector of i.i.d. components

(Bf)? —w’B} =1—w’

effect of the noise depends on teacher figld= B - £"




formally: (suppress(...) for average overB )

(yy=(g)=0 {y)=(v)=1 (y)=w

joint density:

P(gly)
N 11 1 (g — wy)T Ly
P _ ot y°/2
w.y) V2T /1 — w? =P { 2 1 —w? \/2776
inversion probability for (S} = —S%)

conditional
1/2 for |y| =0

R o —elul)
<@(—yy)><g|y>_q)(m) [0 for |y|— o0

1
over—all rate (O(=9Y) )y, = —arccos(w)
’ m

full description by means of joint Gaussian densi#x, y, y)
() = {y) = (y) =0 (¢y)=(¥)=1
(#*)=Q  (zy) =R  (gy) =uw



Equivalent interpretation: input noise
noisy input & with (£ = N, &' - ¢'/N = w

1
— W2

exp

1(55—%}*)2]
> (1—w?)

e.g. (ii.d) P(&f) = 127T\/1

o ¢ presented to theeacher

) = 1) + € SE with S} = sien(B - €

g =B-&" same moments as above, e.g.

(y"y) = L BB (&6 ) =% BiBw (§&) = w
gk gk

o ¢ presented to thstudent
| :
Ip) = Ip=1) + - f& Sk with S = sign(B - £")

fields 2 =J(u~1)-€", y=B - ¢ ,andy=B-¢&"
with the same statistics a&e, i, y) from above

e student weight noisel(u) — J(i) is not euivalent
as it changes the student/teacher overlap explicitly



Hebbian training f =1

dR o (T ’
o = Aysign(@)), = | —w
dQ

L 2
= (zsign(y) )5 +1 = @wR +1

formally identical with learning in the presence of output
noise, replace(1 — 2)\) with w
1

! T —1/2
e ) = —arccos + ) ]
() T ( 2wW? o
. . : . 1
comparison at equal inversion rates, i.e. foh = — arccos(w)
m
0.15 O A=0.1

A w = cos(0.1m)

0.1r .
sim., N = 1000
0.05r - } f — 1
i } fopt

9 <0 40 60 80 100



generalization vs. prediction error :

1 1
Ep = — arccos (w cos(mey) ) = - arccos(wp)

Asymptotical behavior fors, — 0 :

1
e, = —arccos(w) + T 2o ep(00) + O(a™)

T 2v/1 —w? 7

Weight noise as a simple model of unlearnable rules
assumeSi(£) is notlinearly separable, but a more com-
plicated functionofy =B - &, Sk = g(y)

resembles the effect
of weight noise

Interpretation: generalization erraf,

(ep(a) —gy(00)) ox ™




Optimal modulation function

1 W2 2

f VQ w1 — — 21—w2pQ
Opt_\/%p\/l—uﬂ ( wp xST)
V1-p2 V@

asymptotics:in the limit o« — oo :

(1 _ u}2)1/4
(wr)1/2

—1/2

(87

1 ~1/2
. +w 2)}

+oo dt exp ( %—rt
27 (1)

(coincides exacyl with optimal off-line learning result!)

e small a, px0

very weak effect of weight noise:
learning B or B is not much different

e large a, p~1

very pronounced effect of weight noise:
fine tuning requires disagreement between student and
teacher, i.e. |y | =~ 0 with very probable inversion



Features:

ot 05 ° w = 0.90
3.5F
V@ °
p=038 2.5
|
1.5}
p=095 -
0.5¢
p=0.99

CUST/ \/@

e learning from mistakes

e adaptive behavior forr S < 0

e no cut—off but f,; — 0 with p —1
student confidence is not helpful, because examples
with large |z | are corrupted by noise with very lit-
tle probability

Note: the dependence of,,; on the (unknown) noise
level w is only throughe, :

1 T
. V@Q tan’(me,) XP [_5 tanZ(mz, G]
op

- 1 xS
V2 tan(me,) @ (tan(ﬂsp) \/5)

—_
~—
N}

/ V=
( tan(me,) = Vi tan(me,) = "




Exercise:the limit of small prediction error (p,w — 1)

tan®(me,)

O(—x St) (—x S7)

(relaxation alg. )

lim —
sp—>0 fopt

tan®(me,)

effective learning rate

2
nip,w) = tag [arccos(p)] (performance dependent)
tan®|arccos(wp)]

nla) = clw)/Va (explicitly « —dep.)

Summary
e output noisecorrupts all examples equally efficient
encouragesonfidencein the student if | z | is large

cut—offat x = —c

J’\ cocsgocof1

On-line Gibbs algorithm

e Weight noiseaffects mainly examples with y | =~ 0
hindersfine—tuningfor J ~ B

decaying learning rate)

N X €gg x a2




Remarks and Questions

e In more realistic situations botature andstrength
of the noise are unknown; requires on—line estimation
of performance, and assignment of thlameto the
different possible sources (according ta” | )

e In the presence of weight ammitput noise the more
drastic effect of weight noise dominates, i.e.

— e, < a2 asymptotically

e Why is Hebbian learning already optimal in the pres-
ence of weight noise? (apart from pre—factors)

General resultsw.r.t. “on—line vs. off-line learning™:

Opper, 1995
Kinouchi and Caticha, 1995
van den Broeck, Reimann, 1996

optimal on—line is identical with optimal off-line asymp-
totics forsmoothprocesses, e.g. weight noise

optimal on—line coincides with optimal off—line asymp-
totics apart from a prefactor (2) foon—smootiprocesses,
e.g. output noise



Learning from clustered input data
(Meir (1995), Barkai et al (1993), Riegler et al (1996))
expect in realistic situations that the density of observed
Inputs reflects features which are relevant for the classi-
fication
examples: hand written digits “3” and “7”

medical data for diagnosis

a simple model:
P(&) with a single symmetry breaking direction

Ce RY with C*=1,eg.al C;=1/VN

P(€) = 1/2 £ P(élo)

1 1
exp - (& — maCj)Q

| ==

Pglo) = =

7=1 2T

two overlapping clusters of data centered at mC
dummy variableos denotes the cluster membership

conditional averages((...)) over P(&|o)

o

(&), = maCj = O(1/VN)
(& )y —m O =1 (€° = N)
<€j€k>0 —m2CjC’k = ( for j;é]f



overlap z = C- & .

(2)y =% Cj (&), = mo (bu (s)= L p 2o )
J
<22>0 :ﬁ0j0k<£j£k>g

= Z(1+mQCj2)Cjz+ > C’?C,f’m? = ... =14+m?
J J:k(j#k)

ie. (2°) — (z)2 =1, but (%) — (2)* =1+m?

vector J with J-C =D, z=J-&

(), =mDo (%) =Q + m’D?
(r2) = D(1+m?
(2m)~1 1(z — Dy)* 1

— (y—mo)’

Ji_D2 P Ty T pr T o

for D =0 double Gaussian structure is mdible and
P(x,y|o) factorizes

P(x,ylo) =



Linearly separable classification of clustered data

symmetry breaking dirC gyl . o
teacher vectorB . TYJ

Sr(§) = sign(B - £)

parameter y =B-C

x quantifies the alignment of the rule with the under-
lying structure in input space, i.e. its relevance for the
classification

expectation:
any x > 0 should be helpful in learning the concept

R—J.B, D=J-C, y=B-C
1

P(x,y,z) = 5 _ijﬂ P(x,y,z|c) with conditional moments

(y). = mxo, (y*) =1+m*x
(zy), = R+m? xD, (yz), =x(1+m’)

(others given above)




generalization error:
€9 = <®<_:USR> >(x,y)

mD
V@

mD//\/@th) (tR/\/@ —Xm)

= 0em) o - FQ

| +2

—00

differential equations for modified Hebbian learning:
(averages over fullP(z,y, z) )

dR dD dQ

o= = {fySr) = (fz5r), == (2f 2 Sp+ f?)

Hebbian Learning (f =1) (analytically solvable)

2 1.2 9 Xm
() J;e + xm er 2 e
2 1.2 9 Xm
D(a) = —e 22X f| ==
() X@e + m er (ﬂ) o
2
Qo) = |14+ m erf (%)D—I— £e_%m2X2R a +1
T
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0.40 f :
} OS@ E:‘:'.i\ = Hebb
w E ]
0.20F
0.10F " e 1 Perceptron
0.00 b -2 Relaxation
0O 10 20 30 40 50 60
X

Hebbian trainindails to learn the I.s. rule (in general)

asymptotically: linear combination of teacher aqil

2 2 9 X m
J o Zemi2p f()C
— 7r€ + m er \/Q

successful learning, — 0 is only possible if

m =0 (irrelevant structure vector)
x =1 (perfect alignment with the rule)

x =0 (learning in the space orthogonal ©© )

One can show more generally:

Hebb student can only generalize perfectly far— oo when B
is an eigenvector of the covariance matri{ = ( £¢' >P(€) with
elements M, = (&) . Here: eitherB||C or B L C




Hebbian perfect generalization with, oc a~'/% is an

artefact of assuming an isotropic data distribution!

Learning from mistakes

e Rosenblatt Perceptron (f = O(—xSg)

... asymptotics:

1/9 1/3
(a0 — 00) = - <36X2m2) o 1/3

The perceptron algorithm is fast for non—malicious
Input distributions (E.B. Baum, 1990)

(Exercise:suggest a candidate for a “malicious” input distribution )
e AdaTron, Relaxation (f = (—zSg)O(—xSg)

... asymptotics:
3

gglax — 00) = 20y

Independent of the structure (gain for small)



2 Learning by on—line gradient descent
(Amari, 1967,1995)
Commonly used in practical applications:

multilayered neural networks with continuous activation
functions, where output is a differentiable function of the
adaptive parameters

learning based on the gradient of a continuous cost fct.

popular: backpropagation of error

see for instance (Chauvin and Rumelhart, 1995)

Exercise: The “linear perceptron”
student: Sy =z =J-€ € R
teacher: Sp =y =B-£€ € IR with B*=1

training and performance evaluation are based on the gliadreor

1

£(€) = 5(.91: —y)* calculatee, = (g(€))

consider the training dynamics

I(pr) = L) — - Ve(€)

analyse on-line learning from random examplég”, v" }

in analogy to the simplest case considered for the signepé&an
de

Show that — = (n* —2
dOé (77 n) 69

and investigate the role of the learning rage



Multilayered, feed—forward neural networks

example architecture: the6ft—committee machiné

K weights w;

single (linear) output unit

hidden unitactivation:

g(x;) withargumentz; =J, - &

transfer function: sigmoidal g(x) ,e.g. g(x) = tanh(x)
here: (for analytical reasons)

L 2 x/\/§ —1? /
g(x) = erf (\/i):\/% g e dt, gl(zr) = o

total output:

S = ¢§1 w; g(x;) = '§1 w; erf (\%)



Note: (Cybenko, 1989)

a network with the slightly more complicated output

wig(‘]i € — 19@)

LM

S(€) =

(4

IS auniversal approximatoif

— ¢ continuous, sigmoidal

— {J;,9;,w; } adaptive parameters

— K unrestricted (might need very largg )

Student teacher scenario

assume the same architecture in student and teacher, but

K h.u. inthe student vsM h.u. in the teacher

K =M perfectly learnable rules
K > M overlearnablerules

K < M unlearnable rules

We will focus on matching architectur€x< = M) inthe
following



The error measure

one (obvious) choice for continuous outputs is

(€) = (Su(€) — Sn(E)

1/ K M 2
— 9 (Z_Zl wzg<x2> - n§1 Un g(?Jﬂ))

where z; = J; - £, y, = B;- &

popular off-line training energy:

H = v c(¢") foragiven D = {£" Sp(€")},.;_p

On-line gradient descent (Biehl, Schwarze, 1995)

sequence of examples in discrete time

Jil) = 1) — -V =(€")

N (n—1)
_ N "
wilp) = wilp=1) Vi, €

learning raten = O(1) for(J7 = O(1))

here: the same; everywhere in the network



Isotropic, uncorrelated input data:

(&) =0, (&) =06wbm  (€)VP=N

........

K + M correlated Gaussians with zero mean and

<$z$k> — Qz‘k =J; - Ji :Qki
<$z’yn> — Rm :Jan

<ynym> — Tmn — BmBn :Tnm

teacher—teacher overlags,,, and weightsuv,
specify properties of the rule

order parameters and weights: { Rin, Qir, w; }

are sufficient to describe largeN — oo) students

microscopics: K N + N degrees of freedom
macroscipics: K(K —1)/2+ KM + K  quantities



Generalization error: eg = (€(&))pe

average over the Gaussian densi { x;, v, })
can be performed analytically (fog(z) = erf(z/v2) )

(Saad and Solla, 1995)

£, = l § wW; Wy arcsin Qir
e Py = I I+ Qiv/I+ Qm

by ' Lo
s Uy, Uy, QICSIN ATTo I T

—2 > > w;v,arcsin

K M Rin
i=1n=1 \/1 + szz\/1 + Lo

The error measure and hence the generalization error re-
flect symmetries of the soft—committee machine

most importantpermutation symmetry
Invariance under permutation bfanches { J;, w; }



A simple case:

¢ hidden—to—output weights: v, = 1

e a priori knowledge ofv,, , fixed w; = v; =1

weight vector update:

J(k) = ) — 1 [Su(€") — Sn(€")] o (o) €

where 2 = J;(u—1) - €
Recursion relations e.g. for R;, = J; - B,
Rin(pt) = Rinlp=1) — L 60y

N "

with o' = ¢'(zf) AF

K M
and A" =S —Sp = | & gl) - ¥ g(yl)

e average over latest example
e self-averaging assumption for all order parameters

e continuous time limiteaw = /N



do — _77<5iyn>
[@F
dak = —n(dzi+diz;) + n’ (0;05)

All averages on the r.n.s. can be performed analytically,
(for arbitrary K, M ) (Saad,Solla,1995)

one obtains a system of first order ODE’s
for the order parametery R;,(a), Qij(a) }

numerical integration yieldgarning curve e4(o)
specify: K, M, matrix T,,,, learning rate;
initial conditions

Example: K =M =2, T,»n = 0um
branch symmetric subspace:
Riz‘:RfOr’izl,Q Rij:SfOri#j
Qi=Q for i=1,2 Qp=20C

branch symmetry

IS preserved under the dynamics if satisfied initially
IS approached from quite general initial conditions



generic learning curves:

] Rig, Qi
| | Rz’jan’j
a
‘, AHA!
Eg X e

Observations:

e perfect generalization is achieved

e exponential asymptoticsz, oc e~

for finite learning ratesn < 7.

e learning process is dominated by
guasi—stationarplateau stateswith

Rz‘j, Qij) Eg N const.

A\



Asymptotics

here: R— 1,5 —0,Q —-1,C — 0
def. VW = (R—1,5,Q—1,C)"

The dynamics equations can be linearized Y6¢) — 0 ,
one obtains the form

av @
do

_ m@y@

where the matrixm® is given by derivatives of the
egs. of motion w.r.t. the order parameters (in the limit
v@d 0 )

The decrease of the components ¥fY is o« e,
where ) is the largest eigenvalue ah¥

the two relevant eigenvalues:

e
0.00 7\‘\\‘ L L e B S B \l‘ ]
~0.05F T Ao
~0.10 1
7O¢157 " " " 1 " " " 1 " " " 1 " " " 1 L L L Il "
00 02 04 06 08 1.0

7

successful learning only for subcritical learning rate< 7,
(solid straight line: A\, for the system with adjustabla); )



Plateau states

simplest (and most important) plateaus correspond to sym-
metric,unspecializedstudent configurations

K
J, ~ J x Zl B, forall t=1,2... K

exact equalityJ; = J would be preserved by the
learning algorithm, independent of the actual scenario!

As a consequence, a fixed point of the form
always exists

weak repulsion from the fixed point (small enough)
eventually allows fostudent specialization

(additional, less symmetric plateaus can be present!)

Plateau length

properties of the fixed point,
i.e. escape timer,,. oc A -

€SC

determined by (characteristic eigenvalue of linearization)

Initial deviation from the symmetry of
the fixed point




K=M=2 n=15

.05

04 \
03}
&
02}
01}
O L L
0 50 100 150 200 2
a

Xp =107° 1078 107 10712

R11<O> RQQ(O) = RO ~ 0
Rm(O) Ry+ Xp
Ry1(0) = Ry — Xp

50

deV|at|On X(Oé) ~ |R12 — Rll‘ X eTescCV

plateau length for different values ok :

(2)
1 2 X
(ap(Xp) — (X5 ) = 7o In (Xﬁ)]
R

What does this imply for realistic situations ?

(with no control of initial student/teacher overlaps)



Realistic initial conditions

e.g. random, uncorrelated studengs(0)

typical overlaps:

Qii(0) = Q Qir(0) = O(\/lﬁ)
o= o( )

expect also deviations Xz ~ |R;, — R;;| = O (

plateau lengths «,, o In(N)
diverges in the thermodynamic limit!

1 I I I I I

0000
0.9 N=100 © 0® g .
N=500 & o° b

0.8 N=1000 O
0.7
0.6
0.5
0.3
0.2
0.1

0 SRR o

0 50 100 150 200 250 300
a

perfect learning is a finite size effect



Further topics

e overlearnable/unlearnable scenarios

e adaptive second layer weights

e learning from noisy examples

e second order methodsatural gradient descent
e globally/locally optimal learning algorithms

e finite—size effects

e on—line learning from limited training sets

e relation on-line / off-line learning

“master references:”
D. Saad (ed.)On-line learning in Neural Network4998

covers many of these topics and gives up to date refs.



References (very incomplete and not quite up to date)

S. Amari, A theory of adaptive pattern classifiertEEEE Trans. EC-16
(1967), 299

S. Amari,Backpropagation and stochastic gradient descent metNediro-
computingb, 185

J.K.Anlauf and M.BiehlThe AdaTron: an adaptive perceptron algorithm
Europhys.Lett.10(1990) 687

N. Barkai, H.S. Seung, and H. Sompolins&n—line learning of Dichotomigs
in: G. Tesauro et al. (edsAdvances in Neural Information Processing Sys-
tems 7 Morgan Kaufmann (San Francisco) 1995

N. Barkai, H.S. Seung and H. Sompolinsi§caling Laws in Learning of
Classification Task€Phys.Rev.Lett.70(1993) 3167

E.B. Baum, The Perceptron Algorithm is Fast for Nonmalicious Distribu
tions, Neural. Comp2 (1990) 248

S. BeckerUnsupervised Learning Procedures for Neural Netwadrks]. of
Neural Systems, Vol. 2, Nos. 1&2 (1991), 17

M. Biehl, An exactly solvable model of unsupervised learnkgyophys.Lett.
25(1994) 391

M. Biehl, A. Freking, G. Reentf)ynamics of on-line competitive learning
Europhys.Lett.38(1997) 73

M. Biehl and P. RieglerQn—line learning with a perceptroriturophys.Lett.
25(1994) 391

M. Biehl, P. Riegler, and C. \bhler, Transient dynamics of on—line learning
in two—layered neural networkd.Phys.A29 (1996) 4769

M. Biehl and E. Sclhisser,Dynamics of unsupervised principal component
analysis J.Phys.A31 (1998) L97

M. Biehl, P. Riegler, and M. Stechettgarning from noisy data: an exactly
solvable modelPhys.Rev.E52 (1995) R4624



M. Biehl and H. SchwarzeDn-line learning of a time—dependent rukeu-
rophys.Lett. 20(1992) 733

M. Biehl and H. Schwarzd,earning drifting concepts with neural networks
J.Phys.A26 (1993) 2651

M. Biehl and H. Schwarzé,earning by online gradient descedtPhys.A28
(1995) 643

C. Bishop,Neural networks for pattern recognitip@xford University Press
(Oxford, UK) 1995

M. Copelli, R. Eichhorn, O. Kinouchi, M. Biehl, R. Simonet#. Riegler, and
N. CatichaNoise Robustness in Multilayer Neural Netwqirkarophys.Lett.
37(1997) 432

M. Copelliand N. Catich&n-line learning in the committee machjdePhys.
A28 (1995) 1615

M. Copelli, O. Kinouchi, and N. Catich&quivalence between learning in
noisy perceptrons and tree committee machifys.Rev.E53(1996) 6341

Y. Chauvin and D.E. Rumelhart (edsBackpropagation: Theory, Architec-
tures, and Applicationd.awrence Erlbaum (Hillsdale, NJ), 1995

G. Cybenko,Approximation by Superpositions of a Sigmoidal Function
Math. of Control, Signals, and Syster2$1989) 303

E. Gardner,The Space of Interactions in Neural Network Model€Phys.
A21(1988) 257

E. Gardner and B. DerridaQptimal storage properties of neural network
models J.Phys.A21 (1988) 271

G. Gyorgyi and N. TishbyStatistical Theory of Learning a Ryla: Neural
Networks and Spin Glassg¥/.K. Theumann and R. &berle (eds.), World
Scientific (Singapore), 1990

G. Gyorgyi, Inference of a Rule by a Neural Network with Thermal Ngise
Phys.Rev.Lett.64 (1990) 2957



L.K. Hansen, R. Pathria and P. Salom@&ugchastic Dynamics of Supervised
Learning J.Phys.A26 (1993) 63

D.O. Hebb:The Organisation of BehavipWiley (New York), 1949

J.A. Hertz, A. Krogh and R.G. Palmdntroduction to the Theory of Neural
ComputationAddison—-Wesley (Redwood City, CA), 1991

T.M. Heskes and B. Kappehearning Processes in neural netwqiiRBys.Rev.
A44(1991) 2718

T.M. Heskes and B. Kappei@n-line learning processes in artificial neural
networks in Mathematical Approaches to Neural Netwarksd. J.G. Taylor,
North Holland (Amsterdam), 1993

O. Kinouchi and N. CatichaDptimal Generalization in PerceptrqrisPhys.
A25(1992) 6243

O. Kinouchi and N. Catichd,ower bounds on generalization errors for drift-
ing rules J.Phys.A26 (1993) 6161

O. Kinouchi and N. Caticha)n-line vs. off-line learning in the linear per-
ceptron: a comparative studyhys.Rev.E52 (1995) 2878

J. Kim and H. SompolinskyQn—line Gibbs Learning\Vorabdruck, Hebrew
University (Jerusalem), 1995

W. Kinzel and P. Rujan|/mproving a Networks Generalization Ability by
Selecting Exampleg&£urophys.Lett.13(1990) 472

A. Kuh, Th. Petsche and R.L. Rivesticrementally Learning Time—varying
Half—planesin: Neural Information Processing Systemsd. J.E. Moody,
S.J. Hanson and R.P. Lippmann, Morgan Kaufmann (San Mai&)p,1092

R. Meir, Learning Algorithms, Input Distributions and Generaliaat Neu-
ral Computatiorvy (1995) 144

M.L. Minsky and S. PaperRerceptrondMIT Press (Cambridge, MA), 1969
and 1988.

B. Muller, J. Reinhardt and M.T. Stricklanfdeural Networks, An Introduc-
tion, 2. Auflage, Springer (Berlin), 1995



E. Oja, A Simplified Neuron Model as a Principal Component Analyzer
J.Math.Biol.15(1982) 267

M. Opper, Online vs. Offline Learning from Random Examples: General
ResultsPhys.Rev.Lett.77 (1996) 4671

M. Opper and D. HaussleGeneralization Performance of Bayes Optimal
Classification Algorithm for Learning a Perceptréthys.Rev.Lett66(1991)
2677

M. Opper and D. Haussle€alculation of the Learning Curve of Bayes Op-
timal Classification Algorithm for Learning a PerceptrontiVNoise, in:
Proc. of the 4th Annual Workshop on Computational Learnihg@dry, eds.
M.K. Warmuth and L.G. Valliant, Morgan Kaufmann (San Mat€ad)), 1991

M. Opper and W. KinzelDynamics of Learningin: Models of Neural Net-
works, eds. E. Domany, J.L. van Hemmen and K. Schulten, Springti(B,
1991

M. Opper and W. KinzelStatistical Mechanics of Generalizatian: Physics
of Neural Networks Il| eds. E. Domany, J.L. van Hemmen and K. Schulten,
Springer (Berlin), in Druck

G. Radons, H. Schuster and D. WernerParallel Processing in Neural Sys-
tems and Computersds. R. Eckmiller et al., Elsevier (North Holland), 1990

G. Reents and R. Urbanczi®elf—averaging in on—line learninghys.Rev.Lett.
80(1998) 5448

P. Riegler and M. BiehlQn-line backpropagation in two—layered netwaqrks
J.Phys. A28 (1995) L507

P. Riegler, M. Biehl, S.A. Solla, C. Maran@@n-line learning from clustered
input examplegProc. of the 7th Italian Workshop on Neural Networks 1995
World Scientific (Singapore) 1996

F. RosenblattPrinciples of NeurodynamicSpartan Books (New York, NY),
1962

D. Saad (ed.)On-line learning in neural network<Cambridge University
Press (Cambridge, UK) 1998



D. Saad and S.A. Soll&xact solution for on—line learning in multilayer neu-
ral networks Phys.Rev.Lett.74 (1995) 4337, and

D. Saad and S.A. Soll@n-line learning in soft committee machin@hys.Rev.
E52(1995) 4225

H.S. Seung, H. Sompolinsky and N. Tishi8tatistical Mechanics of Learn-
Ing From ExamplesPhys.Rev.A45 (1992) 6056

F. Vallet, The Hebb Rule for Learning Separable Boolean Functionstri-ea
ing and Generalizatigreurophys.Lett.8 (1989) 747

T.L.H. Watkin, A. Rau and M. BiehlThe statistical mechanics of learning a
rule, Rev.Mod.Phys65 (1993) 499

C. van den Broeck and P. Reimatumsupervised learning by examples: on—
line vs. off—ling Phys.Rev.Lett.76 (1996) 2188

W. Wiegerinck and T. Heske€)n-line learning with time—correlated pat-
terns Europhys.Lett.28 (1994) 451



