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Introduction

The aim of this mini-course is to introduce categorical groups as a topic of
research, interesting in and of itself, and to show that they are a higher dimen-
sional gadget useful for studying familiar constructions and for understanding
better certain classical results in (homological) algebra.
If you wish to enjoy this mini-course, please come armed with basic knowledge of
monoidal categories, 2-categories, and internal categories. Sections 7.1, 7.2 and
8.1 of [1] and Sections 6.1 and 6.4 of [2] cover all the needed material. Monoidal
categories and 2-categories are also covered by [5], which will be made available
to the participants.

Categorical Groups

In the first lesson, I will introduce the notion of a categorical group with
several examples from homological algebra, ring theory, algebraic topology and
algebraic K-theory. I will also discuss the links among categorical groups, inter-
nal groupoids in groups, and group extensions.

Abelian 2-categories

The second lesson will be devoted to the theory of symmetric categorical
groups, starting from strong homotopy kernels and cokernels and ending at long
exact sequences of homology categorical groups, which leads to the axiomatic
notion of an abelian 2-category.

Homological Algebra

In the third lesson, two applications of the higher dimensional point of view
introduced in Lessons 1 and 2 will be discussed. First, I will show that strong
homotopy kernels reveal the Snail Lemma, a generalization of the Snake Lemma
that remains completely hidden if we look at the Snake Lemma from the classical
“1-dimensional” point of view. Second, we will see that Sinh’s homotopical
classification of categorical groups subsumes the Mac Lane - Schreier theory of
group extensions.
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Lesson I: Categorical groups

My point of view on research in mathematics:

“Va savoir pourquoi une descente vue d’en bas ressemble tellement à une
montée.”
Goofy, Le super-héros est fatigué, Disney Studio (foreign market stories), 1969.

The aim of Lesson 1 is:

1. To discover the definition of categorical group starting from a very basic
example, the cokernel of a morphism between abelian groups.

2. To illustrate the notion of categorical group with some examples coming
from homological algebra, ring theory, algebraic topology, and algebraic
K-theory.

3. To understand the relation between categorical groups, internal groupoids
in groups, crossed modules, and group extensions.
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Chapter 1

The definition

If I write the equation

∀ A,B ∈ C, A×B ' A+B

you immediately think to abelian groups or, more in general, to abelian cate-
gories or, more in general, to additive categories. If I write the equation

∀ f : A→ B ∈ C, Ker(f) ' Coker(f)

you immediately think that I’m a bit crazy: indeed, if for every arrow f one has
Ker(f) ' Coker(f), then every object in C is isomorphic to the zero object.

The problem with the “wrong equation” Ker(f) ' Coker(f) is that, in some
sense, the two terms live in different places. Let us look at what happens in the
category Ab of abelian groups.

1.1 Example. Let f : A → B be an arrow in Ab. Its cokernel is the set of
equivalence classes

Coker(f) = {[b] | b ∈ B}

with b1 ≡ b2 if there exists a ∈ A such that b1 + f(a) = b2, and operations
defined on representatives, that is, [b1] + [b2] = [b1 + b2] and 0 = [0]. But what
is the structure of Coker(f) before passing to the quotient?
We can describe a category Coker(f) as follows: the objects are the elements
of B, and an arrow a : b1 → b2 is an element a ∈ A such that b1 + f(a) = b2.
The composition is the sum in A and the identity on an object b ∈ B is the zero
element of A. Moreover, Coker(f) has a monoidal structure

(a : b1 → b2)⊗ (a′ : b′1 → b′2) = (a+ a′ : b1 + b′1 → b2 + b′2)

with unit object the zero element of B. Finally, each arrow in Coker(f) is invert-
ible with respect to the composition, the inverse of a : b1 → b2 is −a : b2 → b1,
and each object of Coker(f) is invertible with respect to the tensor product, the
inverse of b is −b.

3



CHAPTER 1. THE DEFINITION

Clearly, the set of isomorphism classes of objects of Coker(f) is nothing but the
usual cokernel of f :

π0(Coker(f)) = Coker(f)

But Coker(f) is not just an intermediate step to construct the usual cokernel: it
contains more information than Coker(f). Indeed, the group of automorphisms
of the unit object of Coker(f) precisely is the kernel of f :

π1(Coker(f)) = Ker(f)

and this is the right form of the “wrong equation” I considered at the beginning.

With Example 1.1 in mind, we can give the definition of categorical group.

1.2 Definition. The 2-category CG of categorical groups.

1. The objects of CG are categorical groups (also called cat-groups, 2-groups,
gr-categories, categories with a group structure). A categorical group is a
monoidal category G = (G,⊗, I, a, l, r) such that

(a) each arrow is an isomorphism, and

(b) each object is weakly invertible with respect to the tensor product:

∀ X ∈ G ∃ X∗ ∈ G : X ⊗X∗ ' I ' X∗ ⊗X

2. The arrows of CG are monoidal functors F = (F, F2, FI) : G→ H with

FX,Y2 : FX ⊗ FY → F (X ⊗ Y ) FI : I → FI

3. The 2-arrows of CG are monoidal natural transformation α : F ⇒ G

FX ⊗ FY
FX,Y2 //

αX⊗αY
��

F (X ⊗ Y )

αX⊗Y

��
GX ⊗GY

GX,Y2

// G(X ⊗ Y )

I
FI //

GI   AAAAAAAA FI

αI

��
GI

1.3 Exercise.

1. Categorical groups look like groups.

(a) Let G be a monoidal groupoid such that for any object X there exists
an object X∗ such that X ⊗X∗ ' I. Prove that X∗ ⊗X ' I holds
true for any X.

(b) Let F : G → H be a functor between categorical groups and assume
that FX ⊗FY ' F (X ⊗ Y ) for every X,Y ∈ G. Prove that I ' FI.

2. Categorical groups are more than groups.

September 9, 2014 4



CHAPTER 1. THE DEFINITION

(a) Let G be a monoidal groupoid such that for any object X there exists
an object X∗ and an arrow ηX : I → X⊗X∗. Prove that there exists
a unique arrow εX : X∗⊗X → I such that (omitting the associativity
isomorphisms)

I ⊗X
ηX⊗id // X ⊗X∗ ⊗X

id⊗εX
��

X

lX

OO

rX
// X ⊗ I

X∗ ⊗ I
id⊗ηX // X∗ ⊗X ⊗X∗

εX⊗id

��
X∗

rX∗

OO

lX∗
// I ⊗X∗

The 4-tuple (X,X∗, ηX , εX) is called a duality in G.
(b) Let F : G→ H be a functor between categorical groups equipped and

let FX,Y2 : FX ⊗ FY → F (X ⊗ Y ) be a natural and coherent family
of arrows. Prove that there exists a unique arrow FI : I → FI such
that

I ⊗ FX
FI⊗id // FI ⊗ FX

F I,X2

��
FX

lFX

OO

F (lX)
// F (I ⊗X)

FX ⊗ I
id⊗FI // FX ⊗ FI

FX,I2

��
FX

rFX

OO

F (rX)
// F (X ⊗ I)

3. What about monoidal natural transformations between monoidal functors
between categorical groups?

4. Prove that in a categorical group the dual of an object is essentially unique:
given dualities (X,X∗, ηX , εX) and (X, X̂, αX , βX), there exists a unique

x : X∗ → X̂ such that

X ⊗X∗

id⊗x

��

X∗ ⊗X
εX

{{wwwwwwwww

x⊗id

��

I

ηX
ccGGGGGGGGG

αX{{xxxxxxxxx

X ⊗ X̂ X̂ ⊗X
βX

ccFFFFFFFFF

5. Prove that in a categorical group G the choice, for every object X, of a
duality (X,X∗, ηX , εX) induces a “monoidal” equivalence (−)∗ : G → G.
Solution: for a given arrow f : X → Y, define f∗ : X∗ → Y ∗ as follows:

X∗
id⊗ηY // X∗ ⊗ Y ⊗ Y ∗

id⊗f−1⊗id // X∗ ⊗X ⊗ Y ∗
εX⊗id // Y ∗

1.4 Definition. The 2-category SCG of symmetric categorical groups.

September 9, 2014 5



CHAPTER 1. THE DEFINITION

1. The objects of SCG are symmetric categorical groups (also called Picard
categories), that is, categorical groups which are symmetric as monoidal
categories. The symmetry will be denoted by cX,Y : X ⊗ Y → Y ⊗X.

2. The arrows of SCG are symmetric monoidal functors, that is, monoidal
functors F : G→ H compatible with the symmetry:

FX ⊗ FY
FX,Y2 //

cFX,FY

��

F (X ⊗ Y )

F (cX,Y )

��
FY ⊗ FX

FY,X2

// F (Y ⊗X)

3. The 2-arrows of SCG are monoidal natural transformations.

(There is also the 2-category BCG of braided categorical groups, with same
arrows and 2-arrows as SCG, but it is less relevant in these lessons.)

1.5 Exercise.

1. Define
π0 : CG→ Grp π1 : CG→ Ab

where Grp is the category of groups and Ab is the category of abelian
groups. Prove that π0 and π1 are 2-functors: if α : F ⇒ G is a 2-arrow in
CG, then π0(F ) = π0(G) and π1(F ) = π1(G).
Find convenient candidates

[−]0 : Grp→ CG [−]1 : Ab→ CG

in order to have π0 a [−]0 and [−]1 a π1.

2. Let F : G→ H be an arrow in CG. Prove that

(a) F is essentially surjective iff π0(F ) is surjective,

(b) F is faithful iff π1(F ) is injective,

(c) F is full iff π0(F ) is injective and π1(F ) is surjective.

Deduce that F is an equivalence in CG iff π0(F ) and π1(F ) are group
isomorphisms. (This last point is not completely obvious. Why?)

References for Chapter 1

Bla
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Chapter 2

Examples

I start with two strictly related examples of categorical groups arising in homo-
logical algebra.

2.1 Example. Fix two groups A and G with A abelian and consider the cate-
gory Ext(G,A) : objects are extensions, that is, exact sequences of the form

0 // A
χ // B

σ // G // 0

(with the group B not necessarily abelian) and arrows are group homomophisms
β : B → B′ such that

B
σ

  AAAAAAAA

β

��

A

χ
>>}}}}}}}}

χ′   AAAAAAA G

B′
σ′

>>}}}}}}}

Observe that, by the Five Lemma, Ext(G,A) is a groupoid. Fix now an action
(or operator) ϕ : G→ Aut(A) and consider the full subcategory OpExt(G,A,ϕ)
of Ext(G,A) of those extensions such that

A
χ // B

σ //

χ̄

��

G

ϕ{{xxxxxxxxx

Aut(A)

where χ̄ : B → Aut(A) is the action induced by the fact that A is isomorphic to
the kernel of σ. The groupoid OpExt(G,A,ϕ) is in fact a symmetric categorical
group: the unit object is the semi-direct product extension

0 // A
iA // Aoϕ G

pG // G // 0

7



CHAPTER 2. EXAMPLES

with operation

(a1, x1) oϕ (a2, x2) = (a1 + x1 · a2, x1x2)

and the tensor product is the Baer sum

(To be inserted)

Clearly, π0(OpExt(G,A,ϕ)) is the usual abelian group OpExt(G,A,ϕ) of iso-
morphism classes of extensions with fixed operator ϕ.

2.2 Example. As in Example 2.1, fix two groups A and G with A abelian
and an action ϕ : G → Aut(A). We can construct two abelian groups (with
point-wise sum in A)

C1(G,A) = {g : G→ A | g(1) = 0}

Z2(G,A,ϕ) =

{
f : G×G→ A | f(x, 1) = 0 = f(0, y)

x · f(y, z) + f(x, yz) = f(x, y) + f(xy, z)

}
and a group homomorphism

δ : C1(G,A)→ Z2(G,A,ϕ) , (δg)(x, y) = x · g(y)− g(xy) + g(x)

By considering the cokernel of δ as in Example 1.1, we get a symmetric categor-
ical group Coker(δ) which should be called the second cohomology categorical
group of G with coefficients in A. Moreover, there exists a symmetric monoidal
functor

E : Coker(δ)→ OpExt(G,A,ϕ) (f : G×G→ A) 7→ (A→ Aof G→ G)

where the operation in A of G is the semi-direct product deformed by the
factor-set f :

(a1, x1) of (a2, x2) = (a1 + x1 · a2 + f(x1, x2), x1x2)

Theorem: the functor E is an equivalence of symmetric categorical groups.

2.3 Exercise. The theorem stated in Example 2.2 is a “pay-one-take-two” re-
sult. Apply π0 and π1 to the equivalence E : Coker(δ) → OpExt(G,A,ϕ) and
get two classical isomorphisms.
Solution: - Using π0 you get the cohomological description of extensions :
H2(G,A,ϕ) ' OpExt(G,A,ϕ).
- Using π1 you get the isomorphism Der(G,A,ϕ) ' Autid(AoϕG) between the
group of derivations and the group of those automorphisms of AoϕG inducing
the identity on A and G.

Now two examples coming from ring theory. The first one is obvious.

September 9, 2014 8



CHAPTER 2. EXAMPLES

2.4 Example. Fix a commutative ring R with unit. The category R-Mod of
left R-modules is a symmetric monoidal category with tensor product ⊗R and
unit object R. The Picard categorical group of R is the subcategory Pic(R) of
R-Mod of those modules which are weakly invertible with respect to the tensor
product, and taking only isomorphisms as arrows. It is an exercise to check
that π0(Pic(R)) is the Picard group Pic(R) of R, usually defined as the group
of projective modules of constant rank 1.
This example can be obviously generalized: from any (symmetric) monoidal
category C we get a (symmetric) categorical group Pic(C) by taking weakly
invertible objects and isomorphisms between them.

2.5 Example. Fix a commutative ring R with unit. There are several (not
obviously) equivalent ways to define the Brauer group of R. My favorite one is
of course to construct first a symmetric categorical group and then taking its π0.
We start with the bicategory Bim(R) : objects are R-algebras (that is, monoids
in the monoidal category R-Mod), arrows M : A → B are A-B-bimodules, and
2-arrows are homomorphisms of bimodules. The identity arrow on an algebra
A is A itself, and the composition of two bimodules M : A→ B and N : B → C
is the tensor product over B, that is, the coequalizer

M ⊗B ⊗N
µM⊗id//
id⊗µN

// M ⊗N
q // M ⊗B N

(µ is the action) which inherits a bimodule structure M⊗bN : A→ C from those
of M and N because coequalizers in R-Mod are stable under tensor product. As
for any bicategory, if in Bim(R) we identify arrows when they are connected by
an invertible 2-arrow, we get a category Bim(R) which in fact is a symmetric
monoidal category (the tensor product and the unit object are as in R-Mod).
We can now define the Brauer categorical group of R as

Br(R) = Pic(Bim(R))

More explicitly, objects in Br(R) are Azumaya R-algebras, and arrows are
Morita equivalences:
- An isomorphism A ' B in Bim(R) is a bimodule M : A→ B such that there
exists another bimodule N : B → A such that M ⊗b N ' A and N ⊗AM ' B
as bimodules. By the Eilenberg-Watts theorem, this is the same as giving a
Morita equivalence, that is, an equivalence of categories A-Mod ' B-Mod.
- An algebra A in Bim(R) is weakly invertible with respect to the tensor product
if there exists another algebra B such that A⊗R B is isomorphic in Bim(R) to
R, that is, A⊗RB is Morita-equivalent to R. Such an algebra A is usually called
an Azumaya algebra.
Finally, π0(Br(R)) = Br(R) is the usual Brauer group of R described as the
group of Morita-equivalence classes of Azumaya algebras.

2.6 Exercise. Check that π1(Br(R)) = Pic(R) and π1(Pic(R)) = U(R), the
group of units of R (the elements of R invertible with respect to the multiplica-
tive structure).

September 9, 2014 9



CHAPTER 2. EXAMPLES

Now the expected example from algebraic topology.

2.7 Example. Recall that, for a pointed topological space Y, the following
homotopy invariants are defined:

1. π0(Y ), the pointed set of connected components;

2. π1(Y ) = π0(ΩY ), the fundamental group of Y, where Ω is the loop functor;

3. πn(Y ) = π0(ΩnY ), which is an abelian group if n ≥ 2.

These are “1-dimensional” homotopy invariants (pointed sets, groups, abelian
groups). We define now “2-dimensional” homotopy invariants:

1. Π1(Y ), the fundamental pointed groupoid of Y, the objects are the points
of Y, the arrows are the homotopy rel end-points classes of paths;

2. Π2(Y ) = Π1(ΩY ), the fundamental categorical group of Y ;

3. Π3(Y ) = Π1(Ω2Y ), which is a braided categorical group;

4. Πn+1(Y ) = Π1(ΩnY ), which is a symmetric categorical group if n ≥ 3.

Here, homotopy invariant means that

Π1 : Top∗ → Grpd∗, Π2 : Top∗ → CG, Π3 : Top∗ → BCG, Πn+1 : Top∗ → SCG

are 2-functors, where Top∗ is the 2-category of pointed topological spaces, con-
tinuous maps preserving the base point, and homotopy classes of homotopies.

2.8 Exercise. Go back from 2-dimensional to 1-dimensional homotopy invari-
ants. Check that

π0(Π1(Y )) = π0(Y ) and π1(Π1(Y )) = π1(Y )

More in general, check that

π0(Πn+1(Y )) = πn(Y ) and π1(Πn+1(Y )) = πn+1(Y )

(Sorry, notation does not help here.)

The last example is step zero in algebraic K-theory. The idea is simple, but
calculations are far to be easy.

2.9 Example. Recall that the full inclusion of the category of abelian groups
in the category of commutative monoids has a left adjoint:

CMon
r //

Ab
i

oo r a i

The left adjoint r can be described as the cokernel of the diagonal

M
∆ // M ×M

q // Coker(∆) = r(M)

September 9, 2014 10



CHAPTER 2. EXAMPLES

The cokernel is taken in the category CMon, but it is an abelian group because
the diagonal is a final morphism, see Exercise 2.10. More explicitly, r(M) can
be described as

r(M) =
M ×M
≡

where (b, a) ≡ (d, c) if there exist x, y ∈M such that x · a = y · c and x · b = y · d

•
b

���������
a

��@@@@@@@

• •

x

OO

y

��

•

•
d

__@@@@@@@ c

??�������

Now we can give the classical definition of the first abelian group in algebraic
K-theory: if M is a symmetric monoidal groupoid, then K0(M) = r(π0(M)).
What I want to do now is to present K0(M) as π0 of a convenient symmetric
categorical groups.
Theorem: the inclusion SCG → SMG of the 2-category of symmetric cate-
gorical groups in the 2-category of symmetric monoidal groupoids has a left
biadjoint, that I call K0.

SMG
K0 //

π0

��

SCG
i

oo

π0

��
CMon

[−]0

OO

r //
Ab

i
oo

[−]0

OO

Since in the previous diagram the part built up with right adjoints is obviously
commutative, the part built up with left adjoints is also commutative (eventually
up to a natural isomorphism). Therefore, we can describe K0(M) as π0 of a
symmetric categorical group, as desired:

π0(K0(M)) ' r(π0(M)) = K0(M)

2.10 Exercise.

1. A morphism f : M → N in CMon is final when for all n ∈ N there exist
n′ ∈ N and m ∈M such that n · n′ = f(m). Prove that the cokernel of f
in CMon is an abelian group if and only if f is final.

2. Compare the explicit description of r(M) given in Example 2.9 with the
general construction of the category of fractions C[Σ−1] of a class Σ of
morphisms having a right calculus of fractions.
Solution: if you put C = [M ]1, the category with one object and the
elements of M as arrows, and Σ = M, then C[Σ−1] = [r(M)]1.

September 9, 2014 11



CHAPTER 2. EXAMPLES

3. If you know the classical definition of the abelian group K1(M), check that
π1(K0(M)) = K1(M).

References for Chapter 2

Bla
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Chapter 3

Facets of categorical groups

Among categorical groups, there are the strict ones. A categorical group is strict
if it is strict as a monoidal category, that is, the coherent natural isomorphisms
r, l, a are identities

X ⊗ I = X = I ⊗X , X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z

and moreover every object is strictly invertible with respect to the tensor prod-
uct

∀ X ∈ G ∃ X∗ ∈ G : X ⊗X∗ = I = X∗ ⊗X
Analogously, a monoidal functor (F, F2, FI) is strict if F2 and F0 are identities

FX ⊗ FY = F (X ⊗ Y ) , I = FI

In this way we get the 2-category StrCG of strict categorical groups, strict
monoidal functors, and monoidal natural transformations. The aim of this sec-
tion is to show that the 2-category StrCG has different descriptions (somehow
more popular that strict categorical groups) and to understand correctly the
inclusion

StrCG→ CG

3.1 Definition. An internal groupoid in Grp is a groupoid such that the set of
objects is a group, the set of arrows is a group, and all the strictural maps (do-
main, codomain, . . . ) are group homomorphisms. In a similar way one defines
internal functors and internal natural transformations in Grp. The notation is:

G : G1 ×c,d G1
m // G1

d //

c
// G0eoo G1

i // G1

where the following diagram is a pullback

G1 ×c,d G1
π2 //

π1

��

G1

d

��
G1 c

// G0

13



CHAPTER 3. FACETS OF CATEGORICAL GROUPS

F : G→ H : G1
F1 //

d

��
c

��

H1

d

��
c

��
G0

F0

// H0

α : F ⇒ G : G1

F1 //
G1

//

d

��
c

��

H1

d

��
c

��
G0

F0 //
G0

//

α

77ppppppppppppp
H0

3.2 Definition. A crossed module of groups is a diagram

G : G0[G
∗ // G

∂ // G0

where G0 and G are groups, ∗ and ∂ are group homomorhisms, and the following
is a kernel diagram

G0[G
k // G0 +G

[id,0] // G0

The homomorphisms ∗ and ∂ are required to satisfy the following conditions

G[G
∂[ id //

IG
��

G0[G
id [∂ //

∗
��

G0[G0

IG0

��
G

id
// G

∂
// G0

where IG is given, for any group G, by the followong composition

IG : G[G
k // G+G

[id,id] // G

A morphism F : G → H of crossed modules is given by a pair of group homo-
morphisms f : G→ H and f0 : G0 → H0 such that

G0[G
∗ //

f0[f

��

G
∂ //

f

��

G0

f0

��
H0[H ∗

// H
∂
// H0

(If you don’t like the operator bemolle [, you can replace it by cartesian product,
the homomorphism ∗ : G0[G → G by a group action · : G0 × G → G, and
IG : G[G→ G by conjugation G×G→ G.)

The following proposition states the announced equivalent descriptions of
StrCG. We denote by XMod the category of crossed modules of groups, and by
Grpd(Grp) the 2-category of internal groupoids in Grp.

September 9, 2014 14



CHAPTER 3. FACETS OF CATEGORICAL GROUPS

3.3 Proposition.

1. The 2-categories Grpd(Grp) and StrCG are equal.

2. The categories Grpd(Grp) (forget 2-arrows) and XMod are equivalent.

Proof. 1. Obvious: if G is an internal groupoid in Grp, then the monoidal
structure on objects and on arrows is provided by the group operation in G0

and G1. Conversely, if G is a strict categorical group, then the set of objects is
a group with respect to the tensor product, and the same holds for the set of
arrows.
2. Given an internal groupoid G as in Definition 3.1, we get a crossed module

G0[G
∗ // G

∂=g·d // G0

from the following diagram, where both rows are kernels

G0[G
k //

∗
��

G0 +G
[id,0] //

[e,g]

��

G0

id

��
G g

// G1 c
// G0

Conversely, if we start with a crossed module G as in Definition 3.2, we can
consider the coequalizer

G0[G
k //

∗
""EEEEEEEE G0 +G

q // GoG0

G

iG

;;wwwwwwwww

and taking G1 = GoG0 we get an internal groupoid

G1

d //

c
// G0eoo

with e = iG0 · q : G0 → G0 +G→ G1 and d and c such that

G
iG·q //

∂   @@@@@@@@ G1

d

��

G0

iG0
·q

oo

id}}||||||||

G0

G
iG·q //

0   @@@@@@@@ G1

c

��

G0

iG0
·q

oo

id}}||||||||

G0

Now that we have a better understanding of the 2-category StrCG, our next
goal is to have a better understanding of the inclusion StrCG → CG. For this,
let us consider an intermediate 2-category

StrCG→ MON→ CG
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The objects of MON are strict categorical groups (that is, internal groupoids in
Grp), whereas arrows and 2-arrows are not necessarily strict monoidal functors
and monoidal natural transformations.

3.4 Proposition. The full inclusion MON → CG is a biequivalence of 2-
categories.

Proof. This is a refinement of the classical (highly non trivial) theorem assert-
ing that every monoidal category is monoidally equivalent to a strict monoidal
category.

Thanks to Proposition 3.4, we can concentrate our attention on the not
full inclusion StrCG → MON. The next example provides a new link between
categorical groups and group extensions, and gives a way to understand the
distance between monoidal functors and strict monoidal (or internal) functors.

3.5 Example. Fix two groups G and H and consider the following diagram

Ext(G,H) // MON([G]0,Hol(H))oo

SectExt(G,H)

full

OO

// Grpd(Grp)([G]0,Hol(H))

full

OO

oo

Grpd(Grp)([G]0, [Aut(H)]0)

OO

SplitExt(G,H)

not full

OO

Ker
// Grp(G,Aut(H))

'

OO

ooo

On the left column from the top to the bottom, Ext(G,H) is the groupoid of
group extensions of the form

0 // H
χ // B

σ // G // 0

with arrows defined as in Example 2.1, and SectExt(G,H) is the full sub-
groupoid of those extensions such that σ : B → G admits a section in Grp.
An object in the groupoid SplitExt(G,H) is an extension together with a spec-
ified section i : G → B of σ : B → H, and arrows are morphisms of extensions
commuting also with the specified sections

B
σ

  AAAAAAAA

β

��

H

χ
>>||||||||

χ′   AAAAAAAA G

B′
σ′

>>}}}}}}}

B

β

��

G

i

``AAAAAAAA

i′~~}}}}}}}

B′
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The four objects on the right column are hom-groupoids (Grp is considered as a
2-category with only identity 2-arrows, so that the corresponding hom-groupoid
is just a set). The strict categorical group Hol(H) is the internal groupoid
corresponding, in the equivalence Grpd(Grp) ' XMod of Proposition 3.3, to the
crossed module of inner automorphisms

I : H → Aut(H) : Ix(y) = x · y · x−1 , Aut(H)×H → H : (f, x) 7→ f(x)

The rows are equivalences. The bottom one associates to a group homomor-
phism ϕ : G → Aut(H) the semi-direct product extension with its canonical
section

0 // H
iH // H oϕ G

pG
// G //

iGoo
0

and, in the opposite direction, associates to a split extension

0 // H
χ // B

σ
// G

ioo // 0

the action i · χ̄ : G → B → Aut(H), where χ̄ is the action induced by the fact
that H is the kernel of σ. The equivalence on the top of the diagram, and its
restriction to extensions with section, can be described as follows. Consider an
extension

0 // H
χ // B

σ // G // 0

and fix a set-theoretical section s : G → B of σ. We get a monoidal functor
F : [G]0 → Hol(H) defined on objects by

F0 : G→ Aut(H) , F0(x)(h) = s(x) · h · s(x)−1

and on arrows by

F1 : G→ H o Aut(H) , F1(x) = (1, F0(x))

and with monoidal structure F x,y2 : F0(x) ◦ F0(y)→ F0(x · y) given by

F2 : G×G→ H o Aut(H) , F2(x, y) = (s(x) · s(y) · s(x · y)−1, F0(x · y))

Since in the previous diagram we have equivalences

Ext(G,H) ' MON([G]0,Hol(H)) SectExt(G,H) ' Grpd(Grp)([G]0,Hol(H))

the “distance” between monoidal functors [G]0 → Hol(H) and internal functors
[G]0 → Hol(H) is the same as the “distance” between extensions of G by H and
extensions of G by H admitting a group-theoretical section: not every extension
admits a group-theoretical section just because the axiom of choice holds in Set
but not in Grp.
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The final comment in Example 3.5 suggests that, if we want to understand
correctly the inclusion

J : Grpd(Grp) = StrCG→ MON

we have to look at the role of the axiom of choice, and what is well-known is that
we need the axiom of choice to pass from weak equivalences to equivalences. To
make this analogy precise, we need two preliminary facts.

3.6 Remark. Let E : G→ H be a weak equivalence in Grpd(Grp), that is, an
internal functor wich is full, faithful and essentially surjective. Therefore, using
the axiom of choice in Set, the functor E has a quasi-inverse E∗ : H → G, but
in general such a quasi-inverse is not an internal functor (because the axiom of
choice does not hold in Grp). What is true is that for every weak equivalence
E in Grpd(Grp), the functor J(E) is an equivalence in MON. (Recall point 2
of Exercise 1.5: if a functor is an equivalence and is monoidal, then any quasi-
inverse can be equipped with a monoidal structure.)

3.7 Remark. Consider now any monoidal functor F : G → H between strict
categorical groups.We can construct the comma category (or strong homotopy
pullback)

F ↓ Id
F ′ //

E

��

H

Id

��
G

F
//

⇒
ϕ

H

An object of F ↓ Id is a triple (X ∈ G, x : FX → H,H ∈ H). An arrow
(X,x,H)→ (X ′, x′, H ′) is a pair of arrows f : X → X ′, h : H → H ′ such that

FX
x //

Ff

��

H

h

��
FX ′

x′
// H ′

The functors F ′ and E are the obvious projections, and the natural transfor-
mation ϕ is defined by

ϕ(X,x,H) = x : FX = F (E(X,x,H))→ F ′(X,x,H) = H

It is easy to check that F ↓ Id is a strict categorical group, E and F ′ are
internal functors, E is a weak equivalence, and ϕ is monoidal. In other words,
we have obtained a span decomposition (or tabulation) with the left leg a weak
equivalence

F ↓ Id
E∈Grpd(Grp)

||xxxxxxxx F ′∈Grpd(Grp)

""FFFFFFFF

'

G
F∈MON

// H
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Putting together Remark 3.6 and Remark 3.7, we have (almost) proved the
following result, which expresses in a precise way how far is MON (or CG) from
Grpd(Grp).

3.8 Proposition. The 2-functor J : Grpd(Grp) → MON is the bicategory of
fractions of Grpd(Grp) with respect to the class of weak equivalences. This
means that:

1. J(E) is an equivalence in MON for every weak equivalence E in Grpd(Grp),
and

2. J is universal with respect to such a condition.

References for Chapter 3

Bla
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Lesson II: Abelian
2-categories

My point of view on the teaching of mathematics:

“Il n’y a jamais mauvais élève, seulement mauvais enseignant.”
Jackie Chan, The Karate Kid, Columbia Pictures, 2010.

The aim of Lesson 2 is:

1. To study some constructions, essentially strong homotopy kernels and
strong homotopy cokernels, which can be performed in the 2-category
SCG and which lead to a convenient notion of exactness in SCG.

2. To give the definition of abelian 2-category, based on results obtained for
symmetric categorical groups, and to show some meaningful results which
hold true in any abelian 2-category.

3. To discuss the (not so obvious) relation between abelian categories and
abelian 2-categories.
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Chapter 4

Kernels, cokernels, and
exactness

4.1 Definition. Let F : G → H be an arrow in CG. The strong homotopy
kernel of F is the following diagram in CG :

G
F

��>>>>>>>>

Ker(F )

K(F )

;;xxxxxxxxx

0
//

⇑k(F )

H

Objects of Ker(F ) are pairs (X ∈ G, x : I → FX), and arrows f : (X,x)→ (Y, y)
of Ker(F ) are arrows f : X → Y in G such that

FX
Ff // FY

I

x

aaBBBBBBBB y

>>||||||||

The functor K(F ) : Ker(F )→ G is defined by

K(F ) : (X,x)
f // (Y, y) 7→ X

f // Y

The finctor 0: Ker(F )→ H is the constant functor sending every arrow on the
identity of the unit object. The natural transformation k(F ) : 0 ⇒ K(F ) · F is
defined by

k(F )(X,x) = x : 0(X,x) = I → FX = F (K(F ))(X,x)

Finally, observe that if F is in BCG or in SCG, then so is its strong homotopy
kernel.

23
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The basic questions about the strong homotopy kernel are: what Ker(F )
says about F ? What is the universal property of Ker(F ) ? The answer to the
first question is an exercise.

4.2 Exercise. Let F : G→ H be an arrow in CG. Prove that

1. F is faithful if and only if π1(Ker(F )) = 0.

2. F is full if and only if π0(Ker(F )) = 0.

3. F is full and faithful if and only if Ker(F ) ' I (the category with only one
arrow).

Now we look at the universal property.

4.3 Proposition. Let F : G→ H be an arrow in CG. The diagram

G
F

��>>>>>>>>

Ker(F )

K(F )

;;xxxxxxxxx

0
//

⇑k(F )

H

constructed in Definition 4.1 satisfies the following universal properties.

1. It is a strong homotopy kernel:

(a) For every diagram in CG of the form

G
F

��@@@@@@@

X

M

??~~~~~~~

0
//

⇑ϕ

H

there exists a unique M ′ : X→ Ker(F ) such that M ′ ·K(F ) = M and
M ′ · k(F ) = ϕ.

(b) For every diagram in CG of the form

Ker(F )
K(F )

##FFFFFFFFF

X

M
;;xxxxxxxxx

N ##FFFFFFFFF ⇓α G

Ker(F )

K(F )

;;xxxxxxxxx

with α compatible with k(F ), that is, such that

M ·K(F ) · F α·F +3 N ·K(F ) · F

M · 0

M ·k(F )

KS

N · 0

N ·k(F )

KS
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there exists a unique β : M ⇒ N such that β ·K(F ) = α.

2. It is a bikernel: For every diagram in CG of the form

G
F

��@@@@@@@

X

M

??~~~~~~~

0
//

⇑ϕ

H

there exists a fill-in, that is,

Ker(F )

K(F )

##FFFFFFFFF

X

M ′
;;xxxxxxxxx
M

//
⇓ϕ′

G

such that M ′ ·K(F ) · F
ϕ′·F +3 M · F

M ′ · 0

M ′·k(F )

KS

0

ϕ

KS

and for any other fill-in

Ker(F )

K(F )

##FFFFFFFFF

X

M ′′
;;xxxxxxxxx
M

//
⇓ϕ′′

G

M ′′ ·K(F ) · F
ϕ′′·F +3 M · F

M ′′ · 0

M ′′·k(F )

KS

0

ϕ

KS

there exists a unique ψ : M ′ ⇒M ′′ such that

M ′ ·K(F )
ψ·K(F ) +3

ϕ′  (JJJJJJJJJ

JJJJJJJJJ
M ′′ ·K(F )

ϕ′′u} ttttttttt

ttttttttt

M

Proof. 1. (a) Define M ′ : X→ Ker(F ) by

f : X → Y 7→ M(f) : (MX,ϕX : I → FMX)→ (MY,ϕY : I → FMY )

The fact that M(f) is an arrow of Ker(F ) is precisely the naturality of ϕ :

FMX
F (M(f)) // FMY

I

ϕX

bbFFFFFFFFF ϕY

<<yyyyyyyyy

(b) For M : X→ Ker(F ), let me write

MX = (MX,m(X) : I → F (MX))
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and similarly for NX, so that the components of α : M ·K(F )⇒ N ·K(F ) are
arrows in G of the form αX : MX → NX. We are looking for β : M ⇒ N, and
the condition β · K(F ) = α means that βX = αX , so that the proof reduces
to check that αX : (MX,m(X)) → (NX,n(X)) is an arrow in Ker(F ). This
means that

F (MX)
F (αX) // F (NX)

I

m(X)

ccGGGGGGGGG n(X)

;;xxxxxxxxx

must commute, and this commutativity is precisely the compatibility condition
between α and k(F ).
2. The universal property of type “strong homotopy kernel” implies the univer-
sal property of type “bikernel”. Indeed, for any X ∈ CG, we can consider the
following diagram in Grpd∗, where Ker(− · F ) is the strong homotopy kernel of
− · F in Grpd∗ and J is the canonical comparison

Ker(− · F )
K(−·F ) // CG(X,G)

−·F // CG(X,H)

CG(X,Ker(F ))

J

hhPPPPPPPPPPPP
−·K(F )

OO

Now, it is easy to check that the universal property of the strong homotopy
kernel means that J is an isomorphism of categories (that is, fully faithful and
bijective on objects), whereas the universal property of the bikernel means that
J is an equivalence of categories (that is, fully faithful and essentially surjective
on objects).

4.4 Remark. Here is a quite “ideological” comment on the difference between
the strong homotopy kernel and the bikernel. Despite the fact that the universal
property of the strong homotopy kernel is somehow easier to use, I prefer the
universal property of the bikernel. Indeed, the universal property of the strong
homotopy kernel determines it up to isomorphism of categories, whereas the uni-
versal property of the bikernel determines it only up to equivalence of categories.
Now, the notion of equivalence is a genuine 2-categorical notion, whereas the
notion of isomorphism of categories is not a 2-categorical notion (for example,
it is not stable under natural isomorphism). A more technical point in favour
of the bikernel comes from Lemma 4.11, which in particular implies that every
faithful arrow in SCG is equivalent (but in general not isomorphic) to the kernel
of its cokernel.

For the dual construction, we have to work in SCG. To work in CG or even
in BCG is not enough. The idea to describe the strong homotopy cokernel of an
arrow in SCG is the same idea followed in Example 1.1: with abelian groups, you
first construct a category, and then identify objects when they are isomorphic.
With symmetric categorical groups, you first construct a bicategory, and then
identify arrows when they are 2-isomorphic.
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4.5 Definition. Let F : G → H be an arrow in SCG. The strong homotopy
cokernel of F is the following diagram in SCG :

H
C(F )

$$HHHHHHHHH

G

F

??��������

0
//

⇓c(F )

Coker(F )

The objects of Coker(F ) are those of H. A pre-arrow (X, f) : A→ B in Coker(F )
is a pair with X ∈ G and f : A→ FX ⊗B in H. An arrow [X, f ] : A→ B is an
equivalence classe of pre-arrows, with two pre-arrows

f : A→ FX ⊗B and f ′ : A→ FX ′ ⊗B

being equivalent if there exists x : X → X ′ in G such that

FX ⊗B
F (x)⊗id // FX ′ ⊗B

A

f

ddHHHHHHHHH f ′

::uuuuuuuuu

The functor C(F ) : H → Coker(F ) is the identity on objects and it sends an
arrow f : A→ B on the arrow represented by the pair

(I, f · lB · (FI ⊗ id) : A→ B → I ⊗B → FI ⊗B)

The natural transformation c(F ) : F · C(F ) ⇒ 0 has component c(F )X repre-
sented by the pair

(X, rFX : FX → FX ⊗ I)

The symmetry of H enters in the picture in order to define the tensor product in
Coker(F ) : the tensor product of two arrows [X, f ] : A→ B and [Y, g] : C → D
is the arrow represented by the pair
X ⊗B, A⊗ C

f⊗g // FX ⊗B ⊗ FY ⊗D
id⊗cB,FY id // FX ⊗ FY ⊗B ⊗D

FX,Y2 ⊗id⊗ id

��
F (X ⊗ Y )⊗B ⊗D


The associativity, unit, and commutativity constraints of Coker(F ) come from
those in H via the functor C(F ). It is to prove that the commutativity of H is
natural also with respect to the arrows in Coker(F ) that we need a symmetry,
a braiding is not enough.
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Once again, the basic questions about the strong homotopy cokernel are:
what Coker(F ) says about F ? What is the universal property of Coker(F ) ?

4.6 Exercise. Let F : G→ H be an arrow in SCG. Prove that

1. F is essentially surjective if and only if π0(Coker(F )) = 0.

2. F is full if and only if π1(Coker(F )) = 0.

3. F is full and essentially surjective if and only if Coker(F ) ' I.

Here is another simple exercise which can help to grasp the difference be-
tween kernels and cokernels in (abelian) groups, and kernels and cokernels in
(symmetric) categorical groups.

4.7 Exercise.

1. In CG : Ker(G→ I) = G , Ker(I→ G) = [π1(G)]0

2. In SCG : Coker(G→ I) = [π0(G)]1 , Coker(I→ G) = G.

Now we look at the universal property. The explicit statements are dual of
those of Proposition 4.3 and we leave them to the reader.

4.8 Proposition. Let F : G→ H be an arrow in SCG. The diagram

H
C(F )

$$HHHHHHHHH

G

F

??��������

0
//

⇓c(F )

Coker(F )

constructed in Definition 4.5 satisfies the following universal properties.

1. It is a strong homotopy cokernel.

2. It is a bicokernel.

Proof. (Not really a proof) Consider a diagram in SCG of the form

H
M

��@@@@@@@

G

F

??~~~~~~~

0
//

⇓ϕ

X

The factorization M ′ : Coker(F ) → X of M through C(F ) sends an arrow
[X, f ] : A→ B on the arrow

MA
M(f) // M(FX ⊗B)

(MFX,B
2 )−1

// MFX ⊗MB
ϕX⊗id// I ⊗MB

l−1
MB // MB

The reader will find the following lemma useful in order to give a complete
proof of Proposition 4.8.
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4.9 Lemma. Let F : G→ H be an arrow in SCG and [X, f ] : A→ B an arrow
in Coker(F ). We get the following diagram in Coker(F ) :

A
[X,f ] //

C(F )(f)

��

B

C(F )(lB)

��
FX ⊗B

c(F )X⊗id
// I ⊗B

One more exercise on kernels and cokernels in SCG. It provides the definitive
solution to the “wrong equation” used at the beginning of Lesson 1 (compare
with Example 1.1).

4.10 Exercise.

1. Let F : G→ H be an arrow in SCG. Prove that π0(Ker(F )) ' π1(Coker(F )).

2. Let f : A→ B be in Ab. Recall that π0 a [−]0 and [−]1 a π1. (see Exercise
1.5) and apply point 1 to [f ]0 : [A]0 → [B]0 and to [f ]1 : [A]1 → [B]1.
Solution: π1(Coker[f ]0) = Ker(f) , π0(Ker[f ]1) = Coker(f).

3. More is true: if f : A→ B is in Ab, then Coker[f ]0 ' Ker[f ]1.

Now that we dispose of kernels and cokernels in SCG, we can study the
notion of exactness. The prototype of exact sequences should be of course

G
F

��>>>>>>>>

Ker(F )

K(F )

;;xxxxxxxxx

0
//

⇑k(F )

H

H
C(F )

$$HHHHHHHHH

G

F

??��������

0
//

⇓c(F )

Coker(F )

and a sequence of the form

B
G

��???????

A

F

??�������

0
//

ϕ'

C

will be declared “2-exact” if in some sense it looks like one of the prototypes.
We make precise this idea with the following lemma.

4.11 Lemma. Consider an arrow F : A→ B in SCG and construct the diagram

Ker(C(F ))

K(C(F ))

%%JJJJJJJJJJJ

'

Ker(F )
K(F ) // A

F1

99ttttttttttt F //

C(K(F )) %%JJJJJJJJJJJ B
C(F ) // Coker(F )

Coker(K(F ))

F2

99ttttttttttt
'
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1. F1 is full and essentially surjective, and K(C(F )) is faithful.

2. C(K(F )) is essentially surjective, and F2 is full and faithful.

The above factorizations of F form two different factorization systems (in a
2-categorical sense) in SCG.

4.12 Exercise. Check that in SCG the factorizations of Lemma 4.11 can be
obtained also via the following diagrams.

1. The (full and essentially surjective, faithful) factorization:

Coker(εKer(F ) ·K(F ))

''OOOOOOOOOOOOO

[π1Ker(F )]1
εKer(F )// Ker(F )

K(F ) // A F //

77ooooooooooooo

'

B

2. The (essentially surjective, full and faithful) factorization:

A F //

''OOOOOOOOOOOOO

'

B
C(F ) // Coker(F )

ηCoker(F )// [π0Coker(F )]0

Ker(C(F ) · ηCoker(F ))

77ooooooooooooo

4.13 Definition. Consider a sequence in CG or in SCG

B
G

��???????

A

F

??�������

0
//

ϕ'

C

We say that the sequence (F,ϕ,G) is 2-exact if the canonical factorization
F ′ : A→ Ker(G) of F through K(G) is full and essentially surjective.

Here is the expected result which makes the notion of 2-exactness self-dual
in the symmetric case.

4.14 Proposition. Consider the following diagram in SCG

A 0 //

F ��>>>>>>>>
F ′

{{xxxxxxxxx
'

C

'

Ker(G)
K(G)

// B
G

@@��������

C(F )
//

' ϕ

Coker(F )

G′
ddHHHHHHHHH

The following conditions are equivalent:
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1. F ′ is full and essentially surjective.

2. G′ is full and faithful.

4.15 Exercise. For an arrow F : A→ B in CG, check that

1. A F // B 0 // I is 2-exact iff F is full and essentially surjective,

2. I 0 // A F // B is 2-exact iff F is full and faithful.

The simple but fundamental fact about 2-exactness is the following result.

4.16 Lemma. If the sequence in CG

B
G

��???????

A

F

??�������

0
//

ϕ'

C

is 2-exact, then

π0A
π0(F ) // π0B

π0(G) // π0C and π1A
π1(F ) // π1B

π1(G) // π1C

are exact sequences in the usual sense.

4.17 Remark. The converse of Lemma 4.16 is not tru, here is a counter-
example. The sequence in SCG

I→ I→ [Z2]1

is not 2-exact. Nevertheless, its image under π0 is 0 → 0 → 0 and its image
under π1 is 0→ 0→ Z2, and both are exact sequences.

4.18 Corollary.

1. Consider an arrow in CG together with its kernel

Ker(F )
K(F ) // A F // B

We get an exact sequence of abelian groups and groups

π1Ker(F )→ π1A→ π1B→ π0Ker(F )→ π0A→ π0B

2. Consider an arrow in SCG together with its kernel and its cokernel

Ker(F )
K(F ) // A F // B

C(F ) // Coker(F )

We get an exact sequence of abelian groups

π1Ker(F ) // π1A // π1B // π1Coker(F )

ggggggggggggggggggggggggg

ggggggggggggggggggggggggg

π0Ker(F ) // π0A // π0B // π0Coker(F )
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Proof. 1. We construct the connecting homomorphism δ : π1B → π0Ker(F )
as follows:

δ : (b : IB → IB) 7→ [IA, b · FI : IB → IB → FIA]

We leave to the reader to check the exactness in π1B and in π0Ker(F ).
2. Obvious from Exercise 4.10 and Lemma 4.16.

The exact sequence of point 1 of Corollary 4.18 will appear again in the first
part of Lesson 3.

4.19 Remark. As already observed in the proof of Proposition 4.3, the con-
struction of Ker(F ) from F : A → B makes sense even if F is not an arrow
in CG, but just a pointed functor between pointed groupoids. Moreover, the
universal properties stated in Proposition 4.3 are still valid. (What fails in this
more general case is Exercise 4.2: it is no longer true that Ker(F ) measures
the fulness and the faithfulness of F.) In the same way, the formal definition of
2-exactness still makes sense for a sequence (Fϕ,G) in Grpd∗, and point 1 of
Corollary 4.18 remains true: from

Ker(F )
K(F ) // A F // B

in Grpd∗, we get an exact sequence of groups and pointed sets

π1Ker(F )→ π1A→ π1B→ π0Ker(F )→ π0A→ π0B

More in general, Lemma 4.16 holds true for 2-exact sequences in Grpd∗.

To illustrate the notion of 2-exactness, we go back to some examples.

4.20 Example. Here is the expected example from algebraic topology. Con-
sider a pointed continuous map between pointed topological spaces together
with its homotopy kernel

K(f)
k(f) // X

f // Y

Recall that the homotopy kernel is the subspace of X×Y [0,1] of the pairs of the
form (x ∈ X, y : ∗ → f(x)).

1. There is a 2-exact sequence of pointed groupoids

Π1(K(f))
Π1(k(f)) // Π1(X)

Π1(f) // Π1(Y )

2. In fact, there is a long 2-exact sequence of symmetric categorical groups,
braided categorical groups, categorical groups, and pointed groupoids

. . .→ Π2(K(f))→ Π2(X)→ Π2(Y )→ Π1(K(f))→ Π1(X)→ Π1(Y )
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3. Therefore, by applying π0 : Grpd∗ → Set∗, we get the usual homotopy
exact sequence

. . .→ π1(K(f))→ π1(X)→ π1(Y )→ π0(K(f))→ π0(X)→ π0(Y )

Proof. 1. To be inserted.
2. We have to prove the 2-exactness of

. . .→ Π2(K(f))→ Π2(X)→ Π2(Y )→ Π1(K(f))→ Π1(X)→ Π1(Y )

that is, of

. . .→ Π1(Ω K(f))→ Π1(ΩX)→ Π1(ΩY )→ Π1(K(f))→ Π1(X)→ Π1(Y )

But the Puppe sequence

. . .→ Ω2 K(f)→ Ω2X → Ω2Y → Ω K(f)→ ΩX → ΩY → K(f)→ X → Y

is homotopy equivalent to the sequence of iterated homotopy kernels

. . .→ K(kkkf)→ K(kkf)→ K(kf)→ K(f)→ X → Y

We can therefore conclude by applying point 1 to each point of this last sequence.
3. Obvious from point 2, because π0 sends 2-exact sequences in exact sequences
(Lemma 4.16 and Remark 4.19).

4.21 Remark. Point 1 of Corollary 4.18 is the tip of an iceberg. In this course
I don’t need the whole iceberg, but in the next example I need one step more
than in Corollary 4.18. If F : A → B is a pointed 2-functor between pointed
2-groupoids, we can construct the comma-2-groupoid

Ker(F )
K(F ) // A F // B

If we apply π0 (which identifies arrows when they are 2-isomorphic) and π1 (the
hom-groupoid at the base point), we get a 6-term 2-exact sequence of categorical
groups and pointed groupoids

π1Ker(F )→ π1A→ π1B→ π0Ker(F )→ π0A→ π0B

If we apply again π0 and π1 and use the (easy to check) fact that

π0(π1A) = π1(π0A)

we get a 9-term exact sequence of abelian groups, groups and pointed sets

π2
1Ker(F ) // π2

1A // π2
1B // π1π0Ker(F ) //

fffffffffffffffffffffffffffff

fffffffffffffffffffffffffffff π1π0A //

ffffffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffffff π1π0B

ffffffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffffff

π0π1Ker(F ) // π0π1A // π0π1B // π2
0Ker(F ) // π2

0A // π2
0B
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4.22 Example. Let f : R→ S be a morphism of unital commutative rings. A
classical result asserts that there exists an exact sequence connecting the groups
of units, the Picard groups and the Brauer groups

U(R)→ U(S)→??→ Pic(R)→ Pic(S)→??→ Br(R)→ Br(R)

This sequence is a special case of the sequence constructed in Remark 4.21. Start
with the “Azumaya complex” Az(R), whose objects are Azumaya R-algebras,
arrows are Morita equivalences (or, equivalently, invertible bimodules), and 2-
arrows are natural isomorphisms (or, equivalently, bimodule isomorphisms).
Az(R) is a sub-bigroupoid of the bicategory Bim(R) introduced in Example
2.5. Comparing with Example 2.4, Example 2.5 and Exercise 2.6, we have:

- π0Az(R) = Br(R), the Brauer categorical group of R,

- π1Az(R) = Pic(R), the Picard categorical group of R,

- π2
0Az(R) = π0Br(R) = Br(R), the Brauer group of R,

- π2
1Az(R) = π1Pic(R) = U(R), the group of units of R,

- π0π1Az(R) = π0Pic(R) = Pic(R) (or π1π0Az(R) = π1Br(R) = Pic(R)),
the Picard group of R.

Moreover, a ring homomorphism f : R→ S induces a 2-functor

F : Az(R)→ Az(S) , A 7→ S ⊗R A

Take now its kernel in the sense of Remark 4.21

Ker(F )→ Az(R)→ Az(S)

Following the construction of Remark 4.21, we get first a 6-term 2-exact sequence
of symmetric categorical groups

π1Ker(F )→ Pic(R)→ Pic(S)→ π0Ker(F )→ Br(R)→ Br(S)

and finally a 9-term exact sequence of abelian groups

π2
1Ker(F ) // U(R) // U(S) // π1π0Ker(F )

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Pic(R) // Pic(S) // π2
0Ker(F ) // Br(R) // Br(S)

References for Chapter 4
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Chapter 5

Abelian 2-categories

In order to unify and generalize results concerning diagram lemmas and exact
sequences from modules to sheaves of modules, someone invented (or discov-
ered?) abelian categories. Since several basic results on diagram lemmas and
exact sequences have an analogue for symmetric categorical groups, let us try
to invent abelian 2-categories. Of course, the basic example of an abelian 2-
category should be the 2-category SCG.

An abelian category can be defined in several equivalent ways. Here is
probably the most elementary one.

5.1 Definition. A category C is abelian if the following conditions are satisfied.

1. C has a zero object,

2. C has binary products and binary coproducts,

3. C has kernels and cokernels,

4. In C each mono is a kernel and each epi is a cokernel.

Let us try to transpose this definition to symmetric categorical groups. In
SCG the one-arrow category I plays the role of zero object. SCG has binary
products and binary coproducts (in any possible sense), and they coincide. SCG
has kernels and cokernels (in the convenient 2-categorical sense explained in
Chapter 4). Before understanding the last condition in Definition 5.1, we have
to understand what is a mono in a 2-category. Here is a possible answer: an
arrow F : A→ B in a 2-category is a mono if for every diagram of the form

A
F

��???????

X

M

??�������

N ��??????? ⇓α B

A
F

??�������
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there exists a unique β : M ⇒ N such that β · F = α.

5.2 Exercise. Show that an arrow F : A→ B in SCG is a mono if and only if
it is full and faithful. Dualize from monos to epis.

Consider now a full and faithful arrow F : A→ B in SCG and apply Lemma
4.11

Ker(C(F ))

K(C(F ))

$$HHHHHHHHHH

A
F

//

F1

::uuuuuuuuuu

'

B
C(F ) // Coker(F )

The comparison F1 is an equivalence, and then F is a kernel (that is, it satisfies
the universal property of the bikernel of C(F )).

It seems that we have done: all the conditions of Definition 5.1 can be
transposed to a 2-category and SCG satisfies them. No! The problem is that in
condition 4 of Definition 5.1 there is an invisible part, and you can do nothing
with the definition of abelian category if this invisible part does not hold. Here
is the real condition 4.

4 In C each mono is a kernel and each kernel is a mono, each epi is a cokernel
and each cokernel is an epi.

Unfortunately, in SCG kernels are not monos (and cokernels are not epis). In-
deed, given a kernel in SCG

Ker(F )
K(F ) // A F // B

the arrow K(F ) is always faithful, but it is almost never full (it is full if and
only if π1B = 0).

Let us try with some other possible definitions of abelian category.

5.3 Definition. A category C is abelian if

1. it is additive, and

2. Barr-exact

or, equivalently, if

1. it is non-empty,

2. pre-additive (that is, enriched in Ab), and

3. Barr-exact

or, equivalently, if

1. it is semi-abelian, and
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2. its dual is semi-abelian

or, equivalently, if

1. it has binary products and binary coproducts,

2. it has a zero object, and

3. it is Puppe-exact: for every arrow f : A → B, the canonical comparison
wf in the following diagram is an isomorphism

Ker(f)
kf // A

f //

��

B
cf // Coker(f)

Coker(kf )
wf
// Ker(cf )

OO

With all but the last version of the definition of abelian category, the problem
is that, despite some recent attempts, it is far to be clear what it means for a
2-category to be Barr-exact. What about Puppe-exactness? Here also there is
a problem (keep in mind Lemma 4.11): if we start with an arrow F : A→ B in
SCG, the comparison wF : Coker(K(F ))→ Ker(C(F )) simply does not exist. It
exists if and only if F is full, and in this case wF is in fact an equivalence.

Ker(C(F ))

K(C(F ))

%%JJJJJJJJJJJ

Ker(F )
K(F ) // A

F1

99ttttttttttt

C(K(F )) %%JJJJJJJJJJJ ' B
C(F ) //' Coker(F )

Coker(K(F ))

F2

99ttttttttttt

wF

OO�
�
�
�
�
�
�

For this last problem we have a possible solution, but we need three new kinds
of bilimits (and of bicolimits).
Convention: from now on, 2-category mean track 2-category, that is, we assume
that all 2-arrows are invertible.

5.4 Definition. Let B be a 2-category with zero object.

1. The pip of an arrow F : A→ B is a diagram of the form

Pip(F )

0

''

0

77⇓πF A F // B
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such that πF ·F = id0, and universal (in the sense of bilimits) with respect
to such a condition. This means that, for any other diagram of the form

X

0

&&

0

88⇓λ A F // B

such that λ · F = id0, there exists an arrow L : X → Pip(F ) such that
L · πF = λ. Moreover, if L′ : X → Pip(F ) is another arrow such that
L′ · πF = λ, then there exists a unique 2-arrow ϕ : L ⇒ L′ such that
ϕ · πF = λ.

2. The root of a 2-arrow α : 0⇒ 0 is a diagram of the form

Root(α)
Rα // A

0

&&

0

88⇓α B

such that Rα ·α = id0, and universal with respect to such a condition.
This means that, for any other diagram of the form

X T // A

0

&&

0

88⇓α B

such that T · α = id0, there exists a pair (T ′ : X→ Root(α), τ ′ : T ′ ·Rα ⇒
T ). Moreover, for any other pair (T ′′ : X → Root(α), τ ′′ : T ′′ · Rα ⇒ T ),
there exists a unique 2-arrow ϕ : T ′ ⇒ T ′′ such that

T ′ · Rα

ϕ·Rα +3

τ ′ �'FFFFFFFF

FFFFFFFF
T ′′ · Rα

τ ′′w� wwwwwwww

wwwwwwww

T

3. The relative kernel of a sequence

B
G

��???????

A

F

??�������

0
//

⇑ϕ

C

is a diagram of the form

A
F

��>>>>>>>>

Ker(F,ϕ)

K(F,ϕ)

::vvvvvvvvv

0
//

⇑k(F,ϕ)

B
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with k(F,ϕ) and ϕ compatible

K(F,ϕ) · F ·G K(F,ϕ) · 0
K(F,ϕ)·ϕks

0 ·G

k(F,ϕ)·G

KS

0

and universal with respect to such a condition. This means that, for any
other compatible diagram

A
F

��???????

X

E

??�������

0
//

⇑ψ

B

E · F ·G E · 0
E·ϕks

0 ·G

ψ·G

KS

0

there exists a fill-in

Ker(F,ϕ)
K(F,ϕ)

$$HHHHHHHHH

⇓ψ′

X

E′
::vvvvvvvvv
E

// A

E′ ·K(F,ϕ) · F
ψ′·F +3 E · F

E′ · 0

E′·k(F,ϕ)

KS

0

ψ

KS

Moreover, for any other fill-in

Ker(F,ϕ)
K(F,ϕ)

$$HHHHHHHHH

⇓ψ′′

X

E′′
::vvvvvvvvv
E

// A

E′′ ·K(F,ϕ) · F
ψ′′·F +3 E · F

E′′ · 0

E′′·k(F,ϕ)

KS

0

ψ

KS

there exists a unique 2-arrow ε : E′ ⇒ E′′ such that

E′ ·K(F,ϕ)
ε·K(F,ϕ) +3

ψ′

!)JJJJJJJJJJ

JJJJJJJJJJ
E′′ ·K(F,ϕ)

ψ′′

u} ssssssssss

ssssssssss

E

5.5 Definition. Let B be a 2-category with zero object.

1. The copip of an arrow F : A→ B is a diagram of the form

A F // B

0
**

0

44
⇓σF Copip(F )

such that F · σF = id0, and universal with respect to such a condition.
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2. The coroot of a 2-arrow α : 0⇒ 0 is a diagram of the form

A

0

&&

0

88⇓α B
Cα // Coroot(α)

such that α · Cα = id0, and universal with respect to such a condition.

3. The relative cokernel of a sequence

B
G

��???????

A

F

??�������

0
//

⇑ϕ

C

is a diagram of the form

C
C(ϕ,G)

%%JJJJJJJJJJ

B

G

@@��������

0
//

c(ϕ,G)⇓

Coker(ϕ,G)

with c(ϕ,G) and ϕ compatible

F ·G · C(ϕ,G)
ϕ·C(ϕ,G) +3

F ·c(ϕ,G)

��

0 · C(ϕ,G)

F · 0 0

and universal with respect to such a condition.

The existence of roots, pips and relative kernels in CG and in SCG, as well
as the existence of coroots, copips and relative cokernels in SCG is guaranteed
by the following proposition (where all (co)limits are intended in the sense of
bi(co)limits).

5.6 Proposition. Let B be a 2-category with a zero object (denoted by I).

1. If B has kernels, then it has relative kernels.

2. If B has relative kernels, then it has kernels, roots and pips.

3. The same happens with the dual notions of relative cokernels, cokernels,
coroots and copips.
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Proof. 1. The relative cokernel of a sequence

B
G

��???????

A

F

??�������

0
//

⇑ϕ

C

is the kernel of the factorization F ′ : A→ Ker(G) of F through the kernel of G.
2. Consider a sequence and its relative kernel

Ker(F,ϕ)
0 //

K(F,ϕ)
$$HHHHHHHHH B

G

��>>>>>>>>

A

F

@@��������

0
//

⇓k(F,ϕ)

⇑ϕ

C

1. If C = I, then Ker(F,ϕ) ' Ker(F ).

2. If B = I, then Ker(F,ϕ) ' Root(ϕ).

3. If A = I, then Ker(F,ϕ) ' Pip(G).

5.7 Example. Using Proposition 5.6, we get the following explicit descriptions.

1. In CG, Root(α) is the full sub-category of A of the objects A such that
αA = id: I → I.

2. In CG, Pip(F ) is the discrete categorical group [π1(Ker(F )]0. In particular,
Pip(A→ I) = [π1A]0 = Ker(I→ A).

3. In SCG, Coroot(α) has the same objects than B and arrows are equivalence
classes of arrows of B, with f, f ′ : X → Y equivalent if there exists A ∈ A
such that

X
f

yytttttttttt
f ′

%%JJJJJJJJJJ

Y ' I ⊗ Y
αA⊗id

// I ⊗ Y ' Y

4. In SCG, Copip(F ) is the connected categorical group [π0(Coker(F )]1. In
particular, Copip(I→ A) = [π0A]1 = Coker(A→ I).

5.8 Definition. A 2-category B is abelian if

1. it has a zero object,

2. it has binary products and binary coproducts, and
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3. it is Puppe-exact: for every arrow F : A → B, the canonical comparisons
wF and vF appearing in the following diagrams are equivalences

Pip(F )

0

((

0

66⇓πF A F //

CπF
��

B
C(F ) // Coker(F )

Coroot(πF )

'

wF
// Ker(C(F ))

K(C(F ))

OO

Ker(F )
K(F ) // A F //

C(K(F ))

��

B

0
++

0

33
σF ⇓ Copip(F )

Coker(K(F ))
vF
//

'

Root(σF )

RσF

OO

Before giving some formal consequences of the definition of abelian 2-category,
and in particular in order to generalize Lemma 4.11 on factorizations and Propo-
sition 4.14 on 2-exact sequences, we need a point of terminology.

5.9 Definition. Consider an arrow F : A → B in a 2-category B and, for any
X ∈ B, the induced functors

B(−, F ) : B(X,A)→ B(X,B) B(F,−) : B(B,X)→ B(A,X)

1. F is faithful when B(−, F ) is faithful for all X ∈ B,

2. F is fully faithful when B(−, F ) is full and faithful for all X ∈ B,

3. F is cofaithful when B(F,−) is faithful for all X ∈ B,

4. F is fully cofaithful when B(F,−) is full and faithful for all X ∈ B.

5.10 Exercise. (Compare with Exercise 5.2.) Show that an arrow in SCG is

1. faithful in the sense of Definition 5.9 iff it is faithful in the usual sense,

2. fully faithful in the sense of Definition 5.9 iff it is full and faithful in the
usual sense,

3. cofaithful in the sense of Definition 5.9 iff it is essentially surjective in the
usual sense,

4. fully cofaithful in the sense of Definition 5.9 iff it is full and essentially
surjective in the usual sense.

In the next Theorem, I list some of the fundamental results which can be
proved in any abelian 2-category.

5.11 Theorem. Let B be an abelian 2-category.
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1. (a) B is preadditive in a 2-categorical sense, that is, it is enriched in
SCG.

(b) B is additive, that is, binary products and binary coproducts are equiv-
alent.

2. B admits two factorization systems:

(a) Every arrow in B has a (fully cofaithful, faithful) factorization (use
the Coroot-Ker decomposition of Definition 5.8).

(b) Every arrow in B has a (cofaithful, fully faithful) factorization (use
the Coker-Root decomposition of Definition 5.8).

3. In B there are well-defined notions of relative homology and relative 2-
exactness of a complex. A complex in B is a diagram of the form

X X //

0

AAA
α⇓

F //

0

��
B

ϕ⇑

G //

0

AAC
⇓γ

Y // Y

with α and ϕ compatible, and ϕ and γ compatible

X · F ·G α·G +3

X·ϕ
��

0 ·G

X · 0 0

F ·G · Y
F ·γ +3

ϕ·Y
��

F · 0

0 · Y 0

Consider the factorizations

X X //

0 **

A

F ′

��

F //

'

B

C(α,F )
((

G // C Y //

'

Y

ᾱ⇓

Ker(G, γ) K(G,γ)

FF

��

Coker(α, F )

G′

OO

0

GG

⇒γ̄

Coker(ᾱ, F ′) //_______

'

Ker(G′, γ̄)

OO

(a) The canonical comparison Coker(ᾱ, F ′) → Ker(G′, γ̄) is an equiva-
lence. The object Coker(ᾱ, F ′) can be called the relative homology of
the complex.

(b) The following conditions are equivalent. When they are satisfied, we
say that the complex is relative 2-exact.

i. K(G, γ) is the kernel of C(α, F ).
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ii. C(α, F ) is the cokernel of K(G, γ).

iii. The relative homology of the complex is trivial: Coker(ᾱ, F ′) ' I.

4. (This is a special case of point 3, obtained by taking X ' I ' Y.) In B
there are well-defined notions of homology and 2-exactness of a sequence.
Consider a sequence (F,ϕ,G) and the factorizations

'ϕ

A

0

((F //

F ′ $$IIIIIIIIII

'

B G //

C(F ) $$HHHHHHHHH

'

C

Ker(G)

K(G)

::uuuuuuuuuu

��

Coker(F )

G′

::vvvvvvvvv

Coker(F ′) //_______

'

Ker(G′)

OO

(a) The canonical comparison Coker(F ′) → Ker(G′) is an equivalence.
The object Coker(F ′) can be called the homology of the sequence.

(b) The following conditions are equivalent. When they are satisfied, we
say that the sequence is 2-exact.

i. K(G) is the kernel of C(F ).

ii. C(F ) is the cokernel of K(G).

iii. F ′ is fully cofaithful.

iv. G′ is fully faithful.

v. The homology of the sequence is trivial: Coker(F ′) ' I.

5. In B there is a well-defined notion of extension. Consider a sequence

B
G

��???????

A

F

??�������

0
//

⇑ϕ

C

The following conditions are equivalent. When they are satisfied, we say
that the sequence is an extension.

(a) (F,ϕ) is the kernel of G and (G,ϕ) is the cokernel of F.

(b) The complex

I 0 //

0

AAA
'

F //

0

��
B

ϕ⇓

G //

0

AAC
'

0 // I
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is relative 2-exact in each point.

6. The long homology sequence. Consider an extension of N-complexes in B

B•
G•

  AAAAAAAA

A

F•

??~~~~~~~~

0
//

⇑ϕ•

C•

There is a long sequence constructed with the relative homology of each
complex (as in point 3)

. . .Hn(A•) //

0

99
Hn(B•)

'

//

0

&&
Hn(C•)

'

//

0

77
Hn+1(A•)

'

// Hn+1(B•) . . .

and such a sequence is 2-exact in each point.

5.12 Exercise. The definition of extension given in point 5 of Theorem 5.11
deserves some comments.

1. (Compare with Exercise 4.15.) For an arrow F : A→ B in B, show that

(a) A F // B 0 // I is relative 2-exact iff F is cofaithful,

(b) A F // B 0 // I is 2-exact iff F is fully cofaithful,

(c) I 0 // A F // B is relative 2-exact iff F is faithful,

(d) I 0 // A F // B is 2-exact iff F is fully faithful.

2. Show that 2-exactness implies relative 2-exactness.

3. Consider the “trivial extension”

I→ A→ A× B→ B→ I

Show that this sequence is relative 2-exact in each point (so, it is an
extension), but it is not 2-exact in A and in B.

5.13 Example.

1. SCG is an abelian 2-category.

2. If D is any (small) 2-category and B is an abelian 2-category, the 2-
category of 2-functors 2-Funct[D,B] is abelian.
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3. If D is a preadditive (that is, enriched in SCG) small 2-category and B is
an abelian 2-category, the 2-category of additive 2-functors 2-Add[D,B] is
abelian. (Recall that a 2-functor F : D → B is additive if all the induced
hom-functors

FX,Y : D(X,Y )→ B(FX,FY )

are symmetric monoidal functors.)

4. In particular, in point 3 we can take as D a “categorical ring”, that is, a
preadditive 2-category with only one object.

5. The full sub-2-category of SCG of those symmetric categorical groups A
such that, for every object X ∈ A,

cX,X : X ⊗X → X ⊗X

is the identity, is abelian. This is a special case of point 4, taking as D
the discrete categorical ring [Z]0.

6. A more sophisticated example coming from algebraic geometry. The 2-
category of pre-stacks and the 2-category of stacks on a topological space
(or on a Grothendieck site) are abelian.

References for Chapter 5

Bla
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Chapter 6

Abelian categories and
abelian 2-categories

Let me start with an exercise.

6.1 Exercise. Consider a complex of abelian groups

A• : . . .→ An−1 → An → An+1 → . . .

with homology groups Hn(A•). We can embed it in the abelian 2-category SCG
in two different ways:

[A•]0 : . . .→ [An−1]0 → [An]0 → [An−1]0 → . . .

[A•]1 : . . .→ [An−1]1 → [An]1 → [An+1]1 → . . .

and then construct the relative homology categorical groups of the two com-
plexes as in Theorem 5.11

Hn([A•]0) and Hn([A•]1)

Check that

1. π0(Hn([A•]0)) = Hn(A•) = π1(Hn+1([A•]0))

2. π0(Hn([A•]1)) = Hn+1(A•) = π1(Hn+1([A•]1))

The previous exercise suggests the missing item in Example 5.13. If I want
to generalize Exercise 6.1 replacing the category Ab of abelian groups with an
arbitrary abelian category A, I have to construct an abelian 2-category B(A)
out from A and two embeddings [−]0, [−]1 : A → B(A).

The first candidate is B(A) = Grpd(A) or, equivalently, B(A) = A→. The
2-category Grpd(A) is defined precisely as Grpd(Grp) in Definition 3.1, but all
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the diagrams are in A instead of being in Grp. The 2-category A→ has objects,
arrows and 2-arrows depicted in the following diagram

A
f //
g

//

a

��

B

b

��
A0

f0 //
g0

//

α

77ppppppppppppp
B0

with the conditions

a · f0 = f · b , a · g0 = g · b , a · α = f − g , α · b = f0 − g0

The biequivalence Grpd(A) ' A→ is a special case of the Dold-Kan correspon-
dence. If you prefer, the biequivalence Grpd(A) ' A→ can be seen as the abelian
version of the equivalence Grpd(Grp) ' XMod of Proposition 3.3.

Question: if A is an abelian category, is Grpd(A) an abelian 2-category?
The answer is: no, almost never. To make clear the answer, I need one more
exercise and a Lemma.

6.2 Exercise. (Compare with Exercise 5.10.) Let A be an abelian category
and consider an internal functor F : A→ B

A1

d

��
c

��

f1 // B1

d

��
c

��
A0

f0

// B0

1. F is fully faithful in the sense of Definition 5.9 if and only if it is internally
full and faithful. This means that the following is a limit diagram

A1

d

vvnnnnnnnnnnnnnnn

f1

��

c

((PPPPPPPPPPPPPPP

A0

f0   BBBBBBBB B1

d~~||||||||

c
  BBBBBBBB A0

f0~~||||||||

B0 B0

2. F is cofaithful in the sense of Definition 5.9 if and only if it is internally
essentially surjective. This means that in the following diagram (where
the square is a pullback), the composite t2 · c is an epi

A0 ×F0,d B1

t1

��

t2 // B1

d

��

c // B0

A0
F0

// B0
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3. F is an equivalence if and only if it is internally full and faithful and the
composite t2 · c is a split epi.

6.3 Lemma. Let F : A → B be an arrow in an abelian 2-category B. The
following coditions are equivalent:

1. F is faithful and fully cofaithful.

2. F is cofaithful and fully faithful.

3. F is an equivalence.

Exercise 6.2 and Lemma 6.3 tell us that in an abelian 2-category the differ-
ence between weak equivalences and equivalences disappears (we already meet
this fact in SCG, see Exercise 1.5), whereas this is not the case in Grpd(A).

6.4 Corollary. Let A be an abelian category. The following conditions are
equivalent:

1. The 2-category Grpd(A) is abelian.

2. In Grpd(A) every weak equivalence is an equivalence.

3. In A each object is projective.

6.5 Example. If the abelian category A is the category of vector spaces on a
field, then the 2-category Grpd(A) is abelian.

The equivalence between condition 1 and condition 2 in Corollary 6.4 (and
the non-abelian situation already studied in Proposition 3.8) suggests how to
get an abelian 2-category from an abelian category.

6.6 Proposition. Let A be an abelian category. The bicategory of fractions of
Grpd(A) with respect to weak equivalences

Grpd(A)→ Grpd(A)[Σ]

is an abelian 2-category.

Proof. The proof consists in giving an explicit description of the bicategory
of fractions Grpd(A)[Σ] using “butterflies”

Γ: Grpd(A) ' A→ → Bfly(A)

I will leave to the reader to check that the bicategory Bfly(A) is abelian.
The objects of Bfly(A) are those of A→, that is, the arrows of A. An arrow
F : A→ B in Bfly(A) is a butterfly, that is, a diagram of the form

A
m

  AAAAAAAA

a

��

B
n

~~}}}}}}}}

b

��

F

s
~~}}}}}}}

t   AAAAAAA

A0 B0
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with m · t = 0 and

0→ B → F → A0 → 0

exact. The 2-arrows f : F ⇒ F ′ are as in the following diagram

F

s

�������������������

f

��

t

��>>>>>>>>>>>>>>>>>

A

a

��
m′

��==================

m

77pppppppppppppp
B

b

��
n′

��������������������

n

ggNNNNNNNNNNNNN

A0 B0

F ′
s′

ffNNNNNNNNNNNNN t′

88ppppppppppppp

Since in particular f is a morphism of extensions, it is an isomorphism. Compo-
sition of butterflies is depicted in the following diagram, where q : F×t,s′F ′ → Q
is the cokernel of 〈n,m′〉 : B → F ×t,s′ F ′

Q

r1·s

��

r2·t′

		

F ×t,s′ F ′

r1

������������������

r2

��7777777777777777

q

OO

A

a

��

m

  AAAAAAAA

〈m,0〉
55lllllllllllllll

B

n
zztttttttttt

m′ %%JJJJJJJJJJ

〈n,m′〉

OO

b

��

C
n′

}}||||||||

c

��

〈0,n′〉
iiRRRRRRRRRRRRRRRR

F

s
~~}}}}}}}}

t
$$IIIIIIIIII F ′

s′zztttttttttt

t′   BBBBBBBB

A0 B0 C0

The identity butterfly on an object A is depicted in the following diagram

A

a

��

〈a,− id〉

##HHHHHHHHH A

a

��

i2

{{vvvvvvvvv

A0 ×A

p1
{{wwwwwwwww

[id,a] ##GGGGGGGGG

A0 A0
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There is a 2-functor Γ: A→ → Bfly(A) defined by

A
f //

a

��

B

b

��
A0

f0

// B0

7→ A

a

��

〈a,−f〉

##HHHHHHHHH B

b

��

i2

{{vvvvvvvvv

A0 ×B

p1
{{wwwwwwwww

[f0,b] ##HHHHHHHHH

A0 B0

A
f //
g

//

a

��

B

b

��
A0

f0 //
g0

//

α

77ppppppppppppp
B0

7→ A0 ×B

 id 0
α id


// A0 ×B

Now I list the main steps to prove the universal property of Γ: A→ → Bfly(A).

1. An arrow in A→

A
f //

a

��

B

b

��
A0

f0

// B0

is a weak equivalence if and only if the square is a pullback and a pushout,
if and only if the sequence

0 // A
〈a,−f〉// A0 ×B

[f0,b] // B0
// 0

is exact. The arrow is an equivalence if and only if the same sequence is
split exact.

2. A butterfly F : A→ B is an equivalence if and only if the sequence

0→ A→ F → B0 → 0

is exact. When this is the case, a quasi-inverse F ∗ : B → A of F is given
by the flipped butterfly.

3. There is an equivalence of categories

A→(A,B) ' Bfly(A)(A,B)Split

where a butterfly F : A→ B is split when the sequence

0→ B → F → A0 → 0
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is split exact. Indeed, if s∗ : A0 → F and n∗ : F → B are such that
s∗ · s = idA0

and n · n∗ = idB , then we get the following arrow in A→

A

a

��

−m·n∗ // B

b

��
A0

s∗·t
// B0

4. For every butterfly F : A→ B, there is a span in A→

A

a

��

A×B
p1oo p2 //

[m,n]

��

B

b

��
A0 Fs
oo

t
// B0

with the left leg a weak equivalence. Moreover, this provides a tabulation
of F :

Γ[m,n]

'
Γ(left leg)

||xxxxxxxxx Γ(right leg)

""FFFFFFFFF

A
F

// B

Now that we are able to construct the abelian 2-category Bfly(A) from an
abelian category A, we can look at the converse problem: is it possible to
construct an abelian category starting from a given abelian 2-category? The
hint to answer this question comes from Exercise 4.7: in SCG we have that

Ker(I→ G) = [π1G]0 , Coker(G→ I) = [π0G]1

To generalize this situation, we need a simple construction inspired to the cat-
egory A→.

6.7 Definition. Let B be a 2-category. The 2-category B→ has objects, arrows
and 2-arrows depicted in the following diagram:

A

g

((

f

66

a

��

⇑α B

b

��

ϕ⇒

ψ⇒

A0

g0

((

f0

66⇑α0 B0
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The objects are a and b, the arrows are the triples (f, f0, ϕ : a · f0 ⇒ f · b) and
(g, g0, ψ : a · g0 ⇒ g · b, and the 2-arrow is the pair (α : f ⇒ g, α0 : f0 ⇒ g0) such
that

a · f0

ϕ

��

a·α0 +3 a · g0

ψ

��
f · b

α·b
+3 g · b

6.8 Remark. Assume now that the 2-category B has kernels and cokernels, in
the sense of bilimits. The universal properties of the kernel and the cokernel
give a biadjunction

B→
Ker

// B→
Cokeroo Coker a Ker

In particular, for each object X ∈ B, the above biadjunction restricts to a
biadjunction

X ↓ B
Ker

// B ↓ X
Cokeroo Coker a Ker

Finally, for X = I, we get a biadjunction

I ↓ B
Ker

//

'
��

B ↓ I
Cokeroo

'
��

B
Ω

// B
Σoo

which we take as definition of Ω: B → B and Σ: B → B, with Σ a Ω.
Clearly, when B = SCG we get, as expected,

Σ(G) = Coker(G→ I) = [π0G]1 , Ω(G) = Ker(I→ G) = [π1G]0

6.9 Exercise. Let F : A→ B an arrow in an abelian 2-category. The following
sequence is 2-exact in each point

I // Pip(F ) // ΩA // ΩB // Ker(F ) // A

qqdddddddddddddddddddddddddddddddddddddddddddddddddddd

B // Coker(F ) // ΣA // ΣB // Copip(F ) // I

6.10 Definition. Let B be a 2-category with a zero object. An object B ∈ B is

1. discrete if for every X ∈ B the groupoid B(X,B) is discrete,

2. connected if for every X ∈ B the groupoid B(B,X) is discrete.
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6.11 Proposition. Let B be an abelian 2-category. For an object B ∈ B we put

π0(B) = Ω(Σ(B)) π1(B) = Σ(Ω(B))

1. B is discrete iff the unit B→ π0(B) is an equivalence iff π1(B) ' I.

2. B is connected iff the counit π1(B)→ B is an equivalence iff π0(B) ' I.

3. The sub-2-category Dis(B) of the discrete objects is a category (only iden-
tity 2-arrows) and it is abelian. Moreover, π0 : B → Dis(B) is left adjoint
to the inclusion Dis(B)→ B.

4. The sub-2-category Conn(B) of the connected objects is a category (only
identity 2-arrows) and it is abelian. Moreover, π1 : B → Conn(B) is right
adjoint to the inclusion Conn(B)→ B.

5. The biadjunction Σ a Ω restricts to an equivalence Conn(B) ' Dis(B).

B
Ω

//

π1

��

B
Σoo

π0

��
Conn(B) oo

Σ

Ω
//

OO

Dis(B)

OO

6.12 Example.

1. As expected, Dis(SCG) ' Ab ' Conn(SCG).

2. If A is a categorical ring, then π0(A) is a ring and Dis(2-Add[A,SCG]) is
equivalent to the category of π0(A)-modules.

3. If in point 2 we take as categorical ring A the discrete categorical ring [Z]0,
then Dis(2-Add[A,SCG]) ' Ab. Therefore, we have two non-equivalent
abelian 2-categories producing Ab as the sub-category of discrete objects
(use point 5 of Example 5.13).

4. For any abelian category A, we can close the circle: Dis(Bfly(A)) ' A.

5. Problem: Let B be an abelian 2-category. What is the relation between
B and Bfly(Dis(B))?

References for Chapter 6
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Lesson III: Homological
algebra

My point of view on applications of mathematics:

“Mais à quoi sert de faire des maths si on ne peut pas compter les uns sur
les autres.”
Youssoupha, L’amour, Bomaye Musik, 2012.

The aim of Lesson 3 is to give two examples showing that categorical groups
and, more in general, higher dimensional categorical structures can be used in
algebra to discover new facts or to understand well-known facts from a different
point of view. The two examples are:

1. The snail lemma, which is a generalization of the snake lemma.

2. The Sinh homotopy classification of categorical groups, which is a gener-
alization of the Mac Lane - Schreier theory of group extensions.
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Chapter 7

The snail lemma

Let me start recalling the classical snake lemma in Ab. In fact, it holds in any
abelian category, and even more in general.

7.1 Snake Lemma. Consider the following diagram in Ab

Ker(c)

k(c)

��

// Ker(a)

k(a)

��

// Ker(b)

k(b)

��
Ker(f)

c

��

k(f) // A

a

��

f // B

b

��
Ker(f0)

q(c)

��

k(f0)
// A0

q(a)

��

f0

// B0

q(b)

��
Coker(c) // Coker(a) // Coker(b)

If f : A → B is surjective, then there exists a morphism δ : Ker(b) → Coker(c)
making exact the sequence

Ker(c)→ Ker(a)→ Ker(b)→ Coker(c)→ Coker(a)→ Coker(b)

Proof. To be inserted.
The problem we want to study in this chapter is: do we really need the

assumption that f : A→ B is an epi?
The starting point for the snake lemma is the diagram

Ker(f)

c

��

k(f) // A

a

��

f // B

b

��
Ker(f0)

k(f0)
// A0

f0

// B0
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Such a diagram can be seen as an arrow F : A→ B in the category Ab→ together
with its kernel (that is, the level-wise kernel). But Ab→ is not just a category,
we know that it is a 2-category and that it can be embedded in SCG (see the
beginning of Chapter 6)

Ab→ ' Grpd(Ab)→ SCG

Moreover, when F : A → B is seen as an arrow in SCG, we can take its strong
homotopy kernel Ker(F ) and we get an exact sequence of abelian groups (Corol-
lary 4.18)

π1Ker(F )→ π1A→ π1B→ π0Ker(F )→ π0A→ π0B

Let us now work out this construction in detail. The internal groupoid in Ab
corresponding to an object A = (a : A→ A0) of Ab→ is

(A0 ×A)×c,d (A0 ×A) = A0 ×A×A m // A0 ×A
d //
c
// A0eoo

d(x0, x) = x0 , c(x0, x) = x0 + a(x) , e(x0) = (x0, 0)

m(x0, x, y) = (x0, x+ y) , i(x0, x) = (x0 + a(x),−x)

and an easy computation shows that

π1(A) = Ker(a) and π0(A) = Coker(a)

On arrows, the passage from Ab→ to SCG gives

A

a

��

f // B

b

��
A0

f0

// B0

7→ A0 ×A

d

��
c

��

f0×f // B0 ×B

d

��
c

��
A0

f0

// B0

Following the general description of the strong homotopy kernel given in Defi-
nition 4.1, we get that (Ker(F ))0 is nothing but the pullback

A0 ×f0,b B

��

// B

b

��
A0

f0

// B0

and (Ker(F ))1 with the domain and the codomain maps is

A0 ×f0,b B ×A
d //
c
// A0 ×f0,b B

d(x0, y, x) = (x0, y) , c(x0, y, x) = (x0 + a(x), y + f(x))

September 9, 2014 58



CHAPTER 7. THE SNAIL LEMMA

Going back to Ab→, the strong homotopy kernel Ker(F ) corresponds to the
unique factorization through the pullback

〈a, f〉 : A→ A0 ×f0,b B

as in the following diagram

A

a

��

〈a,f〉

%%JJJJJJJJJJ
f // B

b

��

A0 ×f0,b B

zztttttttttt

99tttttttttt

A0
f0

// B0

We have discovered the

7.2 Snail Lemma. Consider the following diagram in Ab

A

a

��

f // B

b

��
A0

f0

// B0

There is an exact sequence of abelian groups

Ker〈a, f〉 → Ker(a)→ Ker(b)→ Coker〈a, f〉 → Coker(a)→ Coker(b)

Proof. Apply Corollary 4.18 to

A

〈a,f〉
��

id // A

a

��

f // B

b

��
A0 ×f0,b B // A0

f0

// B0

which corresponds to the strong homotopy kernel Ker(F ) → A → B via the
embedding Ab→ ' Grpd(Ab)→ SCG.

Let me insist on the fact that, contrarily to what happens in the snake
lemma, the connecting morphism Ker(b) → Coker〈a, f〉 of the snail sequence
exists for obvious general reasons, explaiend in the following diagram, with no
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assumption on f : A→ B.

Ker(b)

〈0,k(b)〉

��

k(b)

''OOOOOOOOOOOOOOOOOOOOOOOOOO

0

��

A
〈a,f〉

//

a

  BBBBBBBBBBBBBBBBBBBB

f

))A0 ×f0,b B

��

q

''OOOOOOOOOOO
// B

b

��

Coker〈a, f〉

A0
f0

// B0

Now we go back to the snake lemma and show how it can be deduced from
the snail lemma. For this, consider the diagram

Ker(f)
k(f) //

c

��

A
f //

a

��

〈a,f〉

$$IIIIIIIIII B

b

��

A0 ×f0,b B

44hhhhhhhhhhhhhhhhhhhhhh

�������������������
q

''OOOOOOOOOOO

Coker〈a, f〉

Ker(f0)

〈k(f0),0〉

88qqqqqqqqqqqqqqqqqqqqqqqqqqq

k(f0)
//

q(c)

��

A0
f0

// B0

Coker(c)

λ

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

7.3 Corollary. In the previous diagram:

1. The comparison λ : Coker(c)→ Coker〈a, f〉 is always a mono.

2. If f : A → B is an epi , then the comparison λ is an epi (and then it is
an isomorphism).

Therefore, if f is an epi, the snake sequence exists and the exactness of the snail
sequence implies the exactness of the snake sequence.

Ker(c) // Ker(a) // Ker(b) // Coker(c) //

λ

��

Coker(a) // Coker(b)

Ker〈a, f〉 // Ker(a) // Ker(b) // Coker〈a, f〉 // Coker(a) // Coker(b)
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To end this chapter, I would like to understand, from the point of view of
internal groupoids in Ab, the assumption that f : A→ B is an epi. Let me write
once again F : A→ B for the arrow in Ab→

A

a

��

f // B

b

��
A0

f0

// B0

Consider its kernel in the category Ab→, its strong homotopy kernel in the
2-category Ab→ and the canonical comparison Λ:

Ker(F ) //

Λ %%JJJJJJJJJ A F // B

Ker(F )

<<yyyyyyyyy

We can extract from the diagram preceding Corollary 7.3 the following diagram

Ker(f)

c

��

k(f) // A

〈a,f〉
��

Ker(f0)
〈k(f0),0〉

//

q

��

A0 ×f0,b B

q

��
Coker(c)

λ
// Coker〈a, f〉

which shows that the comparison λ : Coker(c) → Coker〈a, f〉 entering in the
corollary is nothing but π0(Λ: Ker(F ) → Ker(F )). This simple remark is the
key to understand the condition on f : A→ B in the snake lemma, but here we
need the notion of fibration of groupoids.

7.4 Definition. A functor F : A → B between groupoids is a fibration when,
for every arrow g : B → FA in B, there exists an arrow f : A′ → A in A such
that F (f) = g.

Here is why fibrations enter in the picture.

7.5 Proposition. In the biequivalence Ab→ ' Grpd(Ab) :

A

a

��

f // B

b

��
A0

f0

// B0

7→ A0 ×A

d

��
c

��

f0×f // B0 ×B

d

��
c

��
A0

f0

// B0

the internal functor is a fibration if and only if the arrow f : A→ B is an epi.
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And, finally, here is a general property of fibrations which explains why
fibrations permit to pass from the snail lemma to the snake lemma.

7.6 Proposition. Let F : A→ B be a fibration between groupoids in Ab (more
in general, between pointed groupoids). The comparison Λ between its kernel
and its strong homotopy kernel

Ker(F ) //

Λ %%JJJJJJJJJ A F // B

Ker(F )

<<yyyyyyyyy

is a weak equivalence. Therefore, π0(Λ) and π1(Λ) are isomorphisms.

References for Chapter 7
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Chapter 8

Homotopical classification
of categorical groups

In this chapter we go back to the relation between group extensions and cat-
egorical groups, relation which already appears in Chapter 3. Let us fix two
groups G and H and recall from Example 3.5 that there is an equivalence of
categories

SplitExt(G,H) ' Grp(G,Aut(H)) , E 7→ ϕE

E : H
i // X

χ

��

s
// G

jsoo

js·χ=ϕE{{wwwwwwwww

Aut(H)

Now the question is: what about Ext(G,H)? There exists a functor

Ext(G,H)→ Grp(G,Out(H)) , E 7→ ψE

E : H
i //

I ##GGGGGGGGG X

χ

��

s // G

ψE
��

Aut(H)
q
// Out(H)

but this functor is not an equivalence; Indeed, passing to isomorphism classes of
extensions, the induced map [E] 7→ ψE is (well-defined but) neither surjective
nor injective. Now we can make the previous question more precise:

Question 1: Can we replace Grp(G,Out(H)) with something else in order to
obtain an equivalence?
Question 2: For which morphisms ψ : G → Out(H) there exists at least one
extension E such that ψE = ψ?
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Question 3: How many different extensions of G by H can produce the same
morphism ψ : G→ Out(H)?

From Example 3.5 we already know the answer to Question 1: there is an
equivalence of categories

Ext(G,H) ' CG([G]0,Hol(H))

The answers to Question 2 and Question 3 are provided by the classical Schreier
- Mac Lane theory of group extensions, that I summarize in the next proposition.

8.1 Proposition. Fix two groups G and H. Consider

z(H) = Ker(I) // H
I // Aut(H)

q // Coker(I) = Out(H)

and the action
Out(H)× z(H)→ z(H) , [f ], a 7→ f(a)

Fix also a morphism ψ : G→ Out(H). Consider the induced action

ψ : G× z(H)
ψ×id // Out(H)× z(H) // z(H)

and the cohomology groups

C1(G, z(H))

((PPPPPPPPPPPP
∂ // C2(G, z(H))

((QQQQQQQQQQQQQ
∂ // C3(G, z(H))

∂ // C4(G, z(H))

Z2(G, z(H), ψ)

OO

q

��

Z3(G, z(H), ψ)

OO

q

��
H2(G, z(H), ψ) H3(G, z(H), ψ)

1. Fix two set-theoretical maps ϕ : G → Aut(H) and f : G × G → H such
that

G
ϕ //

ψ ""FFFFFFFFF Aut(H)

q

��
Out(H)

ϕ(1) = idH , f(x, 1) = 1 = f(1, y) , ϕ(x) · ϕ(y) · ϕ(xy)−1 = I(f(x, y))

and put

k : G×G×G→ H , k(x, y, z) = ϕ(x)(f(x, y))+f(x, yz)−f(xy, z)−f(x, y)

Then
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(a) k ∈ Z3(G, z(H), ψ) (the element k is called the obstruction to the
realization of ψ)

(b) q(k) ∈ H2(G, z(H), ψ) depends only on ψ : G → Out(H) and not on
ϕ and f

(c) there exists an extension E : H → X → G such that ψE = ψ, if and
only if q(k) = 0.

2. Write OpExt(G,H,ψ) for the full sub-category of Ext(G,H) of those ex-
tensions E such that ψE = ψ. If OpExt(G,H,ψ) is not empty, then there
is a simply transitive action

H2(G, z(H), ψ)× π0(OpExt(G,H,ψ))→ π0(OpExt(G,H,ψ))

and therefore H2(G, z(H), ψ) ' π0(OpExt(G,H,ψ)).

We have answered the three questions, but I’m unhappy because the three
questions are clearly related, whereas the answers to Question 2 and Question 3
seem to be unrelated to the answer to Question 1. The simple but crucial idea
to correct this problem is that, if we look to an extension E : H → X → G as
a monoidal functor E : [G]0 → Hol(H), then ψE : G → Out(H) is π0(E), and
π1(E) is trivial:

0
π1(E)=0 //

��

z(H)

��
G

id

��
id

��

E1 // H o Aut(H)

d

��
c

��
G

E0

//

id

��

Aut(H)

q

��
G
π0(E)=ψE

// Out(H)

We will use this idea to give a much more general version of Question 2
and Question 3, but before doing this we need one more remark on categorical
groups.

8.2 Remark.

1. Let G be a categorical group. The abelian group π1G is a π0G-module
under the action π0G× π1G→ π1G sending a pair ([X], f : I → I) on the
arrow

I ' X ⊗X∗ ' X ⊗ I ⊗X∗
id⊗f⊗id // X ⊗ I ⊗X∗ ' X ⊗X∗ ' I
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2. Let F : G→ H be an arrow in CG. The pair of group homomorphisms

π0(F ) : π0G→ H , π1(F ) : π1G→ π1H

is equivariant

π0G× π1G

π0(F )×π1(F )

��

// π1G

π1(F )

��
π0H× π1H // π1H

Now we can reformulate Question 2 and Question 3 more in general, using
categorical groups instead of group extensions. Instead of the categorical groups
[G]0 and Hol(H), consider two arbitrary categorical groups G and H.

Question 2 bis: Given an equivariant pair of group homomorphisms

p : π0G→ π0H , r : π1G→ π1H

does there exist an arrow F : G→ H in CG such that π0(F ) = p and π1(F ) = r?
Question 3 bis: How many different arrows G → H in CG can give the same
equivariant pair (p, r)?

The answers to these questions are a generalization of the Schreier - Mac Lane
theory of group extensions. They follows from two facts, a simple lemma and
the fundamental Sinh’s homotopy classification of categorical groups. In order
to state these results, we need some constructions.

8.3 Definition.

1. The category Mod has, as objects, triples

(G ∈ Grp, A ∈ Ab, G×A→ A an action)

Arrows are equivariant pairs (p, r) of group homomorphisms

G×A

p×r
��

// A

r

��
G′ ×A( // A′

2. The 2-category Z3 has, as objects, pairs

((G,A) ∈ Mod, h ∈ H3(G,A))

Arrows are triples (p, r, g), with (p, r) : (G,A)→ (G′, A′) an arrow in Mod
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and g ∈ C2(G,A′) such that r∗(h) = p∗(h′) + ∂(g)

C1(G,A)

r∗

��

∂ // C2(G,A)

r∗

��

∂ // Z3(G,A)

r∗

��

q // H3(G,A)

r∗

��
C1(G,A′)

∂ // C2(G,A′)
∂ // Z3(G,A′)

q // H3(G,A′)

C1(G′, A′)

p∗

OO

∂
// C2(G′, A′)

p∗

OO

∂
// Z3(G′, A′)

p∗

OO

q
// H3(G′, A′)

p∗

OO

Composition of arrows in Z3 is as in the following diagram

(G,A, h)
(p,r,g) //

(p·p′,r·r′,p∗(g′)+r′∗(g))

55
(G′, A′, h′)

(p′,r′,g′) // (G′′, A′′, h′′)

A 2-arrow f : (p, r, g)⇒ (p′, r′, g′) : (G,A, h) ⇒ (G′, A′, h′) in Z3 can exist
only if p = p′ and r = r′, and is given by an element f ∈ C1(G,A′) such
that g′ = g + ∂(f). All 2-arrows are invertible.

3. There is a forgetful 2-functor U : Z3 → Mod

(p, r, g) : (G,A, h)→ (G′, A′, h′) 7→ (p, r) : (G,A)→ (G′, A′)

8.4 Definition. Let (G,A, h) and (G′, A′, h′) be objects in Z3 and consider an
arrow (p, r) : (G,A) → (G′, A′) in Mod. The obstruction to the realizability of
the arrow (p, r) is the element

obs(p, r) = [r∗(h)− p∗(h′)] ∈ H3(G,A′)

8.5 Lemma. Fix two objects (G,A, h) and (G′, A′, h′) in Z3 and an arrow
(p, r) : (G,A)→ (G′, A′) in Mod.

1. There exists an arrow in Z3 of the form (p, r, g) : (G,A, h) → (G′, A′, h′)
if and only if obs(p, r) = 0 in H3(G,A′).

2. Write
Z3

(p,r)((G,A, h), (G′, A′, h′))

for the set of arrows (G,A, h) → (G′, A′, h′) in Z3 sent on (p, r) by the
2-functor U : Z3 → Mod. If obs(p, r) = 0, then there is a transitive action

Z2(G,A′)×Z3
(p,r)((G,A, h), (G′, A′, h′))→ Z3

(p,r)((G,A, h), (G′, A′, h′))

t , (p, r, g) 7→ (p, r, g + t)
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Moreover, such an action induces a simply transitive action

H2(G,A′)×π0Z3
(p,r)((G,A, h), (G′, A′, h′))→ π0Z3

(p,r)((G,A, h), (G′, A′, h′))

and, therefore, a bijection between the abelian group H2(G,A′) and the set
π0(Z3

(p,r)((G,A, h), (G′, A′, h′))) of 2-isomorphism classes of arrows.

Proof. 1. Obvious, because [r∗(h) − p∗(h′)] = 0 if and only if there ex-
ists an element g ∈ C2(G,A′) such that r∗(h) − p∗(h′) = ∂(g), if and only if
(p, r, g) : (G,A, h)→ (G′, A′, h′) is an arrow in Z3.
2. The action is transitive: let (p, r, g), (p, r, g′) : (G,A, h)→ (G′, A′, h′) be two
arrows in Z3. Since ∂(g) = r∗(h) − p∗(h′) = ∂(g′) the element t = g′ − g is in
Z2(G,A′).
The induced action is well-defined: if two elements t, t′ ∈ Z2(G,A′) are such
that [t] = [t′] in H2(G,A′), then there exists an element f ∈ C1(G,A′) such
that t′ = t + ∂(f). If moreover f ′ : (p, r, g) ⇒ (p, r, g′) is a 2-arrow in Z3, then
f ′ + f : (p, r, g + t)⇒ (p, r, g′ + t′) is a 2-arrow in Z3.
The induced action is simply transitive: consider elements t, t′ in Z2(G,A′) and
a 2-arrow f : (p, r, g+ t)⇒ (p, r, g+ t′) in Z3. We have that g+ t′ = g+ t+∂(f),
and then t′ = t+ ∂(f). This means that [t] = [t′] in H2(G,A′).

8.6 Theorem. There is a biequivalence of 2-categories over Mod

Z3 S //

U !!DDDDDDDD
CG

(π0,π1)||zzzzzzzz

Mod

Proof. I’m going to give only the easy part of the proof, that is, the definition
of the 2-functor S on objects. For the rest of the proof, see Chapter 5 in [5].
Let (G,A, h) be an object in Z3. The categorical groups G = S(G,A, h) has,
as objects, the elements of the group G. The hom-set G(g1, g2) is empty if
g1 6= g2, and is the abelian group A if g1 = g2. Composition is addition in A,
with the zero of A as identity arrows. The tensor product in G is defined by
g1 ⊗ g2 = g1g2 on objects, and by a1 ⊗ a2 = a1 + g · a2 on arrows a1 : g1 → g1

and a2 : g2 → g2. The unit object is the unit of G and, for every object, the
left and right constraints are identities. Finally, the associativity constraint is
given by ag1,g2,g3 = h(g1, g2, g3) : g1g2g3 → g1g2g3. The triangle condition is the
fact that h ∈ Z3(G,A) is normalized, that is, h(g1, 1, g3) = 0, and the pentagon
condition is exactly the cocycle condition ∂(h) = 0.

The next corollary is the answer to Question 2 bis and Question 3 bis.
If in the statement you put G = [G]0 and H = Hol(H), then you recover
precisely Proposition 8.1, that is, the classical Schreier - Mac Lane theory of
group extensions.

8.7 Corollary. Let G and H be in CG and write

S−1 : CG→ Z3 , G 7→ (π0G, π1G, h(G))
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Fix an arrow (p, r) : (π0G, π1G)→ (π0H, π1H) in Mod and put

Obs(p, r) = [r∗(h(G))− p∗(h(H))] ∈ H3(π0G, π1H)

1. There exists an arrow F : G→ H in CG such that π0(F ) = p and π1(F ) =
r if and only if Obs(p, r) = 0 in H3(π0G, π1H).

2. Write
CG(p,r)(G,H)

for the set of arrows G → H in CG sent on (p, r) by the 2-functor
(π0, π1) : CG→ Mod. If Obs(p, r) = 0, then there is a transitive action

Z2(π0G, π1H)× CG(p,r)(G,H)→ CG(p,r)(G,H)

Moreover, such an action induces a simply transitive action

H2(π0G, π1H)× π0(CG(p,r)(π0G, π1H))→ π0(CG(p,r)(π0G, π1H))

and, therefore, a bijection between the abelian group H2(G,A′) and the set
π0(CG(p,r)(π0G, π1H)) of 2-isomorphism classes of arrows.

Proof. This is the transcription of Lemma 8.5 using Theorem 8.6. qed

References for Chapter 8

Bla
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