
Noname manuscript No.
(will be inserted by the editor)

Mining Time-constrained Sequential Patterns with
Constraint Programming

John O.R. Aoga · Tias Guns · Pierre
Schaus

Received: date / Accepted: date

Abstract Constraint Programming (CP) has proven to be an effective platform for
constraint based sequence mining. Previous work has focused on standard frequent
sequence mining, as well as frequent sequence mining with a maximum ’gap’ between
two matching events in a sequence. The main challenge in the latter is that this cons-
traint can not be imposed independently of the omnipresent frequency constraint.
Indeed, the gap constraint changes whether a subsequence is included in a sequence,
and hence its frequency. In this work, we go beyond that and investigate the in-
tegration of timed events and constraining the minimum/maximum gap as well as
minimum/maximum span. The latter constrains the allowed time between the first
and last matching event of a pattern. We show how the three are interrelated, and
what the required changes to the frequency constraint are. Key in our approach is
the concept of an extension window defined by gap/span and we develop techniques
to avoid scanning the sequences needlessly, as well as using a backtracking-aware
data structure. Experiments demonstrate that the proposed approach outperforms
both specialized and CP-based approaches in almost all cases and that the advantage
increases as the minimum frequency threshold decreases. This paper is an extension
of the original manuscript presented at CPAIOR’17 [5].

Keywords Data mining · Sequential pattern mining · Constraint programming ·
Global constraint · Gap constraint · Span constraint · Time constraint

J.O.R Aoga (B)
Institute of Information and Communication Technologies, Electronics and Applied Mathma-
tics (ICTEAM), UCLouvain, Belgium
Ecole Doctorale Science de l’Ingénieur (ED-SDI), Université d’Abomey-Calavi (UAC), Bénin
Orcid Id: 0000-0002-7213-146X
E-mail: john.aoga@{uclouvain.be, gmail.com}

T. Guns
Vrije Universiteit Brussel (VUB), Brussels, Belgium
Katholieke Universiteit Leuven, Belgium
E-mail: tias.guns@{vub.be, cs.kuleuven.be}

P. Schaus
Institute of Information and Communication Technologies, Electronics and Applied Mathma-
tics (ICTEAM), UCLouvain, Belgium
E-mail: pierre.schaus@uclouvain.be

2 John O.R. Aoga et al.

1 Introduction

Sequential pattern mining (SPM) is an important research domain within data mi-
ning and widely used in applications such as web log mining, disease diagnoses mi-
ning, event sequence mining, etc [1]. The problem of SPM is to find frequent sequence
patterns (also called sequential patterns) in a database of sequences, i.e. an ordered
list of events which together occur in the data more than a given number of times.
This task is a great challenge since the search space is extremely large; O(mn) so-
lutions are available for patterns with length at most n and for sequences with an
average number of m events.

In practice, finding all sequential patterns is typically not enough, as often an
overwhelming number of patterns is returned. Hence, there is a need to guide the
search towards patterns of interest to the practitioner. This calls for techniques
which can incorporate preferences or restrictions on the length and content of the
patterns (constraints). In many applications, the time elapsed between events is also
important to take into account.

Assume for instance a database containing sequences of web pages visited by
users on a given web-site. One could be interested in access patterns within a single
browsing session, for example with no more than 20 minutes time between two pages.
Also in biological sequence mining the position and distance of the symbols in the
sequence matter. A constraint on the maximum time between any two consecutive
symbols in the pattern is called a gap constraint, while a constraint on the time
from the first to the last event is called a span constraint. In this work, we assume
all sequences have explicit timestamps and the goal is to support gap and span
constraints as well as constraints on frequency and syntax of patterns.

Related work The problem of sequential pattern mining, first introduced by Agrawal
et al. [2], is widely studied [2, 13, 28, 35, 38, 39, 40] with many applications as
well [15, 16]. These works can be categorized into 1) apriori-based (horizontal/ver-
tical formatting) [6, 35, 40] and 2) projection-based [28] methods. In general, users
only need a small subset of the found patterns. Hence, a number of works have fo-
cused on the addition of user-defined constraints such as inclusion/exclusion items,
pattern length (minimum/maximum), super-pattern, aggregate function (sum, aver-
age, maximum, minimum, standard deviation, ...), regular expression and span/gap.
They are discussed in more detail in [29].

GSP [35] was the first approach including gap and span constraints. This method
is not very efficient since it requires to generate all candidate patterns and to scan the
dataset several times. Some approaches added the constraints in a post-processing
step [27]. In the cSPADE algorithm [40], the constraints are directly integrated into
the sequential pattern search process. It efficiently takes into account constraints
such as length and width restrictions on the pattern, item constraints, minimum
and maximum gaps between events, as well as a maximum span. Unlike cSPADE,
GenPrefixSpan [3] is an extension of the depth-first PrefixSpan [28] algorithm to
allow gap constraints. Time constraints on the sequences (instead of events) have
also been investigated in [10]. Special classes of SPM problem or constraints was
also tackled: the closed/maximal SPM [11, 21, 22, 37, 38] the multi-dimensional
SPM [31], the episodes events [23], etc. However, all the above-mentioned approaches
lack flexibility at the algorithmic level, since adding a new constraint often involves
changing the whole algorithm and may hinder scalability. For instance, methods that

Mining Time-constrained Sequential Patterns with Constraint Programming 3

can efficiently take regular expression constraints into account together with time
constraints are rare in specialized methods. An exception is PG [29], which starts
from the observation that many constraints are prefix-monotone. This property is
weaker than standard (anti)monotonicity when used in pruning, but still valid. PG’s
pruning principles are specific to prefix-monotonicity however, which does not allow
it to fully exploit regular expression constraints for example.

As an alternative, the use of Constraint Programming (CP) has been investi-
gated [4, 9, 12, 18, 19, 20, 24, 25]. Kemmar et al. [19] have subsequently shown
that this approach can be made more scalable by grouping all low-level constraints
involving the frequency computation into one global constraint. Moreover, they in-
vestigated the top-k sequential pattern mining problem [18]. More recently, we have
shown that combining this approach with algorithmic techniques from both the CP
community and the data mining community can result in a global constraint that
outperforms generic as well as specialized methods [4].

While the above CP methods can handle constraints on the pattern syntax, gap
and span constraints are only supported by the much less efficient approach of [25].
The reason is that the timing information is hidden in the global frequency constraint.
Hence, Kemmar et al. [20] extended their global constraint for the gap constraint
specifically.

Contributions In this work, we wish to improve on [20] and [4] by modifying the
global frequency constraint to capture the most common time-related constraints:
explicitly timed events, minimum/maximum gap, and minimum/maximum span. To
maintain scalability, we must ensure that we do not needlessly scan the sequences in
the database during the search. Our contributions can be summarized as follows: 1)
we adapt the backtracking-aware data structure introduced in [4] to store all possible
occurrences of the pattern in a sequence, including the first matching symbol to
support span constraints; 2) we avoid scanning a sequence for a symbol beyond the
(precomputed) last occurrence of that symbol in the sequence; 3) we introduce the
concept of extension window of an embedding and avoid to scan overlapping windows
multiple times; 4) we avoid scanning for the start of an extension window, which is
specific to the minimum gap constraint, by precomputing these in advance; and
finally 5) we experimentally show that using this global constraint we outperform
other sequence mining algorithms in all but a few cases. Furthermore, we show
that in a CP framework this global constraint can be combined with a number of
other independent constraints: item inclusion/exclusion constraints, pattern length
constraints or string constraints [14] such as regular expression [30] and grammar [17,
32] constraints.

Limitations The type of patterns found by our approach are the commonly used
sequences of single events. We do not consider other related pattern types such as
sequences of sets of events (sequences of itemsets), multivariate temporal patterns [7]
or episodes [36]. These require changes to the pattern representation and the embed-
ding (constraint). One could build on the principles and data structures investigated
in this paper for those purposes, but we do not investigate that here.

4 John O.R. Aoga et al.

2 Preliminaries

In this section, we revisit the preliminary concepts for both Sequential Pattern Mi-
ning (SPM) and Constraint Programming (CP). Most of these concepts can be found
for SPM in [1, 41] and in [34] for CP.

2.1 Sequential Pattern Mining Background

Assume L is an alphabet, that is, a list of possible symbols. Table 1a represents
an example sequence database (SDB) with timestamps. The database is a set of
tuples (sid, s) where sid is the sequence identifier and s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉
is a sequence; an ordered list of symbols/events (sk) occurred at time tk, where
t1 ≤ t2 ≤ . . . ≤ tn. We use ssi , respectively sti, to represent just the list of symbols,
respectively timestamps, of sequence i. In the rest of the paper, we assume a sequence
database has timestamps, and when the exact timing is not important we will write
〈ABC〉 to mean 〈(A, 1)(B, 2)(C, 3)〉.

Example 1 Assume s = 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 is a sequence,
ss = {A,B,D,D,B,E,C}, st = {2, 4, 6, 8, 10, 12, 14} and its length size(s) = 7.

A sequence can be a subsequence of another sequence. For example α = 〈ADC〉
is a subsequence of s. More formally, the subsequence relation is:

Definition 1 Subsequence relation (�). Sequence α = 〈α1α2 . . . αk〉 is a sub-
sequence of s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉 denoted by α � s iff (i) k ≤ n and (ii)
there exists a list of integers (e1, . . . , ek), an embedding, with 1 ≤ e1 . . . ≤ ek ≤ n
such that ss[ei] = αi.

Example 2 Sequence α = 〈ADC〉 is a subsequence of s with embedding (1, 3, 7).
Another valid embedding would be (1, 4, 7). Note that for this standard subsequence
relation, timing is not important.

The coverage of a pattern in a sequence database is the set of sequences in SDB
for which our pattern is a subsequence: CoverSDB(α) = {(sid, s) ∈ SDB |α � s}.
We denote by frequency of a sequence the size of its coverage (|CoverSDB(α)|) and
by support the relative frequency (SupportSDB(α) = |CoverSDB(α)|/size(SDB)).

Example 3 Sequence α = 〈ADC〉 is a subsequence of sequences 1, 2 and 3 in
Table 1a, hence CoverSDB(〈ADC〉) = {sid1, sid2, sid3}, its frequency is 3 and
SupportSDB(〈ADC〉) = 75%.

The problem of SPM, first introduced by Agrawal et al. [2], is as follows:

Definition 2 SPM problem. Find all subsequences (α) in sequence database
(SDB) such that SupportSDB(α) ≥ θ where θ is the given support threshold. Each
such subsequence α is called a frequent sequence pattern or simply sequential pat-
tern.

In the remaining of the paper, we will use sequential pattern to mean frequent
sequence pattern and sequence pattern if the frequency of the pattern does not matter.

There exist multiple algorithms for the SPM problem. The PrefixSpan algo-
rithm [28] is among the most famous ones and relies on the idea of the prefix-projected
database. Our approach will build on this concept.

Mining Time-constrained Sequential Patterns with Constraint Programming 5

a) Sequence database (SDB) b) nextPosGap c) lastPosMap

sid sequence 1 2 3 4 5 6 7 A B C D E

sid1 〈(A, 2)(B, 5)(D, 6)(C, 10)(B, 11)〉 2 4 4 6 6 1 5 4 3 0
sid2 〈(B, 1)(A, 2)(A, 9)(D, 12)(C, 15)(A, 18)(B, 24)〉 3 3 4 5 6 7 8 6 7 5 4 0
sid3 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 3 4 5 6 7 8 8 1 5 7 4 6
sid4 〈(A, 1)(C, 2)(C, 3)(B, 4)〉 4 5 5 5 1 4 3 0 0

Table 1: a) A sequence database SDB, b) a structure for the next position of
minimum gap time N(precomputed) and c) the last position map.

Definition 3 Prefix, prefix-projected database. Let α = 〈α1 . . . αk〉 be a pat-
tern. If a sequence β = 〈β1 . . . βn〉 is a super-sequence of α: α � β, then the prefix of
β w.r.t. α is the ‘smallest prefix’ of β that is still a super-sequence of α: 〈β1 . . . βj〉 s.t.
α � 〈β1 . . . βj〉 and @j′ < j : α � 〈β1 . . . βj′〉. The sequence 〈βj+1 . . . βn〉 = suffixα(β)
is called the suffix and it represents the prefix-projection obtained by projecting the
prefix away. A prefix-projected database of a pattern α, denoted by SDB|α, is the
set of prefix-projections of all sequences in SDB that are super-sequences of α:
SDB|α = {(sidi, suffixα(sidi)) |α � SDB[sidi]}.

Example 4 Consider our running example in Table 1a, where we omit timing in-
formation. Assume α = 〈A〉, then SDB|α = {(sid1, 〈BDCB〉), (sid2, 〈ADCAB〉),
(sid3, 〈BDDBEC〉), (sid4, 〈CCB〉)} (details in Table 2a).

The prefix-projected frequency of the symbol a ∈ I (freqs(a, SDB|α)) is the num-
ber of sequences in SDB|α where this symbol appears in the suffix: freqs(a, SDB|α) =
|{(sid, s) ∈ SDB|α | a ∈ suffixα(s)}|. We use freqs(a) instead of freqs(a, SDB|α)
when no ambiguity is possible about the database. Thus, the prefix-projected fre-
quencies of SDB|〈A〉 are: freqs(A) = 1, freqs(B) = 4, freqs(C) = 4, freqs(D) = 3,
freqs(E) = 1.

Performing a depth-first search, the PrefixSpan algorithm starts with an empty
prefix and extends a pattern with one symbol at each step. Then, it computes
the projected database and prefix-projected frequencies and extends it again (us-
ing only the prefix-projected frequent items). This process continues until all se-
quential patterns are found. This method is efficient because it avoids extending
patterns with infrequent symbols. Also, instead of storing all suffixes explicitly, it
maintains just one pointer to the suffix starting position for each sequence. This is
called the pseudo-projected database pSDB|α = {(sidi, j + 1) ∈ SDB} such that
〈βj+1 . . . βn〉 = suffixα(sidi).

Example 5 Extending prefix 〈A〉 with 〈D〉 over SDB|〈A〉 gives SDB|〈AD〉 = {(sid1,
〈CB〉), (sid2, 〈CAB〉), (sid3, 〈DBEC〉)} and can be represented as the pseudo-
projected database: pSDB|〈A〉 = {(sid1, 4), (sid2, 5), (sid3, 4)}.

We now look at the subsequence relation under a gap[M,N] constraints, with M the
minimum and N the maximum gap between two subsequent events, and under a
span[W,Y] constraints with W the minimum and Y the maximum span between the
first and last event. This requires changing the subsequence definition in Definition 1.

Definition 4 Subsequence relation under gap (�gap[M,N]). A sequence α =
〈α1α2 . . . αk〉 is a subsequence of s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉 under gap[M,N] cons-
traint (α �gap[M,N]

s) iff (i) k ≤ n; (ii) there exists a list of integers (e1, . . . , ek), an

6 John O.R. Aoga et al.

embedding, with 1 ≤ e1 . . . ≤ ek ≤ n such that ss[ei] = αi; and (iii) the time
between two consecutive events tei−1 and tei must be between M and N for all
i ∈ [2, k], M ≤ tei − tei−1 ≤ N . An embedding (e1, . . . , ek) for α �gap[M,N]

s is called
a gap[M,N]-embedding.

We can similarly define �span[W,Y] where condition (iii) becomes: the time between
the first event te1 and the last tek

must be between W and Y i.e. W ≤ tek
− te1 ≤ Y .

We can similarly define the gap + span subsequence relation which contains both
conditions.

Example 6 Given sid1 with st1 = {2, 5, 6, 10, 11} and sid2 with st2 = {1, 2, 9, 12,
15, 18, 24} in Table 1a. Then, 〈ADB〉 �gap[3,7]

SDB[sid1] with embedding
(e1, e2, e3) = (1, 3, 5) because {3 ≤ (st1[e2]−st1[e1] = 4) ≤ 7 and 3 ≤ (st1[e3]−st1[e2] =
5) ≤ 7}. Note the difference between the positions ei of the embedding and its time
st1[ei]. As another example, 〈ADB〉 �gap[3,7]

SDB[sid2] because 3 ≤ (st2[e3]−st2[e2] =
12) � 7. Similarly, this embedding and hence the sequence respects a span[8,10]

constraint in sid1: 8 ≤ st1[e3]− st1[e1] = 9 ≤ 10.
The definition of CoverSDB(α), SupportSDB(α) and the SPM problem can be

easily adapted to use the gap/span subsequence relation instead of the original rela-
tion �.

Example 7 Assume α = 〈ADC〉, θ = 3 and gap[3,7], Covergap
[3,7]

SDB (α) = {sid1, sid2,

sid3} and hence Supportgap
[3,7]

SDB (α) = 3. Thus, α is a gap-constrained sequential
pattern for the given threshold.

The search space to find the sequential patterns can become intractably large.
Hence, to reduce this space several algorithms rely on the anti-monotonicity property.

Property 1 (Anti-monotonicity). Assume C is a constraint. If a sequence s satis-
fies an anti-monotone constraint C then all its subsequences also satisfy C. Equivalen-
tly, if any sequence s violates an anti-monotone constraint C all its super-sequences
also violate C.

The frequency with minimum gap (M) and maximum span (Y) are anti-monotone
constraints but the frequency with maximum gap (N) constraint violates this prop-
erty.

Example 8 Assuming our running example, 〈ADC〉 is frequent under gap[3,7] with
θ = 3 but 〈AC〉 is not frequent (Supportgap

[3,7]

SDB (〈AC〉) = 2 < 3).
Fortunately, the maximum gap constraint is prefix anti-monotone i.e. every prefix

of p satisfies the maximum gap constraint if p satisfies it [29]. We use this property
to filter embeddings which helps us discover if a prefix is infrequent. The minimum
span (W) does not satisfy this property, hence we use it only to verify embeddings
of fully assigned patterns.

2.2 CP-based model for SPM problem

A constraint satisfaction problem [34] is defined as a triplet (V,D,C) where V is a
set of decision variables with their domains D (possible values of V). C is a set of

Mining Time-constrained Sequential Patterns with Constraint Programming 7

constraints, each constraint is defined over V and restricts the possible values that
these variables can take. Solving the problem of SPM using Constraint Programming
(CP) consists of defining the model (V,D,C).

We present CP model of sequential pattern mining introduced in [25] and the
GapSeq [20] and PPIC (Prefix Projection Incremental Counting) [4] global cons-
traints.

Definition 5 Variables and Domains for SPM [25]. Let l be the length of the
longest sequence in SDB (l = max({size(s) | s ∈ SDB})); P = [P1, P2, . . . , Pl] is an
array of variables, representing a pattern, where each Pi represents the ith symbol
in the pattern. The domain Di of Pi is the set of symbols L plus the empty symbol
ε:Di(Pi) = {ε} ∪ L.

Example 9 For instance for the dataset in Table 1a, l = 7, P = [P1, . . . , P7] and for
all i ∈ [1, l], Di = {ε, A,B,C,D,E}. 〈A,D,C〉 corresponds to P = [A,D,C, ε, ε, ε, ε].

Definition 6 Filtering rules. Assume ∀i ≤ l, p = 〈p1, . . . , pi〉 is the assigned
values of variables {P1, . . . , Pi}, a CP model over P represents the SPM problem
given a threshold θ, gap[M,N] and span[W,Y] iff the following conditions are satisfied
by every valid assignment to P :
1. P1 6= ε (to avoid an empty pattern);
2. ∀i ∈ {2, . . . , l − 1} : Pi = ε⇒ Pi+1 = ε (to allow pattern with length < l);
3. Frequency constraint: SupportSDB(p) ≥ θ;
4. Frequency under gap[M,N] constraint: Supportgap

[M,N]

SDB (p) ≥ θ;
5. Frequency under span[W,Y] constraint: Supportspan

[W,Y]

SDB (p) ≥ θ.

PPIC [4] global constraint. PPIC(P, SDB, θ) is a global constraint for the
SPM problem without gap/span, built on the prefix-projection principle, which en-
forces filtering rules 1,2,3 in a single propagator. It improved on the state-of-the-art
with four elements: (a) a backtracking-aware data structure inspired by trailing-based
CP technique, (b) efficient support counting by precomputing the last positions of
each symbol, (c) not scanning sequences whose prefix can not contain the symbol
(precomputed) and (d) removing the infrequent symbols of the projected database
only from the next domain Di+1.

GapSeq [20] global constraint. GapSeq(P, SDB, θ,M,N) is a global cons-
traint for SPM problem under gap[M,N] which enforces filtering rules 1,2,3 ,4 in a
single propagator with the limitation that gap constraints are expressed in terms of
position distances i.e. the gap are measured according to the number of events hence
time does not matter.

Our global constraint. PPICt(P, SDB, θ,M,N,W, Y) is a global constraint
for SPM problem under gap[M,N] and span[M,N] over time-stamped databases which
enforces filtering rules 1 to 5 in a single propagator. Hence, gap/span constraints are
expressed in terms of time, but it can be used for position distances as well.

3 Trailing-based data structure for the embedding database

In this section, we introduce the notions of embedding database and extension win-
dows which reconsider the concept of projected database to incorporate time cons-
traints. Then, we present a trailing-based data structure to store this database.

8 John O.R. Aoga et al.

a) Without time constraints: Projected Database (since time does not matter we omit it)
sid pSDB|〈A〉 SDB|〈A〉’s of pSDB|〈A〉 pSDB|〈AD〉 SDB|〈AD〉’s of pSDB|〈AD〉

sid1 1 〈BDCB〉 3 〈CB〉
sid2 2 〈ADCAB〉 4 〈CAB〉
sid3 1 〈BDDBEC〉 2 〈DDBEC〉
sid4 1 〈CCB〉

b) Considering time constraints: Embedding database and extension windows

sid embSDB|[3,7]
〈A〉 ewgap[3,7]

e (s)’s of embSDB|[3,7]
〈A〉 embSDB|[3,7]

〈AD〉 ewgap[3,7]
e (s)’s of embSDB|[3,7]

〈AD〉

sid1 (1) 〈(B, 5)(D, 6)〉 (1,3) 〈(C, 10)(B, 11)〉
sid2 (2),(3),(6) 〈(A, 9)〉,〈(D, 12)(C, 15)〉,〈(B, 24)〉 (3,4) 〈(C, 15)(A, 18)〉
sid3 (1) 〈(D, 6)(D, 8)〉 (1,3),(1,4) 〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉
sid4 (1) 〈(B, 4)〉

Table 2: Embedding database and extension windows for patterns 〈A〉 and 〈AD〉: a)
without time constraints b) with time constraints (gap[3,7]). Note that embeddings
are positions in s, not timings and these positions start from 0.

3.1 Embedding database and extension windows

In fact, when having a gap constraint and using prefix-projection (see Definition 3),
the assumption that a pattern can be extended with the symbol appearing after the
smallest matching prefix does not hold anymore. That is, given a sequence, if the
first embedding of the prefix cannot be extended because the gap is too small or
large, there could exist another embedding that can be extended.

Example 10 Assume the pattern α = 〈ADC〉 and gap[3,7]. There are two embeddings
of α in sid3: (1, 3, 7) and (1, 4, 7). The first embedding is not a gap[3,7]-embedding
since 3 ≤ (t7 − t3 = 8) � 7) while the second one is.

Hence, it is not sufficient to store just the (suffix of the) smallest embedding as
is done in the pseudo-projected database. Instead, we can store all embeddings. One
can draw the parallel of this notion with the notion the pseudo-projected database
pSDB|α but instead of only storing the first embedding, we store all available em-
beddings:

Definition 7 Embedding database (embSDB|α).Assume a sequence s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉 and a subsequence α = 〈α1α2 . . . αk〉 with k ≤ n. The set of all
embeddings of α in s is embα(s) = {(e1, . . . , ek)|1 ≤ e1 ≤ ek ≤ n such that ss[ei] =
αi}. The embedding database of α is now defined as embSDB|α = { (sid, embα(s)) |
(sid, s) ∈ SDB}.

The embedding database under gap[M,N] of a sequence s is the set of transactions
identifiers together with all embeddings of s that satisfy the gap[M,N] constraint;
denoted as embSDB|[M,N]

α . Similarly for the embedding database under span[W,Y]

and the combination of gap and span.
GapSeq [20] stores for each embedding the position after the last embedding,

called right pattern extensions, but this is not sufficient to support a span cons-
traint. Our method will store the start and stop position of each embedding, which
is sufficient for span, gap and the combination of the two.

Given a span and/or gap constraint, an embedding can only be extended with
events whose timing satisfies the span/gap constraints. We call this subsequence of
events the extension window of an embedding:

Mining Time-constrained Sequential Patterns with Constraint Programming 9

Definition 8 Extension Window (ew). Assume a given sequence s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉, a subsequence α = 〈α1α2 . . . αk〉 and a gap[M,N] constraint. Let
e = (e1, e2, . . . , ek) be any valid gap[M,N]-embedding of α in s. The extension window
of this embedding, denoted ewgap[M,N]

e (s), is the subsequence 〈(su, tu)(su+1, tu+1) . . .
(sv−1, tv−1)(sv, tv)〉 such that (tek

+M ≤ tu)∧ (tv ≤ tek
+N)∧ (@t′u ∈ st, tek

+M ≤
t′u < tu) ∧ (@t′v ∈ st, tv < t′v ≤ tek

+ N}. The start and the end position of this
extension window are respectively u and v.

Example 11 Assume gap[3,7] and α = 〈A〉. For sid3 in Table 1a, there is one gap[3,7]-
embedding: (1) with extension window 〈(D, 6)(D, 8)〉; hence, if 〈A〉 is extended
with any symbol other than D it will no longer be covered. For α = 〈A,D〉 there
are now two possible embeddings: (1, 3) and (1, 4). Their extension windows are:
〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉. Table 2b shows the embeddings and extension win-
dows for these two patterns for all sequences in the SDB of Table 1a. A comparison
can be done with the same versions without time restrictions presented in Table 2a.

3.2 Trailing-based data structures

Trailing as a mechanism to restore the state. CP-Solvers implementing the depth-
first search backtracking algorithms need an efficient state restoration system [34].
This system is based on the trail and time-stamping mechanism1. Trailing consists of
recording the changes in a node to be able to restore it later on backtrack. The main
advantage of trailing is that it makes it possible to focus on the design of the filtering
without worrying about the state restoration. In each node, the solver propagates
each of the constraints until a fix-point is reached; hence, a state can change several
times within one search node. The trail keeps a time-stamp associated with a memory
location to avoid storing a same memory on the trail more than once per search
node. CP-Solvers typically expose some “reversible” objects externally using this
mechanism. The reversible integer, denoted by rint, is an example of “reversible”
objects for the primitive type int. Our trailing-based data structure also uses this
mechanism.

Trailing the embedding database. We introduce a trailing-based data structure to
efficiently store and restore the embedding database. The key idea is to store the
embedding database in ’backtracking aware’ vectors.

This idea was introduced in PPIC [4] allowing to drastically speeding up the
search for sequential patterns without time constraints. See an illustration of this
data structure based on the projected database examples of the Table 2a in the
Fig. 1a. Two reversible integers store respectively the start position in the vector (φ)
and the number of entries (ϕ) in the embedding database. When branching, data is
appended at the φ+ ϕ position and φ and ϕ are updated. When backtracking, only
the start position and number of elements need to be restored/trailed; the vector can
stay unchanged in memory, with the parts after φ+ϕ overwritten later. In [4], only
the sequence ids (sids vector) and the start position of the suffixes (embs vector)
must be stored. This is not sufficient to handle time constraints information.

1 Except some CP-Solvers such as Gecode, Oz/Mozart and Figaro.

10 John O.R. Aoga et al.

a) Trailing-based data structure for SPM problem without time constraints - in PPIC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sids 1 2 3 4 1 2 3 1 2 3

embs
1 2 1 1 3 4 2 4 5 7

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

b) Trailing-based data structure for SPM problem with gap/span constraints - in PPICt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sids 1 2 3 4 1 2 3 1 2 3

embsize
1 3 1 1 1 1 2 1 1 1

embs

(1,1) (2,2) (1,1) (1,1) (1,3) (3,4) (1,3) (1,4) (3,5) (1,7)

. (3,3) (1,4)

. (6,6)

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

Fig. 1: Trailing-based data structure to store and restore the embeddings database:
a) without time constraints b) with gap[3,7] constraints

Trailing-based embedding database. We use reversible vectors to store the start and
the end positions of all the possible time-constrained embeddings for every sequence.
The vectors: sids, embsize and embs respectively represent the sequence ids, the
number of embeddings and the start/end positions of the embeddings. These start
and end positions are sufficient to verify the span and gap constraints during pattern
extension.

Example 12 Figure 1b depicts an example of this data structure: for pattern 〈A〉,
the data of embSDB|[3,7]

〈A〉 is stored between indices φ = 1 and φ + ϕ − 1 = 4. This
pattern 〈A〉 is then further extended by the symbol D and embSDB|[3,7]

〈AD〉 is stacked
next to it, between indices φ = 5 and φ + ϕ − 1 = 7. This pattern 〈AD〉 is then
further extended by the symbol C and embSDB|[3,7]

〈ADC〉 is stacked between indices
φ = 8 and φ+ ϕ− 1 = 10. The gap[3,7]-embedding of 〈ADC〉 in sid2 is (3, 4, 5) but
we only store the start (3) and end (5) as (3, 5) we can compute the valid extension
window based on gap and span constraint.

4 PPICt global constraint under time constraints

This section presents PPICt (Prefix Projection Incremental Counting with time res-
trictions), our filtering algorithm for finding sequential patterns under gap and span

Mining Time-constrained Sequential Patterns with Constraint Programming 11

Listing 1: PPICt(P, SDB, θ,M,N,W, Y)
1 // pre: variables 〈P1, . . . , Pi〉i∈[1,l] are bound, SDB is given
2 // Pi is the new assigned variable since previous call (let’s Pi = a).
3 if (a == ε)
4 foreach (j ∈ {i+ 1, . . . , l})
5 Pj .assign(ε) // Filtering rule.2
6 Remove all embeddings that do not satisfy minimum span W and fail

should the pattern no longer be frequent
7 else
8 freqs = ProjectAndGetFreqs(i, SDB, a,M,N,W, Y)
9 foreach (v ∈ D(Pi+1)) if (v 6= 0 and freqs[v] < θ) Pi+1.remove(v)

constraints. This algorithm support sequences with timestamps (as presented in Ta-
ble 1a). Constraints such as regular expression, item inclusion/exclusion, pattern
length and all other constraints that do not depend on the embeddings can be added
to the model. Constraints that can change what a valid embedding is would need to
be added to the propagator, as we do for the time-based gap and span constraints.

4.1 PPICt filtering algorithm and improvements

The PPICt(P, SDB, θ,M,N,W, Y) global constraint is given in Listing 1. The filter-
ing procedure is triggered whenever a pattern is extended by a new symbol (Pi+1).
If that symbol is ε then by Rule 2 all Pj , j > i should also be ε. The pattern is hence
fully assigned and so we can filter with the minimum span constraint which is not
prefix-monotone. If the pattern is still frequent then this is a new solution.

If Pi+1 was assigned a non-ε value, then the procedure ProjectAndGetFreqs
counts for each symbol what the size of the projected database would be if the
new pattern is extended with that symbol. The computed result, denoted freqs in
the pseudo-code, is used to prune the domain of the next pattern variable Pi+1
by removing infrequent symbols; this is valid because the constraints filtered in
ProjectAndGetFreqs are prefix anti-monotone.

The main difference with PPIC [4] is that all embeddings must be stored instead
of just the prefix (see Section 3.1). Embeddings can only be extended by symbols
appearing in its extension windows. The projected frequency counting should only
count symbols appearing in an extension window. Indeed, a symbol not appearing in
an extension window of any embedding of the sequence would not be a valid support
for extending the current pattern as it would not satisfy the time constraints.

This leads to the following key ingredients of the ProjectAndGetFreqs function:
1) as presented in Section 3.2, we adapt the backtracking-aware data structure intro-
duced in [4] to store all possible occurrences of the pattern in a sequence, including
the starting symbol to support span constraints; 2) we avoid scanning a sequence
for a symbol beyond the (precomputed) last occurrence of that symbol in the se-
quence; 3) we introduce the concept of extension window of an embedding and avoid
to scan overlapping windows multiple times; 4) we avoid searching for the position
of the start of an extension window, which depends on the minimum gap time, by
precomputing these position in advance. These ingredients are detailed next.

12 John O.R. Aoga et al.

4.1.1 Ingredient 1. Avoid scanning all sequences

We reuse the lastPosMap precomputed structure of PPIC to avoid scanning a
sequence if the last position of that sequence is before the start of the extension
window. For a symbol a, the lastPosMap[a] is the last position of this symbol in
the sequence: lastPosMap[a] = max{p ≤ size(s) : s[p] = a}.

Example 13 Assuming the lastPosMap precomputed structure provided in Table 1c
and the symbol A, lastPosMap[A] is {1, 6, 1, 1}. Hence, when searching for A, we
must stop at the first position for the sequences sid1, sid3 and sid4 but for the
sequence sid2 we stop at position 6.

However, we cannot use the same structure for support counting (which also need
to search symbols over sequences) as PPIC did, since this assumes that all symbols
up to the end of the sequence must be counted, while we should only count symbols
in the extension windows. This can have a big impact if the sequences contain many
duplicates symbols as shown in [4]. In our case, this problem is minimized since
extension windows are often smaller.

4.1.2 Ingredient 2. Avoid scanning more than once the events occurring in
overlapping extension windows

The extension windows of a sequence can possibly overlap. For instance in Table 2b
with α = 〈AD〉, in sid3, 〈(E, 12)〉 is present in both extension windows. Then when
computing the freqs vector, some positions could be revisited several times. This
source of inefficiency can be avoided by keeping track of the current largest position
visited so far in any extension window. This position is denoted pos in Listings 2
and 3. When the next extension window for the current sequence is considered by
updateSupport in Listing 3, all symbols before pos have already been counted, so
only positions after pos should be visited and afterwards pos is updated.

4.1.3 Ingredient 3. Avoid scanning the sequences when given a minimum gap

Given the current pattern α = 〈α1α2 . . . αk〉, a sequence s and a valid
gap[M,N]span[W,Y]-embedding e = (e1, e2, . . . , ek), all the symbols in the extension
window ewgap[M,N]span[W,Y]

e (s) must be visited for updating the frequency counters.
While it is easy to compute the start time of the extension window using the
minimum gap M : tek

+ M ; finding the first position u in the sequence such that
tu ≥ tek

+ M requires scanning the sequence starting from ek. To avoid this, we
propose to precompute, for the given minimum gap, the position of the beginning of
the extension window from any possible position. This can be done with one linear
scan over each sequence when the propagator is initialized; and the precomputed
positions are stored in a structure called nextPosGap.

Definition 9 Building the nextPosGap structure. Assume s = 〈(s1, t1)(s2, t2)
. . . (sn, tn)〉 is a sequence. Given k ∈ [1, n] a position in s andM a minimum gap, the
nextPosGap[s][k] is the position of the smallest time satisfying the minimum gap:
nextPosGap[s][k] = i such that (i > k) ∧ (ti ≥ tk +M) ∧ (@i′ < i : ti′ ≥ tk +M).

Mining Time-constrained Sequential Patterns with Constraint Programming 13

Listing 2: ProjectAndGetFreqs(i, SDB, a,M,N,W, Y)
1 // Internal state: φ,ϕ,sids,embsize,embs
2 φ′ = φ+ ϕ; ϕ′ = 0; freqs[b] = 0 ∀b ∈ L
3 if i == 1: // first assigned symbol, scan for symbol
4 for sid = 1 to size(SDB): // for every sequence in SDB
5 seq = SDB[sid]; nEmb = 0; pos = 0; visitedI[b] = false ∀b ∈ L
6 for j = 0 to lastPosMap[sid][a]: // find each symbol a
7 if seq[j] == a: // new match
8 embs[φ′ + ϕ′][nEmb] = (j, j); nEmb = nEmb+ 1
9 pos = updateSupport(j, j, sid, pos, visitedI)

10 if (pos ≥ size(seq)) break // window ends with sequence
11 if (nEmb > 0)// store sequence meta-data
12 sids[φ′ + ϕ′] = sid; embsize[φ′ + ϕ′] = nEmb; ϕ′ = ϕ′ + 1
13 else: // non-empty prefix
14 for c = φ to φ+ ϕ− 1: //for all sequence in projected database
15 sid = sids[c]; seq = SDB[sid]; nEmb = 0; pos = 0
16 visitedI[b] = false ∀b ∈ L
17 for k = 1 to embsize[c]: // for each prefix embedding
18 (b, e) = embs[c][k] // begin and end position of embedding
19 maxT = min(seqt[sid][b] + Y, seqt[sid][e] +N) // max time window
20 j = nextPosGap[sid][e] // precomputed position of minT
21 while (j < lastPosMap[sid][a] and seqt[sid][j] ≤ maxT):
22 if seq[j] == a: // new embedding
23 embs[φ′ + ϕ′][nEmb] = (b, j); nEmb = nEmb+ 1
24 pos = updateSupport(b, j, sid, pos, visitedI)
25 if (pos ≥ size(seq)) break // window ends with sequence
26 j = j + 1
27 if (nEmb > 0) // store sequence meta-data
28 sids[φ′ + ϕ′] = sid; embsize[φ′ + ϕ′] = nEmb; ϕ′ = ϕ′ + 1
29 φ = φ′; ϕ = ϕ′

30 return freqs

Listing 3: updateSupport(b, e, sid, pos, visitedI)
1 s =SDB[sid]; k = max(nextPosGap[sid][e], pos)
2 maxT = min(st[sid][e] +N, st[sid][b] + Y)
3 while (k < size(s) and st[sid][k] ≤ maxT)
4 if (!visitedI[s[k]]) freqs[s[k]] = freqs[s[k]] + 1; visitedI[s[k]]= true
5 k = k + 1
6 return k

Example 14 Assume s = 〈(A, 2)(B, 5), (D, 6), (C, 10)(B, 11)〉, k = 2 and M = 3
nextPosGap[s][k] = 4 because t4 = 10 is the smallest time such that t4 ≥ 5 + 3 = 8.
Table 1b shows the nextPosGap of SDB (the values nextPosGap[s][k] > size(s) + 1
means the minimum gap is not available for that position).

4.1.4 Putting it all together

The core of the algorithm is in the ProjectAndGetFreqs procedure (presented in
Listing 2) that gathers all the ingredients. We distinguish two cases. Assuming i ∈
[1, l], if i == 1 it means that the pattern was previously empty and is now composed
of one unique symbol. If (i > 1) the pattern is composed of at least two symbols
which means that the gap/span must be considered.

14 John O.R. Aoga et al.

In the first case (i == 1), all sequences of SDB are considered. For every sequence,
all the positions having the symbol a are stored as an embedding. As the embedding
is a singleton, there is not need to consider the gap/span constraints at this point.

The call to updateSupport (Listing 3) will update the freqs vector by visiting
each symbol present in the extension window of the current embedding (position
of symbol a). Variable pos is used to avoid incrementing the frequency of a symbol
twice in the same sequence.

In the second case (i > 1), the main loop at line 14 iterates over the previous
(parent) projected database stored between φ and φ + ϕ − 1 and builds the new
one starting at index φ + ϕ. For each embedding of a sequence, s (line 17), the
maximum of the time window is computed. We search all positions only in extension
window ensuring to have time greater than minimum gap time and lower than the
maximum gap and span times computed based on the first and the last element
of the embedding (line 19). The updateSupport is also called to update the freqs
vector for every extended embedding created.

Finally, lines 12 and 28 update sids and embsize in order to ensure the consistency
of the data structure. Then, line 29 updates the reversible integers φ and ϕ to reflect
the newly computed projected database.

4.2 Additional constraints

The advantage of CP based sequence mining is its capacity to accept additional
constraints. The global constraint approach PPICt is less flexible than the de-
composition approach of [25] as it does not expose the embeddings. Nevertheless
many useful syntax constraints [14] can be added on the sequence pattern variables:
P = [P1, P2 . . . , Pl]. Note that these constraints are directly2 posted as independent
constraints in the solver constraint store and run together with the mining process.
We can indeed post any such constraint, for example:

Pattern length constraints. One can impose a minimum and a maximum
over the length of the pattern. These constraints are easy to handle considering all
patterns are terminated by the empty symbol (ε). Hence, the minimum pattern
length (Lmin) is defined as ∀i ∈ [1, Lmin] and Lmin < l, Pi 6= ε. The Max-
imum pattern length (Lmax) is obtained by limiting the length of P to Lmax:
P = [P1, P2 . . . , PLmax] with Lmax < l.

Symbol inclusion/exclusion. The number of occurrences of symbols in the
sequence pattern can be modeled with Among [8] and global cardinality (GCC) [33]
constraints largely available in CP-Solvers. Considering v ≥ 0 a given number of
occurrences of symbol i ∈ L, the Among(P, i, v) constraint will only allow a number
v times i (v = 0 prohibits i). To handle several symbols inclusion/exclusion, one can
use several Among constraints or GCC(P,V) constraint with V a collection of pairs
(v, i). GCC also offers the possibility of defining range of values of occurrences.

Regular expression and grammar. The Regular global constraint [30] can
be used to enforce that P satisfies a given regular expression. Most of CP-based
approaches [4, 20, 19] hence easily support regular expression constraints. Consid-
ering e a user-supplied regular expression and A its deterministic finite automaton,

2 It is neither post-processing nor hard-coded

Mining Time-constrained Sequential Patterns with Constraint Programming 15

the Regular(P,A) constraint only allows patterns matching A. Since a regular ex-
pression is a formal language, the grammar constraint can also be used. However,
grammar constraint could also use to define context-free languages [17] or general
languages [32].

4.3 Time and space complexity

Let us denote by m = size(SDB) the number of sequences, l the length of the
longest sequence, L = size(L) the size of item alphabet. In the worst case, the time
complexity of our propagator is in O(m × l2 + L) and the space complexity is in
O(m× l2).

Intuition (Space complexity) Our data structure needs O(l) memory entries to store
the embeddings for one sequence of length one. The projected database for such a
sequence thus requires O(m × l). During search, the search will branch over each
sequence variable in turn which corresponds to extending the pattern by one symbol
at a time. Each time a symbol is added, an extra layer of embeddings is stored in
our trailing-based data structure (Fig. 1). Given that each pattern has a length of at
most l, the space complexity of our data structure is hence O(l×m× l) = O(m× l2).
�

Intuition (Time complexity) PPICt needs O(l+ (m× l2) +L) = O(m× l2 +L) time
to be complete since the lines 4-5 of the Listing 1 cost O(l), the ProjectAndGetFreqs
method O(m × l2) and line 9 costs O(L). The complexity of the loops 6 and 21
including the updateSupport in Listing 2 is O(l) since we avoid scanning overlapping
symbols. Hence, the complexity of the ProjectAndGetFreqs method is O(m× l+m×
l × l) = O(m× l2). �

5 Experiments

This section reports the experiments we made to evaluate our approach in compa-
rison with other CP-based and specialized methods. More specially, we answer the
following questions:Q1.What is the performance of the state-of-the-art for sequential
pattern mining without time constraints? Q2. What is the difference in performance
of PPICt for sequential patterns mining with time restrictions? Q3. What is the
effect of a standalone constraint in the mining process? Q4. What is the impact of
the computation of the additional embeddings in PPICt?

Before answering these questions, we present in Table 3 the features of the seven
real-life datasets that we use, as well as the experimental protocol and the alter-
native sequential pattern miners used for the comparisons. Note that the data and
framework are available online and open source3.

Experimental protocol

PPICt is implemented in the Scala language in the CP-Solver OscaR [26]. All expe-
riments are run in the JVM with maximum memory set to 8GB. All the experiments

3 http://sites.uclouvain.be/cp4dm/spm/ppict/

http://sites.uclouvain.be/cp4dm/spm/ppict/

16 John O.R. Aoga et al.

SDB size(L) size(SDB) allsymbols(SDB) max size(s) avg. size(s) density

BIBLE 13905 36369 787066 100 21.64 0.0016
FIFA 2990 20450 741092 100 36.24 0.0121
Kosarak 21144 69999 558373 796 7.98 0.0004
LEVIATHAN 9025 5834 197251 100 33.81 0.0037
MSNBC 17 31790 423776 100 13.33 0.7841
PubMed 19931 17237 509440 198 29.56 0.0015
protein 25 103120 49729890 600 482.25 19.2901

Table 3: Seven real-life datasets features. Respectively: dataset name, number of
distinct symbols, number of sequences, total number of symbols in the dataset,
maximum sequence length, average sequence length, and density computed by
allsymbols(SDB)
size(L)×size(SDB) (Kosarak is the sparsest dataset and Protein is the densest).

Methods Frequency Gap Span Regular Among Length other constraints1

PPICt x x x x x x x
GapSeq x x∗ x x x
cSPADE x x x∗∗ x

Table 4: Sequential pattern miners with supported constraints. 1 is any other user-
supplied constraint that does not depend on the embeddings (not implemented but
could be). ∗GapSeq does not consider time but position of events, ∗∗cSPADE does
not support minimum span constraint.

are conducted using a 2.7GHz Intel Core i5 64 bit processor and 8GB of RAM with
Linux 3.19.0-32-generic from Mint 17.3. We set the execution time limit to 3600 sec-
onds (1 hour). We also restrict the output of all software to only the mining statistics
and do not print the patterns found. The minimum support θ is denoted byMinsup.

Alternative sequential patterns miners

We make comparisons with GapSeq4 [20], a CP approach that outperforms other
CP-based methods supporting gap constraints; cSPADE5 [40] a highly scalable spe-
cialized sequence miner that supports gap and span constraints. Its search is not
based on pattern extension as GapSeq and PPICt are, but on repeated (tempo-
ral) joins of embeddings. We also provide a comparison to PPIC 6 [4] without gap
constraints, PPIC has shown to outperform both specialized and generic miners
for standard frequent sequence mining. Table 4 shows the supported constraints for
these miners.

4 https://sites.google.com/site/cp4spm/
5 http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
6 http://sites.uclouvain.be/cp4dm/spm/

https://sites.google.com/site/cp4spm/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
http://sites.uclouvain.be/cp4dm/spm/

Mining Time-constrained Sequential Patterns with Constraint Programming 17

0.30 0.28 0.26 0.24 0.22 0.200.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Kosarak−70k

GapSeq
cSPADE
PPIC

99.990 99.980 99.970 99.96099.990 99.980 99.970 99.960

 10

 340

 670
1000

Minsup (%)
T

im
e

 (
s
,

lo
g

s
c
a

le
)

Protein

GapSeq
cSPADE
PPIC

Fig. 2: CPU times for PPIC (without time constraints) with several minsup (missing
points indicate a timeout) [4]

5.1 Performances results

5.1.1 Q1: GapSeq vs PPIC vs cSPADE for SPM without time restriction

As shown in [4] and illustrated in Fig. 2, PPIC clearly outperforms both CP-based
and specialized approaches for many datasets (with several different features) except
for the sparsest dataset Kosarak-70k where it is competitive with cSPADE. The
protein dataset is large and dense with many patterns even at high support. For
such a challenging dataset, PPIC is at least one hundred times faster.

5.1.2 Q2: Time performance for PPICt under gap and span constraints

We first compare PPICt with GapSeq and PPIC for gap constraints. Then, we
combine gap and span constraints.

Figure 3 shows the CPU time for the sequence mining task under minimum and
maximum gap for several θ (Minsup) values over six datasets. PPICt dominates
both CP-based and specialized methods. Except for the Kosarak dataset, PPICt
is often faster, and increasingly so for low frequency thresholds. Upon inspecting
the output of the Kosarak dataset we see that several frequent patterns have the
same size and cover the same set of sequences. The temporal join approach used by
cSPADE is very fast in this case. This was also the case for PPIC in the non-time
constrained case.

We also combine the gap and span constraints, which is not supported by GapSeq.
The results are presented in Fig. 4. Our approach outperforms cSPADE by a wide
margin in this case. These results show that PPICt is still efficient when combining
time constraints.

18 John O.R. Aoga et al.

1.0 0.8 0.6 0.4 0.2

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

BIBLE + Gap[10,30]

cSPADE
GapSeq
PPICt

9 8 7 6 5

3

4

5

6

7

8

9

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

FIFA + Gap[10,30]

cSPADE
GapSeq
PPICt

0.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

Kosarak−70k + Gap[10,30]

cSPADE
GapSeq
PPICt

5 4 3 2 1

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

LEVIATHAN + Gap[10,30]

cSPADE
GapSeq
PPICt

99.990 99.985 99.980 99.975 99.970 99.965 99.960

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

Protein + Gap[10,30]

cSPADE
GapSeq
PPICt

10 8 6 4 2

 3.4

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

MSNBC + Gap[10,30]

cSPADE
GapSeq
PPICt

Fig. 3: CPU times when considering minimum and maximum gap constraints for
several minsup (missing points indicate a timeout)

5.1.3 Q3: Effect of maximum gap constraint

We now look at the sensitivity of the methods to the threshold of the maximum gap
constraint. We fix the frequency threshold to a low value that makes mining without
further constraints challenging and increase the maximum gap constraint from 1 to

Mining Time-constrained Sequential Patterns with Constraint Programming 19

1.0 0.8 0.6 0.4 0.2

 10

 340

 670
1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

BIBLE + Gap[3,10] + Span[0,30]

cSPADE
PPICt

14 12 10 8 6

 1

 34

 67
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

FIFA + Gap[3,10] + Span[0,30]

cSPADE
PPICt

99.990 99.980 99.970 99.960

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein + Gap[3,10] + Span[0,30]

cSPADE
PPICt

2.0 1.5 1.0 0.5

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

PubMed + Gap[3,10] + Span[0,30]

cSPADE
PPICt

Fig. 4: CPU times when considering both gap and span constraints for several
minsup (missing points indicate a timeout).

9. As can be seen in Fig. 5, the runtime of cSPADE increases much more quickly
with increasing maximum gap. For GapSeq it depends on the dataset, but PPICt’s
performance is more stable and increases more moderately compared to the other
methods.

5.1.4 Q4: Experiments over databases without time restrictions

To answer Q4., we use PPICt to find only the sequential patterns without any
time considerations. That is PPICt where minimum gap/span is 0 and maximum
gap/span is the infinity, denoted by PPICt[0,Inf]. Hence, we compare PPIC with
PPICt[0,Inf]. The results are reported in Fig. 6. We can notice that PPIC is always
faster. This is possible since such PPIC improvements could not be used under time
restrictions. Moreover, to preserve the structure of datasets the reduction of datasets
by preprocessing is forbidden.

5.2 Handling additional Constraints

To demonstrate the ability to accommodate additional constraints we experiment
the combination of PPICt with some other syntax constraints. The result is shown

20 John O.R. Aoga et al.

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

BIBLE + minsup=0.1%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

FIFA + minsup=2%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

20

40

60

Maximum gap (N)

T
im

e
 (

s
)

LEVIATHAN + minsup=0.8%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

100

200

300

400

Maximum gap (N)

T
im

e
 (

s
)

PubMed + minsup=0.5%

cSPADE
GapSeq
PPICt

Fig. 5: CPU times for several maximum gap with fixed minsup over Bible, Fifa,
Leviathan and PubMed datasets (missing points indicate a timeout).

Gap +Pattern Length +Among +Regular
nSols time(s) nSols time(s) nSols time(s) nSols time(s)

BIBLE∗ 32307 46.181 1542 45.622 171 43.390 8 0.191
PubMed∗∗ 13086 22.632 1304 21.600 235 19.889 3 0.091

∗ θ = 0.1% ∧ Gap[10, 30] ∧ (Lmin = Lmax = 5) ∧ the number of A equal to 1 ∧ E is
forbidden ∧ Regular(A+(B{2,}|C*|D+)B*C*D*) where (A = 11829, B = 2, C = 8212,
D = 6556, E = 5590)
∗∗ θ = 0.3% ∧ Gap[10, 30] ∧ (Lmin = Lmax = 4) ∧ the number of A and B equal to 1 ∧
Regular(B+A*C*A*) where (A = 3335, B = 12155, C = 16599)

Table 5: Combination of pattern length, item inclusion/exclusion, regular expression
constraints with gap constraint.

in Table 5; the constraint parameters were artificially constructed in an interactive
setting. We can observe that the addition of the constraints reduces the number of so-
lutions and the computation time. A generate-and-filter approach using a specialized
algorithm would not be able to benefit from stronger filtering.

Mining Time-constrained Sequential Patterns with Constraint Programming 21

1.0 0.8 0.6 0.4 0.2

 0

100

200

300

400

Minsup (%)

T
im

e
 (

s
)

BIBLE

PPICt[0,Inf]
PPIC

14 12 10 8 6

 0

100

200

300

400

500

600

700

Minsup (%)

T
im

e
 (

s
)

FIFA

PPICt[0,Inf]
PPIC

0.30 0.28 0.26 0.24 0.22 0.20

2

4

6

8

Minsup (%)

T
im

e
 (

s
)

Kosarak−70k

PPICt[0,Inf]
PPIC

5 4 3 2 1

 5

10

15

Minsup (%)

T
im

e
 (

s
)

LEVIATHAN

PPICt[0,Inf]
PPIC

Fig. 6: Comparing PPICt without time restriction (PPICt[0,Inf]) with PPIC

6 Conclusion

We introduced PPICt, a global constraint to solve sequential pattern mining problem
under time constraints. It integrates gap and span constraints for databases with or
without timestamps. Our approach often outperforms cSPADE, the state-of-the-art
specialized method and always outperforms GapSeq, the state-of-the-art CP based
approach allowing to handle time constraints. This was made possible thanks to the
backtracking-aware data structure to store embeddings of pattern based on trailing
techniques. Also, algorithmic ingredients help to improve further: the precomputed
next position of minimum gap, the avoidance of scanning all dataset and the avoid-
ance of the overlapping between extension windows when computing the frequencies
of symbols. Moreover, we report experimental results over several real-life datasets
which demonstrate that our proposal is mostly competitive with or outperforms
both specialized and CP-based methods. Additional constraints such as regular ex-
pression, item inclusion/exclusion, pattern length constraints are also available to
increase the flexibility of users and practitioners.

Acknowledgements The research is supported by the FRIA-FNRS (Fonds pour la For-
mation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium) and FWO (Research
Foundation – Flanders).

22 John O.R. Aoga et al.

References

1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Data Engineering, 1995. Pro-

ceedings of the Eleventh International Conference on, pp. 3–14. IEEE (1995)
3. Antunes, C., Oliveira, A.L.: Generalization of pattern-growth methods for sequential pat-

tern mining with gap constraints. In: P. Perner, A. Rosenfeld (eds.) Machine Learning and
Data Mining in Pattern Recognition: 3rd International Conference, MLDM 2003 Leipzig,
Germany, July 5–7, 2003 Proceedings, pp. 239–251. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

4. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence
with constraint programming. In: P. Frasconi, N. Landwehr, G. Manco, J. Vreeken (eds.)
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, pp.
315–330. Springer International Publishing, Cham (2016)

5. Aoga, J.O.R., Guns, T., Schaus, P.: Mining time-constrained sequential patterns with
constraint programming. In: D. Salvagnin, M. Lombardi (eds.) Integration of AI and OR
Techniques in Constraint Programming - 13th International Conference, CPAIOR 2017,
Padova, Italy, June 5 - 8, 2017, Proceedings, Lecture Notes in Computer Science. Springer
(2017)

6. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada,
pp. 429–435. ACM (2002)

7. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal
patterns for event detection in multivariate time series data. In: Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
280–288. ACM (2012)

8. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical and
computer Modelling 20(12), 97–123 (1994)

9. Coquery, E., Jabbour, S., Saïs, L., Salhi, Y.: A sat-based approach for discovering frequent,
closed and maximal patterns in a sequence. In: L.D. Raedt, C. Bessière, D. Dubois, P. Do-
herty, P. Frasconi, F. Heintz, P.J.F. Lucas (eds.) ECAI 2012 - 20th European Conference
on Artificial Intelligence. Montpellier, France, August 27-31 , 2012, Frontiers in Artificial
Intelligence and Applications, vol. 242, pp. 258–263. IOS Press (2012)

10. Desai, N.A.K., Ganatra, A.: Efficient constraint-based sequential pattern mining (spm)
algorithm to understand customers buying behaviour from time stamp-based sequence
dataset. Cogent Engineering 2(1), 1072,292 (2015)

11. Fournier-Viger, P., Wu, C.W., Tseng, V.S.: Mining maximal sequential patterns with-
out candidate maintenance. In: Advanced Data Mining and Applications, pp. 169–180.
Springer (2013)

12. Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. Knowledge
and Data Engineering, IEEE Transactions on 25(2), 402–418 (2013)

13. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation:
A frequent-pattern tree approach. Data mining and knowledge discovery 8(1), 53–87
(2004)

14. He, J., Flener, P., Pearson, J., Zhang, W.M.: Solving string constraints: The case for cons-
traint programming. In: International Conference on Principles and Practice of Constraint
Programming, pp. 381–397. Springer (2013)

15. Henriques, R., Antunes, C., Madeira, S.C.: Methods for the efficient discovery of large
item-indexable sequential patterns. In: A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Mas-
ciari, Z.W. Ras (eds.) New Frontiers in Mining Complex Patterns: Second International
Workshop, NFMCP 2013, Held in Conjunction with ECML-PKDD 2013, Prague, Czech
Republic, September 27, 2013, Revised Selected Papers, pp. 100–116. Springer Interna-
tional Publishing, Cham (2014)

16. Henriques, R., Madeira, S.C.: Bicspam: flexible biclustering using sequential patterns.
BMC Bioinformatics 15(1), 130 (2014)

17. Kadioglu, S., Sellmann, M.: Grammar constraints. Constraints 15(1), 117–144 (2010)
18. Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T.: Prefix-projection global

constraint and top-k approach for sequential pattern mining. Constraints 22(2), 265–306
(2017)

Mining Time-constrained Sequential Patterns with Constraint Programming 23

19. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: Prefix-projection global
constraint for sequential pattern mining. In: G. Pesant (ed.) Principles and Practice of
Constraint Programming: 21st International Conference, CP 2015, Cork, Ireland, August
31 – September 4, 2015, Proceedings, pp. 226–243. Springer International Publishing,
Cham (2015)

20. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: A global constraint
for mining sequential patterns with GAP constraint. In: C. Quimper (ed.) Integration
of AI and OR Techniques in Constraint Programming - 13th International Conference,
CPAIOR 2016, Banff, AB, Canada, May 29 - June 1, 2016, Proceedings, Lecture Notes in
Computer Science, vol. 9676, pp. 198–215. Springer (2016)

21. Li, C., Wang, J.: Efficiently mining closed subsequences with gap constraints. In: Pro-
ceedings of the SIAM International Conference on Data Mining, SDM 2008, April 24-26,
2008, Atlanta, Georgia, USA, pp. 313–322. SIAM (2008)

22. Lu, S., Li, C.: Aprioriadjust: An efficient algorithm for discovering the maximum sequential
patterns. In: Proc. Intern. Workshop Knowl. Grid and Grid Intell (2004)

23. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event se-
quences. Data mining and knowledge discovery 1(3), 259–289 (1997)

24. Metivier, J., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint-based
language for declarative pattern discovery. In: Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on, pp. 1112–1119. IEEE (2011)

25. Négrevergne, B., Guns, T.: Constraint-based sequence mining using constraint program-
ming. In: L. Michel (ed.) Integration of AI and OR Techniques in Constraint Programming
- 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Pro-
ceedings, Lecture Notes in Computer Science, vol. 9075, pp. 288–305. Springer (2015)

26. OscaR Team: OscaR: Scala in OR (2012). Available from
https://bitbucket.org/oscarlib/oscar

27. Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S.: Incremental and interactive
sequence mining. In: Proceedings of the 8th international conference on Information and
knowledge management, pp. 251–258. ACM (1999)

28. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Prefixspan:
Mining sequential patterns efficiently by prefix-projected pattern growth. In: proceedings
of the 17th international conference on data engineering, pp. 215–224. IEEE (2001)

29. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth
methods. Journal of Intelligent Information Systems 28(2), 133–160 (2007)

30. Pesant, G.: A regular language membership constraint for finite sequences of variables.
In: International conference on principles and practice of constraint programming, pp.
482–495. Springer (2004)

31. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional sequential
pattern mining. In: Proceedings of the tenth international conference on Information and
knowledge management, pp. 81–88. ACM (2001)

32. Quimper, C.G., Walsh, T.: Global grammar constraints. In: International Conference on
Principles and Practice of Constraint Programming, pp. 751–755. Springer (2006)

33. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings
of the thirteenth national conference on Artificial intelligence-Volume 1, pp. 209–215.
AAAI Press (1996)

34. Rossi, F., Van Beek, P., Walsh, T.: Handbook of CP. Elsevier (2006)
35. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance

improvements. Springer (1996)
36. Tatti, N., Cule, B.: Mining closed episodes with simultaneous events. In: Proceedings

of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’11, pp. 1172–1180. ACM, New York, NY, USA (2011).

37. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance.
IEEE Transactions on Knowledge and Data Engineering 19(8), 1042–1056 (2007)

38. Yan, X., Han, J., Afshar, R.: Clospan: Mining: Closed sequential patterns in large datasets.
In: Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 166–177.
SIAM (2003)

39. Zaki, M.J.: Efficient enumeration of frequent sequences. In: Proceedings of the seventh
international conference on Information and knowledge management, pp. 68–75. ACM
(1998)

40. Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints. In: Pro-
ceedings of the ninth international conference on Information and knowledge management,
pp. 422–429. ACM (2000)

24 John O.R. Aoga et al.

41. Zhao, Q., Bhowmick, S.S.: Sequential pattern mining: A survey. ITechnical Report CAIS
Nayang Technological University Singapore pp. 1–26 (2003)

	Introduction
	Preliminaries
	Trailing-based data structure for the embedding database
	PPICt global constraint under time constraints
	Experiments
	Conclusion

