

## LINGI2262

2013-2014

## Machine Learning :classification and evaluation

| 5.0 credits | 30.0 h + 30.0 h | 1q |  |
|-------------|-----------------|----|--|
|-------------|-----------------|----|--|

| Teacher(s):          | Dupont Pierre ;                                                                                                                                                                                                                                                                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Language :           | Anglais                                                                                                                                                                                                                                                                                                          |
| Place of the course  | Louvain-la-Neuve                                                                                                                                                                                                                                                                                                 |
| Inline resources:    | > http://www.icampus.ucl.ac.be/claroline/course/index.php?cid=INGI2262                                                                                                                                                                                                                                           |
| Prerequisites :      | Basic knowledge in Probability, Statistics and Algorithmics (as provided by the courses BIR1203, BIR1304 and SINF1121)                                                                                                                                                                                           |
| Main themes :        | Learning as search, inductive bias Combinations of decisions Loss function minimization, gradient descent Performance assessment Instance-based learning Probabilistic learning Unsupervised classification                                                                                                      |
| Aims :               | Students completing successfully this course will be able to:                                                                                                                                                                                                                                                    |
|                      | understand and apply standard techniques to build computer programs that automatically improve with experience, especially for classification problems                                                                                                                                                           |
|                      | assess the quality of a learned model for a given task                                                                                                                                                                                                                                                           |
|                      | assess the relative performance of several learning algorithms                                                                                                                                                                                                                                                   |
|                      | justify the use of a particular learning algorithm given the nature of the data, the learning problem and a relevant performance measure                                                                                                                                                                         |
|                      | use, adapt and extend learning software Students will have developed skills and operational methodology. In particular, they have developed their ability to:                                                                                                                                                    |
|                      | use the technical documentation to make efficient use of existing packages,                                                                                                                                                                                                                                      |
|                      | communicate test results in a short report using graphics.  The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".    |
| Evaluation methods : | The 4 mini-projects worth 25% of the final grade, 75% for the exam.  A copy of the slides of course is the only document approved at the final exam.  The mini-projects can NOT be remade in second session  25% are already set at the end of Q1 and included as such in the final score in the second session. |
| Teaching methods :   | <br>Lectures                                                                                                                                                                                                                                                                                                     |
|                      | <br>Written assignment and/or Miniproject (2 students/group, from 1 to 3 weeks)                                                                                                                                                                                                                                  |
|                      | Assignment feedback                                                                                                                                                                                                                                                                                              |
| Content :            | Decision Tree Learning: ID3, C4.5, CART, Random Forests                                                                                                                                                                                                                                                          |
|                      | Linear Discriminants: Perceptrons, Gradient-Descent and Least-Square Procedures                                                                                                                                                                                                                                  |
|                      | Maximal Margin Hyperplanes and Support Vector Machines                                                                                                                                                                                                                                                           |
|                      | Probability and Statistics in Machine Learning                                                                                                                                                                                                                                                                   |
|                      | Performance Assessment: Hypothesis testing, Comparing Learning Algorithms, ROC analysis                                                                                                                                                                                                                          |

| Bibliography :               | Gaussian Classifiers, Fisher Linear Discriminants  Bayesian Learning: ML, MAP, Optimal Classifier, Naive Bayes Instance-based learning: k-NN, LVQ Clustering Techniques  Required Slides available on: http://www.icampus.ucl.ac.be/claroline/course/index.php?cid=INGI2262 and more generally all documents (set of mini-projects) available on the same site.  > Master [120] in Computer Science and Engineering > Master [120] in Statistics: General > Master [120] in Statistics: General > Master [120] in Electro-mechanical Engineering > Master [120] in Electro-mechanical Engineering > Master [120] in Electrical Engineering |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Faculty or entity in charge: | INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |