

LINMA1510 2012-2013

Linear Control

5.0 credits

30.0 h + 30.0 h

2q

Teacher(s) :	Dochain Denis ;
Language :	Français
Place of the course	Louvain-la-Neuve
Main themes :	Derivation of mathematical models of linear dynamical systems (state equations and transfer functions). Design of regulators and closed-loop control systems in order to satisfy specifications of stability, robustness, steady-state accuracy and transient performance. PI and PID regulation. Computer aided design.
Aims :	Basic education in linear control systems. The objective is to learn how to design control systems from linear models through practical case-studies. The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Content :	 Mathematical models General principles of closed-loop control Stability Steady-state accuracy Disturbance attenuation Transient performance Robustness Regulation structures Case studies: electrical machines, automotive systems, aeronautics, thermic and nuclear power plants, heat exchangers, industrial grinding and mixing processes, etc.
Other infos :	Methodology : problem based learning, laboratory experiments. Evaluation : exam based on exercises. Reference book : R.C. Dorf and R.S. Bishop, Modern control systems, Addison Wesley.
Cycle and year of study :	Sechelor in Mathematics Bachelor in Engineering Master [120] in Electro-mechanical Engineering Master [120] in Biomedical Engineering Master [120] in Mechanical Engineering Master [120] in Mathematical Engineering Master [120] in Electrical Engineering
Faculty or entity in charge:	MAP