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CONSTRAINT REDUCTION FOR LINEAR PROGRAMS WITH
MANY INEQUALITY CONSTRAINTS∗

ANDRÉ L. TITS† , P.-A. ABSIL‡ , AND WILLIAM P. WOESSNER§

Abstract. Consider solving a linear program in standard form where the constraint matrix A
is m × n, with n � m � 1. Such problems arise, for example, as the result of finely discretizing a
semi-infinite program. The cost per iteration of typical primal-dual interior-point methods on such
problems is O(m2n). We propose to reduce that cost by replacing the normal equation matrix,
AD2AT , where D is a diagonal matrix, with a “reduced” version (of same dimension), AQD2

QAT
Q,

where Q is an index set including the indices of M most nearly active (or most violated) dual
constraints at the current iterate, with M ≥ m a prescribed integer. This can result in a speedup
of close to n/|Q| at each iteration. Promising numerical results are reported for constraint-reduced
versions of a dual-feasible affine-scaling algorithm and of Mehrotra’s predictor-corrector method
[S. Mehrotra, SIAM J. Optim., 2 (1992), pp. 575–601]. In particular, while it could be expected that
neglecting a large portion of the constraints, especially at early iterations, may result in a significant
deterioration of the search direction, it appears that the total number of iterations typically remains
essentially constant as the size of the reduced constraint set is decreased down to some threshold.
In some cases this threshold is a small fraction of the total set. In the case of the affine-scaling
algorithm, global convergence and local quadratic convergence are proved.
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1. Introduction. Consider a primal-dual linear programming pair in standard
form, i.e.,

min cTx subject to Ax = b, x ≥ 0,(1.1)

max bT y subject to AT y + s = c, s ≥ 0,(1.2)

where A has dimensions m× n. The dual problem is equivalently written as

max bT y subject to AT y ≤ c.(1.3)
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Most algorithms that have been proposed for the numerical solution of such problems
belong to one of two classes: simplex methods and interior-point methods. For back-
ground on such methods, see, e.g., [NS96] and [Wri97]. In both classes of algorithms,
the main computational task at each iteration is the solution of a linear system of
equations. In the simplex case, the system has dimension m; in the interior-point
case it has dimensions 2n + m, but can readily be reduced (“normal equations”) to
one of size m at the cost of forming the matrix H := AS−1XAT . Here S and X are
diagonal but vary from iteration to iteration, and the cost of forming H, when A is
dense, is of the order of m2n operations at each iteration.

The focus of the present paper is the solution of (1.1)–(1.2) when n � m � 1,
i.e., when there are many more variables than equality constraints in the primal, many
more inequality constraints than variables in the dual. This includes fine discretiza-
tions of “semi-infinite” problems of the form

max bT y subject to a(ω)T y ≤ c(ω) ∀ω ∈ Ω,(1.4)

where, in the simplest cases, Ω is an interval of the real line. Network problems
may also have a disproportionately large number of inequality constraints: For many
network problems in dual form, there is one variable for each node of the network and
one constraint for each arc or link, so that a linear program associated with a network
with m nodes could have up to O(m2) constraints. Clearly, for such problems one
iteration of a standard interior-point method would be computationally much more
costly than one iteration of a simplex method. On the other hand, given the large
number of vertices in the polyhedral feasible set of (1.3), the number of iterations
needed to approach a solution with an interior-point method is likely to be significantly
smaller than that needed when a simplex method is used.

Intuitively, when n � m, most of the constraints in (1.3) are of little or no
relevance. Conceivably, if an interior-point search direction were computed based on a
much smaller problem, with only a small subset of the constraints, significant progress
could still be made toward a solution, provided this subset were astutely selected.
Motivated by such consideration, in the present paper we aim at devising interior-point
methods for the solution of (1.1)–(1.2) with n � m � 1, with drastically reduced
computational cost per iteration. In a sense, such an algorithm would combine the
best aspects of simplex methods and interior-point methods in the context of problems
for which n � m � 1: each iteration would be effected at low computational cost,
yet the iterates would follow an “interior” trajectory rather than being constrained
to proceed along edges.

The issue of computing search directions for linear programs of the form (1.3)
with n � m—or for semi-infinite linear programs (with a continuum of inequality
constraints)—based on a small subset of the constraints has been an active area of re-
search for many years. In most cases, the proposed schemes are based on logarithmic
barrier (“primal”) interior-point methods. In one approach, known as “column gen-
eration” (for the A matrix) or “build-up” (see, e.g., [Ye92, dHRT92, GLY94, Ye97]),
constraints are added to (but never deleted from) the constraint set iteratively as
they are deemed critical. In particular, the scheme studied in [Ye97] allows for more
than one constraint (column) to be added at each step, and it is proved that the
algorithm terminates in polynomial time with a bound whose dependence on the
constraints is limited to those that are eventually included in the constraint set.
In [Ye92, GLY94, Ye97], in the spirit of cutting-plane methods, the successive iterates
are infeasible for (1.3) and the algorithm stops as soon as a feasible point is achieved;
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while in the approach proposed in [dHRT92] all iterates are feasible for (1.3). An-
other approach is the “build-down” process (e.g., [Ye90]) by which columns of A are
discarded when it is determined that the corresponding constraints are guaranteed
not to be active at the solution. Both build-up [dHRT92] and build-down [Ye90] ap-
proaches were subsequently combined in [dHRT94], and a complexity analysis for the
semi-infinite case was carried out in [LRT99].

In the present paper, a constraint reduction scheme is proposed in the context
of primal-dual interior-point methods. Global and local quadratic convergence are
proved in the case of a primal-dual affine-scaling (PDAS) method. (An early version
of this analysis appeared in [Tit99].) Distinctive merits of the proposed scheme are
its simplicity and the fact that it can be readily incorporated into other primal-dual
interior-point methods. In the scheme’s simplest embodiment, the constraint set
is determined “from scratch” at the beginning of each iteration, rather than being
updated in a build-up/build-down fashion. Promising numerical results are reported
with constraint-reduced versions of the PDAS method and of Mehrotra’s predictor-
corrector (MPC) algorithm [Meh92]. Strikingly, while (consistent with conventional
wisdom) the unreduced version of MPC significantly outperformed that of PDAS in
our random experiments, the reduced version of PDAS performed essentially at the
same level, in terms of CPU time, as that of MPC.

The remainder of the paper is organized as follows. In section 2, the basics
of primal-dual interior-point methods are reviewed and the computational cost per
iteration is analyzed, with special attention paid to possible gains to be achieved in
certain steps by ignoring most constraints. Section 3 contains the heart of this paper’s
contribution. There, a dual-feasible PDAS algorithm is proposed that features a
constraint-reduction scheme. Global and local quadratic convergence of this algorithm
are proved, and numerical results are reported that suggest that, even with a simplistic
implementation, the constraint-reduction scheme may lead to significant speedup.
In section 4, promising numerical results are reported for a similarly reduced MPC
algorithm, both with a dual-feasible initial point and with an infeasible initial point.
Finally, section 5 is devoted to concluding remarks.

2. Preliminaries. Let

n := {1, 2, . . . , n};

for i ∈ n, let ai ∈ R
m denote the ith column of A; let F be the feasible set for (1.3),

i.e.,

F := {y : AT y ≤ c},

and let F o ⊆ R
m denote the dual strictly feasible set

F o := {y : AT y < c}.

Also, given y ∈ F , let I(y) denote the index set of active constraints at y, i.e.,

I(y) := {i ∈ n : aTi y = ci}.

Given any index set Q ⊆ n, let AQ denote the m × |Q| matrix obtained from A by
deleting all columns ai with i �∈ Q; similarly let xQ and sQ denote the vectors of
size |Q| obtained from x and s by deleting all entries xi and si with i �∈ Q. Further,
following standard practice, let X denote diag(xi, i ∈ n), and S denotes diag(si, i ∈ n).
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When subscripts, superscripts, or diacritical signs are attached to x and s, they are
inherited by xQ, sQ, X, and S. The rest of the notation is standard. In particular,
‖ · ‖ denotes the Euclidean norm.

Primal-dual interior-point algorithms use search directions based on the Newton
step for the solution of the equalities in the Karush–Kuhn–Tucker (KKT) conditions
for (1.2), or a perturbation thereof, while maintaining positivity of x and s. Given
μ > 0, the perturbed KKT conditions of interest are

AT y + s− c = 0,(2.1a)

Ax− b = 0,(2.1b)

Xs = μe,(2.1c)

x, s ≥ 0,(2.1d)

with μ = 0 yielding the true KKT conditions. Given a current guess (x, y, s), the
Newton step of interest is the solution to the linear system

⎡
⎣0 AT I
A 0 0
S 0 X

⎤
⎦
⎡
⎣Δx

Δy
Δs

⎤
⎦ =

⎡
⎣ −rc

−rb
−Xs + μe

⎤
⎦ ,(2.2)

where

rb := Ax− b, rc := AT y + s− c

are the primal and dual residuals. Applying block Gaussian elimination to eliminate
Δs yields the system (usually referred to as “augmented system”)[

0 A
XAT −S

] [
Δy
Δx

]
=

[
−rb

−Xrc + Xs− μe

]
,(2.3a)

Δs = −ATΔy − rc.(2.3b)

With s > 0, further elimination of Δx results in the “normal equations”

AS−1XATΔy = −rb + A(−S−1Xrc + x− μS−1e),(2.4a)

Δs = −ATΔy − rc,(2.4b)

Δx = −x + μS−1e− S−1XΔs.(2.4c)

Note that (2.4a) is equivalently written as

AS−1XATΔy = b−AS−1(Xrc + μe).

For ease of reference, define the Jacobian and “augmented” Jacobian

J(A, x, s) :=

⎡
⎣0 AT I
A 0 0
S 0 X

⎤
⎦ , Ja(A, x, s) :=

[
0 A

XAT −S

]
.(2.5)

The following result is proven in the appendix.1

1Concerning the second claim of Lemma 1, only sufficiency is used in the convergence analysis, but
the fact that the listed conditions are in fact necessary and sufficient may be of independent interest.
We could not find this result (or even the sufficiency portion) in the literature, so are providing a
proof for completeness. We would be grateful to anyone who would point us to a reference for the
result.
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Lemma 1. Ja(A, x, s) is nonsingular if and only if J(A, x, s) is. Further, suppose
that x ≥ 0 and s ≥ 0.2 Then J(A, x, s) is nonsingular if and only if the following three
conditions hold: (i) |xi| + |si| > 0 for all i, (ii) {ai : si = 0} is linear independent,
and (iii) {ai : xi �= 0} spans R

m.
In the next two sections, two types of primal-dual interior-point methods are con-

sidered: first, a dual-feasible (but primal-infeasible) PDAS algorithm, then a version
of MPC. In the former, at each iteration the normal equations (2.4) are solved once,
with μ = 0, and rc = 0. In the latter, the normal equations are solved twice per
iteration with different right-hand sides.

We assume that A is dense. For large m and n � m, the bulk of the CPU cost
is consumed by the solution of the normal equations (2.4). Indeed, the number of
operations (per iteration) in other computations amounts to at most a small multiple
of n. As for the operations involved in solving the normal equations, the operation
count is roughly as follows:

− Forming H := AS−1XAT : m2n;
− Forming v := b−AS−1(Xrc + μe): 2mn;
− Solving HΔy = v (Cholesky factorization): m3/3;
− Computing Δs := −ATΔy − rc: 2mn;
− Computing Δx := −x + S−1(−XΔs + μe): 2n.

(Because both algorithms we consider update y and s by taking a common step t̂
along Δy and Δs, rc is updated at no cost: the new value is (1 − t̂) times the old
value.)

The above suggests that maximum CPU savings should be obtained by replacing,
in the definition of H, matrix A by its submatrix AQ, corresponding to a suitably
chosen index set Q. The cost of forming H would then be reduced to m2|Q| operations.
In this paper, we investigate the effect of making that modification only, and leaving
all else unchanged, so as to least “perturb” the original algorithms.

A central issue is then the choice of Q. Given y ∈ R
m and M ≥ m, let QM (y)

be the set of all subsets of n that contain the indexes of M leftmost components of
c−AT y. More precisely (some components of c−AT y may be equal, so “M leftmost”
may not be uniquely defined), let

QM (y) := {Q ⊆ n : ∃Q′ ⊆ Q s.t. |Q′| = M and ci − aTi y ≤ cj − aTj y ∀i ∈ Q′, j �∈ Q′}.
(2.6)

Consequently, the statement “Q ∈ QM (y),” to be used later, means that the index
set Q contains the indices of M components of the vector c − AT y that are smaller
or equal to all other components of c−AT y. The convergence analysis of section 3.2
guarantees that our reduced PDAS algorithm will perform appropriately (under cer-
tain assumptions involving M) as long as Q is in QM (y). Given that n � m, this
leaves a lot of leeway in choosing Q. We have two competing goals. On the one hand,
we want |Q| to be small enough that the iterations are significantly faster than when
Q = n. On the other hand, we want to include enough well chosen constraints that
the iteration count remains low. In the numerical experiments we report toward the
end of this paper, we restrict ourselves to a very simple scheme: we let Q be precisely
the set of indexes of M leftmost components of c−AT y. Note that the “M leftmost”
rule is inexpensive to apply: it takes at most O(n log n) operations—comparisons,

2The result still holds, and the same proof applies, under the milder but less intuitive assumption
“xisi ≥ 0 for all i.” The result as stated is sufficient for our present purpose.
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which are faster than additions or multiplications. (For small M , it takes even fewer
comparisons.)

The following assumption will be needed in order for the proposed algorithms to
be well defined.

Assumption 1. All m×M submatrices of A have full row rank.
Lemma 2. Suppose Assumption 1 holds. Let x > 0, s > 0, and Q ⊆ n with

|Q| ≥ M . Then AQS
−1
Q XQA

T
Q is positive definite.

Proof. Follows from positive definiteness of S−1
Q XQ and full row rank of AQ.

3. A reduced, dual-feasible PDAS algorithm.

3.1. Algorithm statement. The proposed reduced primal-dual interior-point
affine scaling (rPDAS) iteration is strongly inspired from the iteration described
in [TZ94], a dual-feasible primal-dual iteration based on the Newton system discussed
above, with μ = 0 and rc = 0. In particular, the normal equations for the algorithm
of [TZ94] are given by

AS−1XATΔy = b,(3.1a)

Δs = −ATΔy,(3.1b)

Δx = −x− S−1XΔs.(3.1c)

The iteration focuses on the dual variables. Note that the iteration requires the
availability of an initial y0 ∈ F o.

Iteration rPDAS.
Parameters. β ∈ (0, 1), xmax > 0, x > 0, integer M satisfying m ≤ M ≤ n.
Data. y ∈ F o, s := c−AT y, x > 0, with xi ≤ xmax, i = 1, . . . , n, Q ∈ QM (y).
Step 1. Compute search direction:

Solve AQS
−1
Q XQA

T
QΔy = b,(3.2a)

and compute Δs := −ATΔy,(3.2b)

Δx := −x− S−1XΔs.(3.2c)

Set x̃ := x + Δx and, for i ∈ n, set

(x̃−)i := min{x̃i, 0}.

Step 2. Updates:
(i) Compute the largest dual feasible step size

t :=

{
∞ if Δsi ≥ 0 ∀i ∈ n,
min{(−si/Δsi) : Δsi < 0, i ∈ n} otherwise.

(3.3)

Set

t̂ := min{max{βt, t−‖Δy‖}, 1}.(3.4)

Set y+ := y + t̂Δy, s+ := s + t̂Δs.
(ii) Set

x+
i := min{max{min{‖Δy‖2 + ‖x̃−‖2, x}, x̃i}, xmax} ∀i ∈ n.(3.5)

(iii) Pick Q+ ∈ QM (y).



CONSTRAINT REDUCTION FOR LPs WITH MANY CONSTRAINTS 125

It should be noted that (ΔxQ,Δy,ΔsQ) constructed by Iteration rPDAS also
satisfies

ΔsQ = −AT
QΔy,(3.6a)

ΔxQ = −xQ − S−1
Q XQΔsQ,(3.6b)

i.e., it satisfies the full set of normal equations associated with the constraint-reduced
system. Equivalently, they satisfy the Newton system (with μ = 0 and rc = 0)

⎡
⎣ 0 AT

Q I

AQ 0 0
SQ 0 XQ

⎤
⎦
⎡
⎣ΔxQ

Δy
ΔsQ

⎤
⎦ =

⎡
⎣ 0
b−AQxQ

−XQsQ

⎤
⎦ .(3.7)

Remark 1. Primal update rule (3.5) is identical to the “dual” update rule used
in [AT06] in the context of indefinite quadratic programming. (The “primal” problem
in [AT06] can be viewed as a direct generalization of the dual (1.3).) As explained
in [AT06], imposing the lower bound ‖Δy‖2 + ‖x̃−‖2, which is a key to our global
convergence analysis, precludes updating of x by means of a step in direction Δx;
further, the specific form of this lower bound simplifies the global convergence analysis
while, together with the bound t−‖Δy‖ in (3.4), allowing for a quadratic convergence
rate. Also key to our global convergence analysis (though in our experience not
needed in practice) is the upper bound xmax imposed on all components of the primal
variable x; it should be stressed that global convergence of the sequence of vectors
x̃ to a solution is guaranteed regardless of the value of xmax > 0. Finally, replacing
in (3.5) min{‖Δy‖2 + ‖x̃−‖2, x} simply with ‖Δy‖2 + ‖x̃−‖2 would not affect the
theoretical convergence properties of the algorithm. However, allowing small values
of x+

i even when ‖Δy‖2 + ‖x̃−‖2 is large proved beneficial in practice, especially in
early iterations.

3.2. Convergence analysis. Before embarking on a convergence analysis, we
introduce two more definitions. First, let F ∗ ⊆ R

m be the set of solutions of (1.3),
i.e.,

F ∗ := {y∗ ∈ F : bT y∗ ≥ bT y ∀y ∈ F}.

Of course, F ∗ is the set of y for which (2.1) holds with μ = 0 for some x, s ∈ R
n.

Second, given y ∈ F , we will say that y is stationary for (1.3) whenever there exists
x ∈ R

n such that

Ax = b(3.8)

and

X(c−AT y) = 0,(3.9)

with no sign constraint imposed on x; equivalently, with s := c− AT y (≥ 0), (2.1a)–
(2.1c) hold with μ = 0 for some x ∈ R

n. We will refer to such x as a multiplier vector
associated with y. Clearly, every point in F ∗ is stationary, but not all stationary
points are in F ∗: in particular, all vertices of F are stationary.
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3.2.1. Global convergence. We now show that, under certain nondegeneracy
assumptions, the sequence of dual iterates generated by Iteration rPDAS converges
to F ∗. First, on the basis of Lemma 2, it is readily verified that, under Assumption 1,
Iteration rPDAS is well defined. That it can be repeated ad infinitum then follows
from the next proposition.

Proposition 3. Suppose Assumption 1 holds. Then Iteration rPDAS generates
quantities with the following properties: (i) Δy �= 0 if and only if b �= 0; (ii) t̂ > 0,
y+ ∈ F o, s+ = c−AT y+ > 0, and x+ > 0.

Proof. The first claim is a direct consequence of Lemma 2 and (3.2a); the other
claims are immediate.

Now, let y0 ∈ F o, let s0 = c − AT y0, let x0 > 0, Q0 ⊆ n with |Q0| ≥ M ,
and let {(xk, yk, sk)}, {Qk}, {Δyk}, {x̃k}, {t̄k}, and {t̂k} be generated by successive
applications of Iteration rPDAS starting at (x0, y0, s0). Our analysis focuses on the
dual sequence {yk}.

In view of Proposition 3, sk = c − AT yk > 0 for all k, so yk ∈ F o for all k. We
first note that, under no additional assumptions, the sequence of dual objective values
is monotonic nondecreasing, strictly so if b �= 0. This fact plays a central role in our
global convergence analysis.

Lemma 4. Suppose Assumption 1 holds. If b �= 0, then bTΔyk > 0 for all k. In
particular, {bT y} is nondecreasing.

Proof. The claim follows from (3.2a), Lemma 2, Proposition 3, and Step 2(i) of
Iteration rPDAS.

The remainder of the global convergence analysis is carried out under two addi-
tional assumptions. The first one implies that {yk} is bounded.

Assumption 2. The dual solution set F ∗ is nonempty and bounded.
Equivalently, the superlevel sets {y ∈ F : bT y ≥ α} are bounded for all α. Bounded-
ness of {yk} then follows from its feasibility and monotonicity of {bT yk} (Lemma 4
and Step 2(i) of Iteration rPDAS).

Lemma 5. Suppose Assumptions 1 and 2 hold; then {yk} is bounded.
Our final nondegeneracy assumption ensures that small values of ‖Δyk‖ indicate

that a stationary point of (1.3) is being approached (Lemma 6).
Assumption 3. For all y ∈ F , {ai : i ∈ I(y)} is a linear independent set of

vectors.
Lemma 6. Suppose Assumptions 1 and 3 hold. Let y∗ ∈ R

m and suppose that
K, an infinite index set, is such that {yk} converges to y∗ on K. If {Δyk} converges
to zero on K, then y∗ is stationary and {x̃k} converges to x∗ on K, where x∗ is the
unique multiplier vector associated with y∗.

Proof. Suppose {Δyk} → 0 as k → ∞, k ∈ K. Without loss of generality (by
going down to a further subsequence if necessary), assume that, for some Q∗, Qk = Q∗

for all k ∈ K. Equation (3.7) implies that

AQ∗ x̃k
Q∗ − b = 0 ∀k ∈ K,(3.10)

and (3.2b)–(3.2c) yield

xk
i a

T
i Δyk − ski x̃

k
i = 0 ∀i,∀k.(3.11)

Let s∗ = c − AT y∗, so sk → s∗ as k → ∞, k ∈ K. Since {xk} is bounded (xk
i ∈

[0, xmax] ∀i by construction), it follows from (3.11) that for all i �∈ I(y∗) (i.e., all i for
which s∗i > 0), {x̃k

i } → 0 as k → ∞, k ∈ K. Now, in view of Assumption 3 (linear
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independence of the active constraints), |I(y∗)| ≤ m and, since Qk ∈ QM (yk) for all
k, M ≥ m, I(y∗) ⊆ Q∗. Hence, (3.10) yields

∑
i∈I(y∗)

x̃k
i ai − b → 0 as k → ∞, k ∈ K,

and Assumption 3 implies that, for all i ∈ I(y∗), {x̃k
i } converges on K, say, to x∗

i .
Taking limits in (3.10)–(3.11) then yields

Ax∗ − b = 0,

X∗s∗ = 0,

implying that y∗ is stationary, with multiplier vector x∗. Uniqueness of x∗ again
follows from Assumption 3.

Proving that {yk} converges to F ∗ will be achieved in two main steps. The
first objective is to show that {yk} converges to the set of stationary points of (1.3)
(Lemma 9). This will be proved via a contradiction argument: if, for some infinite
index set K, {yk} were to converge on K to a nonsolution point—for instance, to
a nonstationary point—then {Δyk} would have to go to zero on K (Lemma 8), in
contradiction with Lemma 6. The heart of the argument lies in the following lemma.

Lemma 7. Suppose Assumptions 1, 2, and 3 hold. Let K be an infinite index set
such that

inf{‖Δyk−1‖2 + ‖x̃k−1
− ‖2 : k ∈ K} > 0.

Then {Δyk} → 0 as k → ∞, k ∈ K.
Proof. In view of (3.5), for all i ∈ n, xk

i is bounded away from zero on K.
Proceeding by contradiction, assume that, for some infinite index set K ′ ⊆ K,
inf

k∈K′
||Δyk‖ > 0. Since {yk} (see Lemma 5) and {xk} (see (3.5)) are bounded, we

may assume, without loss of generality, that for some y∗ and x∗, with x∗
i > 0 for all

i, and some Q∗ with |Q∗| ≥ M ,

{yk} → y∗ as k → ∞, k ∈ K ′,

{xk} → x∗ as k → ∞, k ∈ K ′,

and

Qk = Q∗ ∀k ∈ K ′.

Let s∗ := c−AT y∗; since sk = c−AT yk for all k, it follows that {sk} → s∗, k ∈ K ′.
Since in view of Lemma 1, of Assumptions 1 and 3, and of the fact that x∗

i > 0 for
all i, the matrix J(AQ∗ , x∗

Q∗ , s∗Q∗) is nonsingular, it follows from (3.7) that, for some

v∗ and x̃∗
i , i ∈ Q∗, with v∗ �= 0 (since inf

k∈K′
‖Δyk‖ > 0),

{Δyk} → v∗ as k → ∞, k ∈ K ′,

{xk
i } → x̃∗

i as k → ∞, k ∈ K ′, i ∈ Q∗.
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In view of linear independence Assumption 3, since {sk} → s∗ = c − AT y∗, and
since, by definition of QM , I(y∗) ⊆ Q∗, it follows that ski is bounded away from zero
when i /∈ Q∗, k ∈ K ′. It then follows from (3.2b) and (3.2c) that, for some x̃∗,

{x̃k} → x̃∗ as k → ∞, k ∈ K ′.(3.12)

Now, Step 2(i) of Iteration rPDAS and (3.2c) yield

t
k

= −
skik

Δskik
=

xk
ik

x̃k
ik

for some ik,

for all k ∈ K ′ such that t
k
< ∞. Since the components of {xk} are bounded away

from zero on K ′ (since x∗
i > 0 for all i), it follows from (3.12) that t

k
is bounded away

from zero on K ′, and from Step 2(i) in Iteration rPDAS that the same holds for t̂k.
Thus, for some t > 0, t̂k ≥ t for all k ∈ K ′. Also, (3.2b)–(3.2c) yield, for all k,

x̃k = (Sk)−1XkATΔyk(3.13)

which together with (3.2)(a) yields

bTΔyk = (Δyk)TAQkXk
Qk(Sk

Qk)−1AT
QkΔyk = (x̃k

Qk)TAT
QkΔyk ∀k.(3.14)

In view of Lemma 4, it follows that

bT yk+1 = bT (yk + t̂kΔyk) ≥ bT yk + tbTΔyk = bT yk + t(AQk x̃k
Qk)TΔyk ∀k ∈ K ′.

(3.15)

Now, since v∗ �= 0 and |Q∗| ≥ M , it follows from Assumption 1 that AT
Q∗v∗ �= 0.

Further, taking limits in (3.13) as k → ∞, k ∈ K ′, we get

X∗
Q∗AT

Q∗v∗ − S∗
Q∗ x̃∗

Q∗ = 0.

Positivity of x∗
i and nonnegativity of s∗i for all i then imply that

(
x̃∗
Q∗

)
i
and (AT

Q∗v∗)i
have the same sign whenever the latter is nonzero, in which case the former is nonzero
as well. It follows that (x̃∗

Q∗)TAT
Q∗v∗ > 0. Thus there exists δ > 0 such that

(AQ∗ x̃k
Q∗)T (Δyk) > δ for k large enough, k ∈ K ′. Since, in view of Lemma 4,

{bT yk} is monotonic nondecreasing, it follows from (3.15) that bT yk → ∞ as k → ∞,
a contradiction since yk is bounded.

Lemma 8. Suppose Assumptions 1, 2, and 3 hold. Suppose there exists an infinite
index set K such that {yk} is bounded away from F ∗ on K. Then {Δyk} goes to zero
on K.

Proof. Let us again proceed by contradiction, i.e., suppose {Δyk} does not con-
verge to zero as k → ∞, k ∈ K. In view of Lemma 7, there exists an infinite index
set K ′ ⊆ K such that

x̃k−1
− → 0 as k → ∞, k ∈ K ′(3.16)

and

Δyk−1 → 0 as k → ∞, k ∈ K ′.(3.17)

Further, since {yk} is bounded, and bounded away from F ∗, there is no loss of
generality in assuming that, for some y∗ �∈ F ∗, {yk} → y∗ as k → ∞, k ∈ K ′.
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Since ‖yk − yk−1‖ = ‖t̂k−1Δyk−1‖ ≤ ‖Δyk−1‖, it follows that {yk−1} → y∗ as
k → ∞, k ∈ K ′ which implies, in view of (3.17) and of Lemma 6, that y∗ is sta-
tionary and {x̃k−1} → x∗ as k → ∞, k ∈ K ′, where x∗ is the corresponding multiplier
vector. From (3.16) it follows that x∗ ≥ 0, thus that y∗ ∈ F ∗, a contradiction.

Lemma 9. Suppose Assumptions 1, 2, and 3 hold. Then {yk} converges to the
set of stationary points of (1.3).

Proof. Suppose the claim does not hold. Because {yk} is bounded, there exist an
infinite index set K and some nonstationary y∗ such that yk → y∗ as k → ∞, k ∈ K.
By Lemma 6, {Δyk} does not converge to zero on K. This contradicts Lemma 8.

We are now ready to embark on the final step in the global convergence analysis:
prove convergence of {yk} to the solution set for (1.3). The key to this result is
Lemma 11, which establishes that the multiplier vectors associated with all limit
points of {yk} are the same. Thus, let

L :=
{
y ∈ R

m : y is a limit point of {yk}
}
.

(In view of Lemma 9, every y ∈ L is a stationary point of (P ).) The set L is bounded
(since {yk} is bounded) and, as a limit set, it is closed, and thus compact. We first
prove an auxiliary lemma.

Lemma 10. Suppose Assumptions 1, 2, and 3 hold. If {yk} is bounded away from
F ∗, then L is connected.

Proof. Suppose the claim does not hold. Since L is compact, there must exist
compact sets E1, E2 ⊂ R

n, both nonempty, such that L = E1 ∪ E2 and E1 ∩ E2 = ∅.
Thus δ := min

y∈E1,y′∈E2

‖y−y′‖ > 0. A simple contradiction argument based on the fact

that {yk} is bounded shows that, for k large enough, miny∈L ‖yk−y‖ ≤ δ/3, i.e., either
miny∈E1

‖yk − y‖ ≤ δ/3 or miny∈E2 ‖yk − y‖ ≤ δ/3. Moreover, since both E1 and
E2 are nonempty (i.e., contain limit points of {yk}), each of these situations occurs
infinitely many times. Thus K := {k : miny∈E1 ‖yk − y‖ ≤ δ/3,miny∈E2 ‖yk+1 − y‖ ≤
δ/3} is an infinite index set and ‖Δyk‖ ≥ δ/3 > 0 for all k ∈ K. In view of Lemma 8,
this is a contradiction.

Lemma 11. Suppose Assumptions 1, 2, and 3 hold. Suppose {yk} is bounded
away from F ∗. Let y, y′ ∈ L. Let x and x′ be the associated multiplier vectors. Then
x = x′.

Proof. Given any y ∈ L, let x(y) be the multiplier vector associated with y, let
s(y) = c−AT y, and let J(y) be the index set of “binding” constraints at y, i.e.,

J(y) = {i ∈ n : xi(y) �= 0}.

We first show that, if y, y′ ∈ L are such that J(y) = J(y′), then x(y) = x(y′). Indeed,
from (2.1b),

∑
j∈J(y)

xj(y)aj = b =
∑

j∈J(y)

xj(y
′)aj ,

and the claim follows from linear independence Assumption 3. To conclude the proof,
we show that, for any y, y′ ∈ L, J(y) = J(y′). Let ỹ ∈ L be arbitrary and let
E1 := {y ∈ L : J(y) = J(ỹ)} and E2 := {y ∈ L : J(y) �= J(ỹ)}. We show that

both E1 and E2 are closed. Let {ξ�} ⊆ L be a convergent sequence, say to ξ̂, such
that J(ξ�) = J for all �, for some J . It follows from the first part of this proof that
x(ξ�) = x for all � for some x. Now, for all �, sj(ξ

�) = 0 for all j such that xj �= 0, so
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that sj(ξ̂) = 0 for all j such that xj �= 0. Thus J ⊆ I(ξ̂), and from linear independence

Assumption 3 it follows that x(ξ̂) = x and thus J(ξ̂) = J . Also, since L is closed,

ξ̂ ∈ L. Thus, if {ξ�} ⊆ E1, then ξ̂ ∈ E1 and, if {ξ�} ⊆ E2, then ξ̂ ∈ E2, proving that
both E1 and E2 are closed. Since E1 is nonempty (it contains ỹ), connectedness of L
(Lemma 10) implies that E2 is empty. Thus J(y) = J(ỹ) for all y ∈ L, and the proof
is complete.

With all the tools in hand, we present the final theorem of this section. The
essence of its proof is that if {yk} does not converge to F ∗, complementary slackness
will not be satisfied.

Theorem 12. Suppose Assumptions 1, 2, and 3 hold. Then {yk} converges to
F ∗.

Proof. Proceeding again by contradiction, suppose that some limit point of {yk}
is not in F ∗ and thus, since yk ∈ F for all k and since, in view of the monotonicity of
{bT yk} (Lemma 4), bT yk takes on the same value at all limit points of {yk}, that {yk}
is bounded away from F ∗. In view of Lemma 8, {Δyk} → 0. Let x∗ be the common
multiplier vector associated with all limit points of {yk} (see Lemma 11). A simple
contradiction argument shows that Lemma 6 then implies that {x̃k} → x∗. Since
{yk} is bounded away from F ∗, x∗ �≥ 0. Let i0 be such that x∗

i0
< 0. Then x̃k

i0
< 0

for all k large enough. The definition of x̃k in Step 1 of Iteration rPDAS, together
with (3.2c), then implies that Δski0 > 0 for k large enough, and it then follows from

the update rule for sk in Step 2(i) that, for k large enough,

0 < ski0 < sk+1
i0

< · · · .

On the other hand, since x∗
i0

< 0, complementary slackness (3.9) implies that (c −
AT ŷ)i0 = 0 for all limit points ŷ of {yk} and thus, since {yk} is bounded, {ski0} → 0.
This is a contradiction.

3.2.2. Local rate of convergence. We prove q-quadratic convergence of the
pair (xk, yk) (when xmax is large enough) under one additional assumption, which
supersedes Assumption 2. (A sequence {zk} is said to converge q-quadratically to z∗

if it converges to z∗ and there exists a constant θ such that ‖zk+1−z∗‖ ≤ θ‖zk−z∗‖2

for all k large enough.)
Assumption 4. The dual solution set F ∗ is a singleton.
Let y∗ denote the unique solution to (1.3), i.e., F ∗ = {y∗}, let s∗ := c − AT y∗,

and let x∗ be the corresponding multiplier vector (unique in view of Assumption 3).
Of course, under Assumptions 1, 3, and 4, it follows from Theorem 12 that {yk} → y∗

as k → ∞. Further, under Assumption 3, Assumption 4 implies that strict comple-
mentarity holds, i.e.,

x∗
i > 0 ∀i ∈ I(y∗).(3.18)

Moreover, Assumption 4 implies that

span({ai : i ∈ I(y∗)}) = R
m.(3.19)

Lemma 13. Suppose Assumptions 1, 3, and 4 hold and let Q ⊇ I(y∗) and Qc =
n \Q. Then Ja(AQ, x

∗
Q, s

∗
Q) and J(AQ, x

∗
Q, s

∗
Q) are nonsingular and AT

Qcy∗ < cQc .

Proof. The last claim is immediate. Since s∗ = c − AT y∗, it follows from linear
independence Assumption 3 that {ai : si = 0} is linear independent, hence its subset
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retaining only the columns whose indices are in Q is also linear independent. The
first two claims now follow directly from Lemma 1.

The following preliminary result is inspired from [PTH88, Proposition 4.2].
Lemma 14. Suppose Assumptions 1, 3, and 4 hold. Then (i) {Δyk} → 0; (ii)

{x̃k} → x∗; and (iii) if x∗
i ≤ xmax for all i ∈ n, then {xk} → x∗.

Proof. To prove Claim (i), proceed by contradiction. Specifically, suppose that,
for some infinite index set K, infk∈K‖Δyk‖ > 0. Without loss of generality, assume
that, for some Q∗, Qk = Q∗ for all k ∈ K. Since Q∗ ∈ QM (yk) for all k ∈ K, since
{yk} → y∗ as k → ∞, and since, in view of Assumption 3, |I(y∗)| ≤ m ≤ M , it
must hold that Q∗ ⊇ I(y∗). On the other hand, Lemma 7 implies that there exists
an infinite index set K ′ ⊆ K such that {Δyk−1}k∈K′ and {x̃k−1

− }k∈K′ go to zero. In
view of Lemma 6 it follows that {x̃k−1}k∈K′ → x∗. It then follows from (3.5) that, for
all i, {xk

i }k∈K′ → ξ∗i := min{x∗
i , xmax}. Since Q∗ ⊇ I(y∗), it follows from Lemma 1,

Assumption 3, (3.18), and (3.19) that J(AQ∗ , ξ∗Q∗ , s∗Q∗) is nonsingular. Now note that,
in view of (3.7), it holds that (see (2.5))

J(AQk , xk
Qk , s

k
Qk)

⎡
⎣ x̃k

Qk

Δyk

ΔskQk

⎤
⎦ =

⎡
⎣0
b
0

⎤
⎦ ∀k ∈ K ′.(3.20)

On the other hand, by feasibility of x∗ and complementarity slackness,

J(AQ∗ , ξ∗Q∗ , s∗Q∗)

⎡
⎣x

∗
Q∗

0
0

⎤
⎦ =

⎡
⎣0
b
0

⎤
⎦ .(3.21)

From (3.20) and (3.21), nonsingularity of J(AQ∗ , ξ∗Q∗ , s∗Q∗) thus implies that {Δyk} →
0 as k → ∞, k ∈ K ′, a contradiction since K ′ ⊆ K. Claim (i) is thus proved. Claim (ii)
then directly follows from Lemma 6 and Claim (iii) follows from (3.5).

To prove q-quadratic convergence of {(yk, xk)}, the following property of Newton’s
method will be used. It is borrowed from [TZ94, Proposition 3.10].

Proposition 15. Let Φ : R
n → R

n be twice continuously differentiable and let
ẑ ∈ R

n be such that Φ(ẑ) = 0 and ∂Φ
∂z (ẑ) is nonsingular. Let ρ > 0 be such that ∂Φ

∂z (z)
is nonsingular whenever z ∈ B(ẑ, ρ) := {z : ‖z − ẑ‖ ≤ ρ}. Let dN : B(ẑ, ρ) → R

n

be the Newton increment dN(z) := −
(
∂Φ
∂z (z)

)−1
Φ(z). Then given any c1 > 0 there

exists c2 > 0 such that the following statement holds:
For all z ∈ B(ẑ, ρ) and z+ ∈ Rn such that, for each i ∈ {1, . . . , n}, either

(i) |z+
i − ẑi| ≤ c1‖dN(z)‖2

or

(ii) |z+
i − (zi + dN

i (z))| ≤ c1‖dN(z)‖2,

it holds that

‖z+ − ẑ‖ ≤ c2‖z − ẑ‖2.(3.22)

We will apply this proposition to the equality portion of the KKT conditions (2.1)
(with μ = 0). Eliminating s from this system of equations yields Φ(x, y) = 0, with Φ
given by

Φ(x, y) :=

[
Ax− b

X(c−AT y)

]
.(3.23)
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It is readily verified that (2.3a), with μ = 0, rc = 0, and s replaced by c−AT y, is the
Newton iteration for the solution of Φ(x, y) = 0. In particular, Ja(A, x, c − AT y) is
the Jacobian of Φ(x, y).

Of course, Iteration rPDAS does not make use of the Newton direction for Φ,
since it is based on a reduced set of constraints. Lemma 16 below relates the direction
computed in Step 1 of Iteration rPDAS to the Newton direction.

In what follows, we use z (possibly with subscripts, superscripts, or diacritical
signs) to denote (x, y) (with the same subscripts, superscripts, or diacritical signs on
both x and y). Also, let

Go := {z : x > 0, y ∈ F o}

and, given z ∈ Go and Q ∈ QM (y), let Δx(z,Q), Δy(z,Q), x+(z,Q), y+(z,Q),
x̃(z,Q), t(z,Q), and t̂(z,Q) denote the quantities defined by Iteration rPDAS, and
let Δz(z,Q) := (Δx(z,Q),Δy(z,Q)) and z+(z,Q) := (x+(z,Q), y+(z,Q)). Further,
let Qc := n \Q, let dN(z) := Δz(z,n) denote the Newton increment for Φ, and, given
ρ > 0, let B(z∗, ρ) := {z : ‖z − z∗‖ ≤ ρ}. The following lemma was inspired from an
idea of O’Leary [O’L04]. (Existence of ρ > 0 follows from Lemma 13.)

Lemma 16. Suppose Assumptions 1, 3, and 4 hold. Let ρ > 0 be such that, for all
(x, y) ∈ B(z∗, ρ) ∩ Go and for all Q ∈ QM (y), Ja(AQ, xQ, cQ − AT

Qy) is nonsingular

and AT
Qcy < cQc . Then there exists γ > 0 such that, for all z ∈ B(z∗, ρ) ∩ Go,

Q ∈ QM (y),

‖Δz(z,Q) − dN(z)‖ ≤ γ‖z − z∗‖ · ‖dN(z)‖.

Proof. Let z ∈ B(z∗, ρ) ∩Go, Q ∈ QM (y) and let s := c− AT y. Then, Δy(z,Q)
and ΔxQ(z,Q) satisfy (direct consequence of (3.7))

[
0 AQ

XQA
T
Q −SQ

] [
Δy(z,Q)

ΔxQ(z,Q)

]
=

[
b−AQxQ

XQsQ

]
.(3.24)

On the other hand, Δy(z,n) and Δx(z,n) satisfy (see (2.3a), with μ = 0 and rc = 0)
[

0 A
XAT −S

] [
Δy(z,n)
Δx(z,n)

]
=

[
b−Ax
Xs

]
,

and eliminating ΔxQc(z,n) in the latter yields

[
AQcS−1

Qc XQcAT
Qc AQ

XQA
T
Q −SQ

] [
Δy(z,n)

ΔxQ(z,n)

]
=

[
b−AQxQ

XQsQ

]
.(3.25)

Equating the left-hand sides of (3.24) and (3.25) yields

[
Δy(z,Q)

ΔxQ(z,Q)

]
= Ja(AQ, xQ, cQ −AT

Qy)
−1

[
AQcS−1

Qc XQcAT
Qc AQ

XQA
T
Q −SQ

] [
Δy(z,n)

ΔxQ(z,n)

]
.

(3.26)

Expressing

[
Δy(z,n)

ΔxQ(z,n)

]
as Ja(AQ, xQ, cQ−AT

Qy)
−1Ja(AQ, xQ, cQ−AT

Qy)

[
Δy(z,n)

ΔxQ(z,n)

]

and subtracting from (3.26) then yields
[

Δy(z,Q)
ΔxQ(z,Q)

]
−
[

Δy(z,n)
ΔxQ(z,n)

]
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= Ja(AQ, xQ, cQ −AT
Qy)

−1

[
AQcS−1

Qc XQcAT
Qc 0

0 0

] [
Δy(z,n)

ΔxQ(z,n)

]
.

Further, it follows from (3.1b) and (3.1c) and from (3.2b) and (3.2c) that

ΔxQc(z,Q) − ΔxQc(z,n) = S−1
Qc XQcAT

Qc(Δy(z,Q) − Δy(z,n)).

Since SQc and Ja(AQ, xQ, cQ −AT
Qy) are continuous and nonsingular over the closed

ball B(z∗, ρ), and since ‖XQc‖ = ‖XQc −X∗
Qc‖ ≤ ‖z − z∗‖ (since cQc − AT

Qcz∗ > 0,
i.e., I(y∗) ∩ Qc is empty), in view of the fact that {Qc : Q ∈ QM (y)} is finite (since
QM (y) is) the claim follows.

We are now ready to prove q-quadratic convergence.
Theorem 17. Suppose Assumptions 1, 3, and 4 hold. If x∗

i < xmax for all i ∈ n,
then {(xk, yk)} converges to (x∗, y∗) q-quadratically.

Proof. We aim at establishing that the conditions in Proposition 15 hold for Φ
given by (3.23) and with ẑ := z∗(= (x∗, y∗)), z+ := z+(z,Q), Q ∈ QM (y), and ρ > 0
small enough. First, note that

∂Φ

∂z
(z) = Ja(A, x, c−AT y),

so, in view of (3.18), (3.19), and linear independence Assumption 3, it follows from
Lemma 1 that ∂Φ

∂z (z∗) is nonsingular. Next, let i ∈ I(y∗) and consider Step 2(ii) in
Iteration rPDAS. Let Q ⊇ I(y∗). From Lemma 13, we know that J(AQ, x

∗
Q, s

∗
Q) is

nonsingular. Since, by feasibility of x∗ and complementarity slackness,

J(AQ, x
∗
Q, s

∗
Q)

⎡
⎣x

∗
Q

0
0

⎤
⎦ =

⎡
⎣0
b
0

⎤
⎦ ,

it follows from (3.7), (3.2), and the fact that sj := cj − aTj y is bounded away from
zero in a neighborhood of z∗ for j /∈ Q (Lemma 13), that

Δy(z,Q) → 0 as z → z∗(3.27)

and

x̃(z,Q) → x∗ as z → z∗.(3.28)

Note that, for z ∈ Go close enough to z∗, Q ⊇ I(y∗) for all Q ∈ QM (y). Since x∗
i > 0

(from (3.18)) and x∗ ≥ 0, it follows that for z ∈ Go close enough to z∗,

‖Δy(z,Q)‖2 + ‖x̃−(z,Q)‖2 < x̃i(z,Q) ∀Q ∈ QM (y),

which, in view of the update rule for x in Step 2(ii) of Iteration rPDAS, since x∗
i <

xmax, implies that, for z ∈ Go close enough to z∗,

x+
i (z,Q) = x̃i(z,Q) = xi + Δxi(z,Q) ∀Q ∈ QM (y),

yielding, for z ∈ Go close enough to z∗,

x+
i (z,Q) − (xi + Δxi(z,n)) = Δxi(z,Q) − Δxi(z,n) ∀Q ∈ QM (y).(3.29)
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In view of Lemma 16, it follows that, for z close enough to z∗, z ∈ Go,

|x+
i (z,Q) − (xi + Δxi(z,n))| ≤ γ‖z − z∗‖ · ‖dN(z)‖ ∀Q ∈ QM (y).(3.30)

Next, let i �∈ I(y∗), so that x∗
i = 0, and again consider Step 2(ii) in Iteration rPDAS.

Then for every z ∈ Go close enough to z∗, and every Q ∈ QM (y), either again

x+
i (z,Q) = xi + Δxi(z,Q),

yielding again (3.29) and (3.30), or

x+
i (z,Q) = ‖Δy(z,Q)‖2 + ‖x̃−(z,Q)‖2,≤ ‖Δz(z,Q)‖2

yielding, since x∗
i = 0,

‖x+
i (z,Q) − x∗

i ‖ ≤ ‖Δz(z,Q) − dN(z) + dN(z)‖2 ≤ (γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2
(3.31)

for every z ∈ Go close enough to z∗, Q ∈ QM (y). Finally, consider the “y” components
of z. From (3.2b)–(3.2c) we know that, for z ∈ Go close enough to z∗, for all Q ∈
QM (y), and for all i such that Δsi(z,Q) := −aTi Δy(z,Q) �= 0,

si
aTi Δy(z,Q)

= − si
Δsi(z,Q)

=
xi

x̃i(z,Q)
.

In view of Lemma 14(i), we conclude that, for i �∈ I(y∗),

|xi|
|x̃i(z,Q)| → ∞ as z → z∗, Q ∈ QM (y).

Step 2(i) in Iteration rPDAS then yields

t(z,Q) = min

{
xi

x̃i(z,Q)
: i ∈ I(y∗)

}

for z ∈ Go close enough to z∗, Q ∈ QM (y). Step 2(i) in Iteration rPDAS further
yields, for z ∈ Go close enough to z∗ (using (3.27)), Q ∈ QM (y),

t̂(z,Q) = min

{
1,

xi(z,Q)

x̃i(z,Q)(z,Q)
− ‖Δy(z,Q)‖

}
,

for some i(z,Q) ∈ I(y∗). (Nonemptiness of I(y∗) is insured by Assumption 4.) Thus,
for z ∈ Go close enough to z∗, Q ∈ QM (y), and some i(z,Q) ∈ I(y∗),

‖y+(z,Q) − (y + Δy(z,Q))‖ = |t̂(z,Q) − 1|‖Δy(z,Q)‖

≤
∣∣∣∣ ‖Δy(z,Q)‖ +

x̃i(z,Q)(z,Q) − xi(z,Q)

x̃i(z,Q)(z,Q)

∣∣∣∣ ‖Δy(z,Q)‖.

Since x∗
i > 0 for all i ∈ I(y∗), it follows that for some c0 > 0 and z ∈ Go close enough

to z∗,

‖y+(z,Q) − (y + Δy(z,Q))‖ ≤ (‖Δy(z,Q)‖ + c0‖Δx(z,Q)‖)‖Δy(z,Q)‖
≤ (1 + c0)‖Δz(z,Q)‖2

≤ (1 + c0)(‖Δz(z,Q) − dN(z)‖ + ‖dN(z)‖)2

≤ (1 + c0)(γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2
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for all Q ∈ QM (y). It follows from Lemma 16 that

‖y+(z,Q) − (y + Δy(z,n))‖ ≤ (1 + c0)(γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2

+γ‖z − z∗‖ · ‖dN(z)‖

≤ c1 max{‖dN(z)‖2, ‖z − z∗‖2}(3.32)

for some c1 > 0 independent of z for all z ∈ Go close enough to z∗, Q ∈ QM (y).
Equations (3.30), (3.31), and (3.32) are the key to the completion of the proof.

For z ∈ Go (close enough to z∗) such that ‖z − z∗‖ ≤ ‖dN(z)‖, in view of
Proposition 15, (3.30), (3.31), and (3.32) imply that, for some c2 > 0 independent of
z, and for all Q ∈ QM (y),

‖z+(z,Q) − z∗‖ ≤ c2‖z − z∗‖2.

On the other hand, for z ∈ Go close enough to z∗ such that ‖dN(z)‖ < ‖z−z∗‖, (3.30)
yields, for some c3 > 0 independent of z and for all Q ∈ QM (y),

|x+
i (z,Q) − x∗

i | ≤ γ‖z − z∗‖ · ‖dN(z)‖ + ‖xi + Δxi(z,n) − x∗
i ‖ ≤ c3‖z − z∗‖2

for all i ∈ I(y∗), where we have invoked quadratic convergence of the Newton iteration;
(3.31) yields, for some c4 > 0 independent of z,

|x+
i (z,Q) − x∗

i | ≤ c4‖z − z∗‖2

for all i �∈ I(y∗); and (3.32) yields, for some c5 > 0 independent of z,

‖y+(z,Q) − y∗‖ ≤ c1‖z − z∗‖2 + ‖yi + Δy(z,n) − y∗‖ ≤ c5‖z − z∗‖2.

In particular, they together imply again that, for all z ∈ Go close enough to z∗,
Q ∈ QM (y),

‖z+(z,Q) − z∗‖ ≤ c2‖z − z∗‖2

for some c2 > 0 independent of z. Since, in view of Lemma 14, zk converges to z∗, it
follows that zk converges to z∗ q-quadratically.

3.3. Numerical results. Algorithm rPDAS was implemented in Matlab and
run on an Intel(R) Pentium(R) III CPU 733MHz machine with 256 KB cache, 512
MB RAM, Linux kernel 2.6.11, and Matlab 7 (R14).3

Parameters were chosen as β := 0.99, xmax := 1015, x := 10−4. The code was
supplied with strictly feasible initial dual points (i.e., y0 ∈ F o). The initial primal
vector, x0, was chosen using the heuristic in [Meh92, p. 589] modified to accommodate

dual feasibility. Specifically, x0 := x̂0 + δ̂x, where x̂0 is the minimum norm solution
of Ax = b, δ̂x := δx + (x̂0 + δxe)

T s0/(2
∑n

i=1 s
0
i ), δx := max{−1.5 · min(x), 0}, where

s0 := x − AT y0 and e is the vector of all ones. The “M most active” heuristic (Q
consists of the indexes of the M leftmost components of c− AT y) was used to select
the index set Q. The code uses Matlab’s “Cholesky-Infinity” factorization (cholinc
function) to solve the normal equations (3.2a). A safeguard si := max{10−14, si} was

3The code is available from the authors.
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applied before Step 1; this prevents the matrix AQS
−1
Q XQA

T
Q in (3.2a) from being

excessively ill-conditioned and avoids inaccuracies in the ratios si/Δsi involved in (3.3)
that could lead to unnecessarily small steps. We used a stopping criterion, adapted
from [Meh92, p. 592], based on the error in the primal-dual equalities (2.1b)–(2.1a)
and the duality gap. Specifically, convergence was declared when

‖b−Ax‖
1 + ‖x‖ +

‖c−AT y − s‖
1 + ‖s‖ +

|cTx− bT y|
1 + |bT y| < tol,

where tol was set to 10−8. Notice that, in the case of iteration rPDAS, ‖c−AT y− s‖
vanishes throughout, up to numerical errors.

Execution times strongly depend on how the computation of HQ := AQD
2
QA

T
Q

(where D2
Q := S−1

Q XQ is diagonal), involved in (3.2a), is implemented in Matlab.

Storing the |Q| × |Q| matrix D2
Q as a full matrix is inefficient, or even impossible

(even when |Q| is much smaller than n, it may still be large). We are left with two
options: Either (i) compute an auxiliary matrix D2

QA
T
Q using a “for” loop over the |Q|

rows of AT
Q, then compute AQ ∗D2

QA
T
Q, or (ii) create a sparse matrix D2

Q using the

spdiags function, then compute AQ ∗D2
Q ∗AT

Q. If the matrix A is in sparse form with
sufficiently few nonzero elements, then the second option is (much) more efficient. If
the matrix A is dense, then both options have comparable speed. Consequently, we
used the second option in all experiments.

Numerical results obtained with algorithm rPDAS on several types of problems
(to be discussed below) are presented in Figures 1 through 4. The points on the
plots, as well as those on the plots of Figures 5 through 12 discussed in section 4,
correspond to different runs on the same problem. The runs differ only by the number
of constraints M that are retained in Q; this information is indicated on the horizontal
axis in relative value. The rightmost point thus corresponds to the experiment without
constraint reduction, while the points on the extreme left correspond to the most
drastic constraint reduction. The plots are built as follows: the execution script picks
progressively smaller values of M from a predefined list of values until it reaches the
end of the list, or early, abnormal termination occurs. The latter was always caused
by either (i) the number of iterations reaching a predefined limit of 100 (this is an ad
hoc choice to stop the execution script when it reaches values of M where the number
of iterations become high), or (ii) Matlab generating NaN values, which happens
when the normal matrix becomes numerically singular. Abnormal termination did
occur in the numerical experiment presented in Figure 3 due to (ii) and in a few other
instances due to (i).

In the lower plot of each figure, the vertical axis indicates CPU times to solution
(total time, as well as time expended in the computation of HQ and time used for the
solution of the normal equation) as returned by the Matlab function cputime. We
emphasize that these results are valid only for the specific Matlab implementation
described above. Results could vary widely, depending on the programming language,
the possible use of the BLAS, and the hardware. In contrast, the number of iterations
shown on the upper plot has more meaning.

The first test problem is of the finely discretized semi-infinite type: the dual
feasible set F is a polytope whose faces are tangent to the unit sphere. Contact
points on the sphere were selected from the uniform distribution by first generating
vectors of numbers distributed according to N (0, 1)—normal distribution with mean
zero and standard deviation one—and then normalizing these vectors. These points
form the columns of A, and c was selected as the vector of all ones. Each entry of the
objective vector, b, was chosen from N (0, 1), and y0 was selected as the zero vector.
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Fig. 1. rPDAS on the problem with constraints tangent to the unit sphere.
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Fig. 2. rPDAS on the “fully random” problem.

This yields a problem that lends itself nicely to constraint reduction, since n � m
(we chose m = 50 and n = 20000), A is dense, and Assumption 1 on the full rank
of submatrices of A holds for M as low as m. Numerical results are presented in
Figure 1.

Arguably the most remarkable result in this paper is that observed on the upper
plot of Figure 1 (and again in other figures discussed below): the number of iterations
shows little variation over a significant range of values of |Q|. We tested the algorithm
on several problems randomly generated, as explained above, and always observed that
only very low values of |Q| produce a significant increase in the number of iterations.

The second test problem is “fully random.” The entries of A and b were generated
from N (0, 1). To ensure a dual-feasible initial point, y0 and s0 were chosen from a
uniform distribution on (0, 1) and the vector c was generated by taking c := AT y0+s0.
We again chose m = 50 and n = 20000. Results are displayed in Figure 2.
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Fig. 3. rPDAS on SCSD1.

Note that these results are qualitatively similar to those of Figure 1. Here again,
the number of iterations is stable over a wide range of values of |Q|. Experiments
conducted on other test problems drawn from the same distribution produced similar
results.

Next, we searched the Netlib LP library for problems where n is significantly
greater than m and Assumption 1 is satisfied for reasonably small M . This left us
with the SCSD problems. These problems, however, are very sparse. The computation
of the normal matrix AD2AT involves only sparse matrix multiplications that can be
performed efficiently and account only for a small portion of the total execution time.
Therefore, the constraint reduction strategy, which focuses on reducing the cost of
forming the normal matrix, has little effect on the overall execution time. (If the
computation of HQ is done with a for loop as explained above, then an important
speedup is observed.) We tested algorithm rPDAS on SCSD1 (m = 77, n = 760) and
SCSD6 (m = 147, n = 1350). For both problems, we set y0 to 0 ∈ F o. Results are
displayed in Figures 3 and 4. Here again, the number of iterations is quite stable over
a wide range of values of |Q|.

4. A reduced MPC algorithm.

4.1. Algorithm statement. We consider a constraint-reduced version of Mehro-
tra’s predictor-corrector (MPC) method [Meh92]—or rather of the simplified version
of that algorithm found in [Wri97].

Iteration rMPC.

Parameters. β ∈ (0, 1), integer M satisfying m ≤ M ≤ n.

Data. y ∈ R
m, s > 0, x > 0, Q ∈ QM (y), μ := xT s/n.

Step 1. Compute affine scaling direction:

Solve

AQS
−1
Q XQA

T
QΔy = −rb + A(−S−1Xrc + x)
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Fig. 4. rPDAS on SCSD6.

and compute

Δs := −ATΔy − rc,

Δx := −x− S−1XΔs,

and let

t
pri
aff

:= arg max{t ∈ [0, 1] | x + tΔx ≥ 0},

tdual
aff := arg max{t ∈ [0, 1] | s + tΔs ≥ 0}.

Step 2. Compute centering parameter:

μaff := (x + t
pri
aff

Δx)T (s + tdual
aff Δs)/n,

σ := (μaff/μ)3.

Step 3. Compute centering/corrector direction:

Solve

AQS
−1
Q XQA

T
QΔycc = −AS−1(σμe− ΔXΔs)

and compute

Δscc := −ATΔycc,

Δxcc := S−1(σμe− ΔXΔs) − S−1XΔscc.

Step 4. Compute MPC step:

Δxmpc := Δx + Δxcc,

Δympc := Δy + Δycc,

Δsmpc := Δs + Δscc,
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tpri
max := arg max{t ∈ [0, 1] | x + tΔxmpc ≥ 0},

tdual
max := arg max{t ∈ [0, 1] | s + tΔsmpc ≥ 0},

tpri := min{βtpri
max, 1},

tdual := min{βtdual
max , 1}.

Step 5. Updates:

x+ := x + tpriΔxmpc,

y+ := y + tdualΔympc,

s+ := s + tdualΔsmpc.

Pick Q+ ∈ QM (y+).
As compared with the case of Iteration rPDAS, the speed-up per iteration achieved

by rMPC over MPC is not as striking. This is due to the presence of two additional
matrix-vector products in the iteration (see Step 3) for a total of three matrix-vector
products per iteration. Further, these products involve the full A matrix and require
O(mn) flops, which can be substantial.

4.2. Numerical results: Dual-feasible initial point. We report on numer-
ical results obtained with a Matlab implementation of the reduced MPC (rMPC)
algorithm.4 The hardware, software, test problems, initial points, and presentation of
the results are the same as in section 3.3. Figures 5, 6, 7, and 8 are the counterparts
of Figures 1, 2, 3, and 4, respectively.
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Fig. 5. rMPC on the problem with constraints tangent to the unit sphere, with dual-feasible
initial point.

4.3. Numerical results: Infeasible initial point. We now report on numeri-
cal experiments that differ from the ones in section 4.2 only by the choice of the initial

4The code is available from the authors.
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Fig. 6. rMPC on the “fully random” problem, with dual-feasible initial point.
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Fig. 7. rMPC on SCSD1, with dual-feasible initial point.
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Fig. 8. rMPC on SCSD6, with dual-feasible initial point.
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Fig. 9. rMPC on the problem with constraints tangent to the unit sphere, with infeasible initial
point.
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Fig. 10. rMPC on the “fully random” problem, with infeasible initial point.

variables. Here we select the initial variables as in [Meh92, p. 589], without modifica-
tion. Consequently, there is no guarantee that the initial point will be dual-feasible;
and indeed, in most experiments, the initial point was dual-infeasible (in addition to
being primal-infeasible, as in all the previous experiments). Figures 9, 10, 11, and 12
are the counterparts of Figures 5, 6, 7, 8, respectively.

5. Discussion. In the context of primal-dual interior-point methods for linear
programming, a scheme was proposed, aimed at significantly decreasing the compu-
tational effort at each iteration when solving problems which, when expressed in dual
standard form, have many more constraints than (dual) variables. The core idea is
to compute the dual search direction based only on a small subset of the constraints,
carefully selected in an attempt to preserve the quality of the search direction. Global
and local quadratic convergence was proved for a class of schemes in the case of a sim-
ple dual-feasible affine scaling algorithm. Promising numerical results were reported
both on this “reduced” affine scaling algorithm and a similarly “reduced” version of
the MPC algorithm, using a rather simplistic heuristic: for a prescribed M > m,
keep only the M most nearly active (or most violated) constraints. In particular,
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Fig. 11. rMPC on SCSD1, with infeasible initial point.
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Fig. 12. rMPC on SCSD6, with infeasible initial point.

rather unexpectedly, it was observed that, on a number of problems, the number of
iterations to solutions did not increase when the size of the reduced constraint set was
decreased, down to a small fraction of the total number of constraints! Accordingly,
all savings in computational effort per iteration directly translate to savings in total
computational effort for the solution of the problem. Another interesting finding is
that, in our Matlab implementation, the reduced affine scaling algorihtm rPDAS
works as well as the reduced MPC algorithm on random problems in terms of CPU
time; however, CPU times may vary widely over implementations.

The (unreduced) MPC algorithm has remarkable invariance properties. Let {(xk,
yk, sk)} be a sequence generated by MPC on the problem defined by (A, b, c). Let P
be an invertible m×m matrix, let R be a diagonal positive-definite n× n matrix, let
v belong to R

m, and define A := PAR, b := Pb, c := Rc + RATPT v, x0 := R−1x0,
y0 := P−T y0 + v, and s0 := Rs0. Then the sequence {(xk,yk, zk)} generated by
MPC on the problem defined by (A,b, c) satisfies xk = R−1xk, yk = P−T yk + v,
and sk = Rsk.5 The reduced algorithm rMPC is still invariant under the action of

5Note, however, that the procedure recommended in [Meh92] for generating x0 and s0, while
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P and v, but it is no longer invariant under the action of R, because the relation
s = Rs affects the choice of the set Q. A simple way to recover invariance under R is
to redefine QM based on (ci − aTi y)/s

0
i instead of ci − aTi y.

The rPDAS and PDAS algorithms (rPDAS with Q = n) have weaker invari-
ance properties than MPC. While they are invariant under the action of v and of
orthogonal P (that is, Euclidean transformations of the dual space), they are nei-
ther invariant under the action of nonorthogonal P , because of the presence of ‖Δy‖
in (3.4) and (3.5), nor under the action of R, because of (3.5) containing the quantity
‖x̃−‖ and fixed bounds on x (and also, for rPDAS, because of the way QM is defined).6

Algorithms rPDAS and PDAS can be modified to achieve other invariance properties.
If ‖Δy‖ is replaced7 by ‖(ΔY 0)−1Δy‖, where ΔY 0 = diag (Δy0

i , i = 1, . . . ,m), then
the algorithms are invariant under v and nonsingular diagonal P . If instead ‖Δy‖ is
replaced by ‖Δy‖/‖Δy0‖, then the algorithms are invariant under Euclidean trans-
formation and uniform scaling of the dual (i.e., P is a nonzero scalar multiple of an
orthogonal matrix). If (3.5) is replaced by

x+
i := min{max{min{(‖Δy‖2 + ‖(X0)−1x̃−‖2)x0

i , xx
0
i }, x̃i}, xmaxx

0
i } ∀i ∈ n,

then PDAS is invariant under R; if, moreover, QM is redefined based on (ci−aTi y)/s
0
i

instead of ci − aTi y, then rPDAS becomes invariant under R, too.
We have focused on a constraint selection rule that requires that, at each iteration,

the M “most nearly active” (or “most violated”) constraints all be included in the
reduced set. It should be clear, however, that nearness to activity can be measured
differently for each constraint, and indeed differently at each iteration. In fact, only
two conditions must be satisfied in order for our convergence analysis to go through:
(i) AQ must have full row rank at each iteration, which is required in order for the
algorithm to be well defined, and (ii) constraints must be included in the reduced set
whenever y is “close enough” to the corresponding constraint boundary.

Appendix. Proof of Lemma 1.
The first claim is a direct consequence of the equivalence between (2.2) and (2.3).

Let us now prove the sufficiency portion of the second claim. Thus suppose conditions
(i) through (iii) hold, and let (ξ, η, σ)T be in the nullspace of J(A, x, s). We show that
it must be identically zero. We have

AT η + σ = 0,(A.1)

Aξ = 0,(A.2)

Sξ + Xσ = 0.(A.3)

Equation (A.1) yields

ξTAT η + ξTσ = 0,(A.4)

which, in view of (A.2), yields

ξTσ = 0.(A.5)

invariant under the action of P and v, is not invariant under that of R.
6Note that simpler versions of PDAS that do not aim at superlinear convergence enjoy v, P , and

R invariance as defined above (see, e.g., [MAR90]).
7Assuming that no component of Δy0 vanishes.
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Also, (A.3) yields

σi = − si
xi

ξi

whenever xi �= 0, and ξi = 0 otherwise (since |xi| + |si| > 0), so that (A.5) yields

−
∑

i:xi �=0

si
xi

ξ2
i = 0.

Since si/xi ≥ 0 whenever xi �= 0, it follows that siξi = 0 whenever xi �= 0. It then
follows from (A.3) that xiσi = 0 whenever xi �= 0, yielding

Xσ = 0(A.6)

and, from (A.3),

Sξ = 0.(A.7)

Since {ai : si = 0} is linear independent, it follows from (A.2) and (A.7) that ξ = 0.
Equation (A.1) and (A.6) now yield XAT η = 0, so that aTi η = 0 whenever xi �= 0.
Since {ai : xi �= 0} spans R

m, we conclude that η = 0. Finally, it now follows
from (A.1) that σ = 0, concluding the proof of the sufficiency portion of the second
claim.

As for the necessity portion of the second claim, first, inspection of the last n
rows, then of the first n columns of J(A, x, s), shows that the first two conditions are
needed in order for J(A, x, s) to be nonsingular. As for the third condition, suppose
it does not hold, i.e., suppose that {ai : xi �= 0} does not span R

m. Then there
exists η �= 0 such that aTi η = 0 for all i such that xi �= 0. Further, let ξ := 0 and
let σ := −AT η, so that σi = 0 for all i such that xi �= 0. It is readily checked that
(ξ, η, σ) is in the nullspace of J(A, x, s). Since η �= 0, J(A, x, s) must be singular.
This completes the proof of the necessity portion of the second claim.
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