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Abstract

This paper describes a hybrid control scheme to
swing-up a pendulum mounted on a cart (cart-pole
system) or on another pendulum (pendubot sys-
tem). Switches between equilibria of the actuated
link are used to swing-up the free link. It is argued
that this hybrid design is robust and versatile, con-
siderably simplifies the closed-loop analysis, and is
well-suited for performance optimization.

1 Introduction

Swinging up a single pendulum is an elementary
nonlinear control problem. Swinging up a pendu-
lum mounted on a cart (cart-pole system) or on
another pendulum (pendubot system) has proven
feasible but not straightforward. Studies by many
authors (e.g. [Spo97, SP96, Tee96, FLS00, LMR98,
MP96]) have shown that these examples, as partic-
ular instances of two-degrees of freedom mechani-
cal systems with one actuator, constitute challenges
both for stabilization (or energy-based) methods
and path-planning (or inversion-based) methods.

The objective pursued in this paper is to illus-
trate on these by now classical nonlinear control
problems the versatility of hybrid control architec-
tures where the design is conceived as a library of
elementary pieces of trajectories plus an automaton
in charge of ordering (in time) the right sequence
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of such ’primitives’. We show that the simplicity of
the single pendulum control design can be retained
for the two-degrees of freedom problem with, in ad-
dition, a straightforward adaptation from the cart-
pole situation to the pendubot situation. This is
in contrast with several earlier designs which are
more dependent on the details of the system dy-
namics. At the same time, our design is not based
on heuristics and no nonlinearities are neglected, so
that convergence of the closed-loop trajectories to
the desired equilibrium can be rigorously proven.

The illustration in this paper is extremely simple
but the underlying design principle is of consider-
able generality, especially for complex robotic ap-
plications. It has obvious robustness with respect
to model uncertainties because the control laws do
not depend too much on the detailed dynamics. It
is also very well suited to performance optimiza-
tion because the untractable task of solving a non-
linear continous-time optimization problem can be
replaced by a tractable discrete optimization of the
automaton. This has been discussed in the recent
paper [FDF99]. The present note includes exper-
imental results with a pendubot system but the
controller optimization and its learning capabilities
will be the object of future work.

The paper is organized as follows. Section 2 de-
scribes the basic swing-up control problem of a sin-
gle pendulum, together with the path planning so-
lution and the stabilization solution. In Section 3,
we briefly explain the reasons why the extension of
these designs to the two-degrees of freedom prob-
lem is not so straightforward and why our proposed
hybrid control scheme trivially solves the problem.
This design is adapted in Section 4 to the pen-
dubot situation, both to illustrate the versatility
of the approach and because the strategy has been
experimentally tested on a pendubot. Concluding
remarks are presented in Section 5.
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2 Swinging up a single pendu-

lum

Swinging up a single pendulum is easy. Denote by
J the moment of inertia with respect to the pivot
point, m the mass, τ the applied torque, θ the angle
between the vertical and the pendulum, and ω = θ̇
the angular velocity. The equations of motion are
given by

Jω̇ = mgl sin θ + τ (1)

This second-order model is invertible (or feedback
linearizable), that is, the feedback transformation
τ = −mgl sin θ+u transforms the nonlinear system
(1) into the linear system Jω̇ = u. Defining the
tracking error

e = θ − θ∗,

any desired trajectory (θ∗(t), ω∗(t)) can be imple-
mented through the PD-control law

u = Jω̇∗ − KP e − KD ė, KP > 0, KD > 0

To swing-up the pendulum, it suffices to de-
sign a trajectory that connects the stable equilib-
rium (θ, ω) = (−π, 0) to the unstable equilibrium
(θ, ω) = (0, 0). For instance, the trajectory

θ∗(t) =

{

1
2 ct2 − π, 0 ≤ t ≤ T

2

− 1
2 c(t − T )2, T

2 ≤ t ≤ T

with c = 4π

T 2 results in swing-up in time T with a
bang-bang acceleration ω̇∗ of amplitude c = 4π

T 2 .
This swing-up strategy is known as the “com-

puted torque” in the robotics literature. It is a
“path planning" approach, which requires a good
model and strong invertibility properties but works
very well under these assumptions [SL91].

There is an alternative strategy to swing up the
pendulum, known as energy-based or Lyapunov-
based approach [AF96]. The energy of the (free)
pendulum is given by

E = mgl(cos θ − 1) +
1

2
Jω2 (2)

where the constant has been selected so that the
energy is maximum and zero in the upright equi-
librium position. Lyapunov-based control of the
pendulum relies on the property that the time-
derivative of the energy can be assigned by the con-
trol torque:

Ė = ωτ (3)

Using the feedback control

τ = −sat(E)sign(ω) (4)

results in the closed-loop system

Ė = −|ω|sat(E)

The energy along the closed-loop solutions con-
verges to zero, which is the energy level of the ho-
moclinic orbit through the unstable equilibrium. A
local stabilizing control is then able to catch the
pendulum in the inverted position. The details
of the control law (4) are not important, provided
energy is pumped into the system in the average.
For this reason, energy-based control strategies are
quite robust. Also the invertibility requirements
of path-planning methods are relaxed with energy-
based control strategies. For instance, with a view
on the cart-pole example treated in the next sec-
tion, consider the situation where the torque con-
trol in (1) is replaced by a lateral acceleration con-
trol a of the pivot:

Jω̇ = mgl sin θ − ml cos θ a (5)

In this case, the feedback linearizing control a =
− 1

cos θ
(g sin θ + u) faces a singularity at θ = π/2.

Instead, the energy-based acceleration control

a = sat(E)sign(ω cos θ) (6)

ensures an increase of energy along closed-loop so-
lutions and the analysis is essentially unchanged
with respect to the torque control situation.

3 Swing-up acrobatics for the

cart-pole system

3.1 Adding the cart dynamics to the

pendulum equation

Denoting by x the cart position, v = ẋ the cart
velocity, and F the lateral force applied to the cart
(Figure 1), the cart-pole equations of motion are

Jω̇ − mgl sin θ + mlv̇ cos θ = 0
Mv̇ + mlω̇ cos θ − mlω2 sin θ = F

(7)

or equivalently

Jω̇ − mgl sin θ + mlv̇ cos θ = 0

(M − m cos2 θ)v̇ − mlω2 sin θ + mg sin θ cos θ = F
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Figure 1: The cart-pole system.

where J = ml2 and M = m + mc.
The (nonsingular) feedback transformation

(M − m cos2 θ)a − mlω2 sin θ + mg sin θ cos θ = F

yields the simplified dynamics

Jω̇ − mgl sin θ + mla cos θ = 0 (8)

v̇ = a (9)

where the new input a directly controls the cart
acceleration. Note that (8-9) is simply the single
pendulum model (5) augmented with the cart dy-
namics.

Contrary to the single pendulum system, the
cart-pole system is no longer invertible. Approx-
imate path planning based on the Jacobian lin-
earization of (8-9) will be effective only for trajecto-
ries that maintain θ ≈ const, but not for swing-up
acrobatics.

Extending the Lyapunov-based approach from
the single pendulum to the cart-pole system is not
straightforward either. The energy (2) of the pen-
dulum and the kinetic energy of the cart can be
taken into account to yield for example

W = E2 + v2

and the energy-based acceleration control

a = −sat(W )sign(−mlωE cos θ + v)

This control law will swing-up the pendulum and
asymptotically stop the cart but is has no author-
ity on the asymptotic position of the cart. Various
methods have been proposed in the literature to
add ’integral action’ to this control law in such a
way that asymptotic stability of the desired equi-
librium is guaranteed with a large basin of attrac-
tion (e.g. [Tee96, Pra00, JSK96]). These design

methodologies have been called forwarding stabi-
lization methods because they handle augmented
dynamics that result from feedforward connections
only in a bloc-diagram representation of the sys-
tem. This is in contrast with backstepping stabi-
lization methods which handle augmented dynam-
ics that result from feedback connections only in
a bloc-diagram representation of the system (see
[SJK97] for a detailed comparison of these stabi-
lization methods).

3.2 Shaking the cart to swing-up the

pole

Consider the problem of steering the cart-pole sys-
tem (8-9) from the (x = 0, θ = π) equilibrium
to the (x = 0, θ = 0) equilibrium. We propose
to swing-up the pole by an energy-based approach
while making sure that the cart stays sufficently
close to the x = ẋ = 0 state. To this end, we sug-
gest to select two “attractors” at x = x− = −∆/2
and x = x+ = ∆/2, and to switch between these
two attractors in such a way that the pendulum
energy

E = mgl(cos θ − 1) +
1

2
Jω2 (10)

increases “in the average”. The special choice of the
cart trajectories (switch between equilibria) makes
it easy to control the maximal cart excursion (a
consideration of importance for practical imple-
mentation) and trivially solves the problem of sta-
bilizing the cart position (the control parameter ∆
can be chosen to decrease to zero as the pendulum
approaches its inverted position or a final linear cor-
rection can be implemented to transfer the equilib-
rium from (x = ±∆, θ = 0) to (x = 0, θ = 0)). At
the same time, an appropriate switching between
these elementary cart trajectories will realize the
swing-up of the pendulum. This is because the de-
tails of the energy pumping are unimportant.

The switching scheme for the cart is now selected
to be most efficient in increasing the energy of the
pole. From (8) and (10), one has

Ė = Jωω̇ − mglω sin θ

= −mla ω cos θ, (11)

which shows that the acceleration a of the cart
is most efficient for increasing E when the pole
crosses the lower vertical position. This calls for

3



the following strategy: starting near the attractor
x− (i.e. x ≃ x−), wait for the pole to cross the lower
vertical (i.e. θ ≃ π) from right to left (i.e. ω ≥ 0),
then give a short and violent acceleration a = amax

and decelerate smoothly while the cart approaches
the other attractor x+. This guarantees that E in-
creases during the transfer from x− to x+. The
complete strategy consists in realizing a succession
of such jerky transfers between x− and x+.

The simplicity of the above control architecture
allows for many possible refinements and a further
performance analysis. For instance, the elegant
analysis in [AF96] relating the maximal available
acceleration amax to the number of swings neces-
sary to achieve the swing-up directly applies to the
present situation. The transfer dynamics between
the cart equilibria x− and x+ can also be optimized
to smooth out the acceleration switches without too
much degradation of the energy pumping.

4 Adaptation of the control

law to the pendubot system

The pendubot is conceptually very close to the cart-
pole system. The translational degree of freedom
of the cart pole is replaced by a rotational degree
of freedom. This creates an additional centrifu-
gal term in the (free) pendulum dynamics and the
details of the overall dynamics are somewhat dif-
ferent. However, a versatile control architecture
should not vary too much from the cart-pole to the
pendubot. We show in this section that our pro-
posed design is virtually unchanged when applied
to the pendubot.

4.1 Equations

The Pendubot [SB95] is a two-link planar robot
moving in a vertical plane with an actuator at the
fixed shoulder and no actuator at the elbow (Fig-
ure 2). The equations of motion are

Mq̈ + h(q, q̇) + φ(q) = F (12)

lc1

l2

l1

lc2

m1, I1

m2, I2

q1

q2

Figure 2: The Pendubot

where

q = (q1, q2)T

F = (τ, 0)T

φ(q) = (P4g sin(q1), P5g sin(q2))T

h(q, q̇) = (−P3 sin(q2 − q1) q̇2
2 , P3 sin(q2 − q1) q̇2

1)T

M =

[

P1 P3 cos(q2 − q1)
P3 cos(q2 − q1) P2

]

P1 = m1l2
c1 + m2l2

1 + I1

P2 = m2l2
c2 + I2

P3 = m2l1lc2

P4 = m1lc1 + m2l1

P5 = m2lc2.

The feedback transformation

τ = (M11 − M12M−1
22 M21) a

+ h1 − M12M−1
22 h2

+ φ1 − M12M−1
22 φ2

(13)

yields the simplified dynamics

P2q̈2 + P3 cos(q2 − q1)a

+P3 sin(q2 − q1)q̇2
1 + P5g sin(q2) = 0 (14)

q̈1 = a. (15)

Note the similarity between (14) and (8) when
q1 is close to π and q̇1 is small.

In the absence of forcing term, the Pendubot ad-
mits four equilibrium positions: DD, DU, UD and
UU (where DU means that the actuated link is in
the vertical downward position and the free link is
in the vertical upward position, etc.).
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4.2 Control algorithm

The following control algorithm steers the Pen-
dubot from the stable DD position to the unstable
UU position. The algorithm decomposes into three
phases.

Phase 1: from DD to UD.
The transfer is achieved by selecting a reference
trajectory q1r(t) starting at D and leading up to
U. This trajectory is stabilized by means of a PD
controller on (15). Because the free link is not con-
trolled during that phase, the transfer should not
be too fast in order to avoid large oscillations of
the free link. (Alternatively, the reference trajec-
tory (q1r(t), q̇1r(t), 0, 0) can be very well stabilized
on the basis of the Jacobian linearization).

Phase 2: from UD to UU by successive jerks.
This part of the algorithm applies the principle de-
scribed in Section 3.1. It is not very important
that Phase 2 starts exactly from UD. The switch-
ing criterion between q1+ and q1− is the same as
for the cart-pole system, and the transfer dynam-
ics are simply chosen to result from a PD control
on (15):

q̈1 = −KP (q1 − q
(ǫ)
1 ) − KD q̇1

where q
(ǫ)
1 = ǫ∆/2, ǫ ∈ {+1, −1}. The parameters

KP , KD and ∆ are chosen so as to achieve critical
damping of (15) and to bring E smoothly to 0.

Phase 3: stabilizing UU.
When the free link comes sufficienly close to the
upper position, the control algorithm switches to a
linear feedback law stabilizing the UU position.

4.3 Simulations

We simulated our algorithm with Matlab and
Simulink. Figure 3 corresponds to parts 2 and 3.

4.4 Experimental results

The algorithm has been applied with success to a
real Pendubot in our control laboratory (Figure 4).

The robustness of the proposed design is illus-
trated by the success of the swing-up in spite of
parameter uncertainty. We use the values from the
manual [Mec98] for the parameters P1 to P5 but no
identification has been performed in our lab; the es-
timated error is about 10% on each parameter. As
a consequence, the feedback transformation (13) is

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

q 1
/π

an
d

q 2
/π

t (s)

Figure 3: Simulation of phases 2 and 3 of the com-
plete swing-up procedure for the Pendubot. The
upper curve corresponds to q1 and the lower to q2.
Switching between phases 2 and 3 occurs around
t = 1.5. The parameters of the control law have
been chosen such that 4 switchings occur during
phase 2.

unprecisely implemented and there is a discrepancy
between the theoretical and actual trajectories of
the actuated link, which is visible on the q1 trace
in Figure 4 (the discrepancies become larger as the
oscillations of the free link increase because there is
a larger uncertainty on P2 and P3). This does not
affect the feasability of the swing-up strategy.

5 Conclusion

A swing-up strategy is designed for the cart-pole
system that consists in switching appropriately be-
tween two prefered positions of the cart so as to
pump energy in the pendulum. The design is ‘ex-
act’ in the sense that no nonlinearities are neglected
and convergence of closed-loop solutions can be
analysed. At the same time, it does not very much
depend on the details of the dynamics. As a conse-
quence, the control architecture is robust, versatile,
and well-suited for performance optimization.
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