
Preprint to appear in
http://www.springer.com/engineering/book/978-3-642-12597-3

29 Mar 2010 Technical Report UCL-INMA-2009.043-v2

Optimization On Manifolds: Methods And

Applications

P.-A. Absil1, R. Mahony2, and R. Sepulchre3

1 Department of Mathematical Engineering, Université catholique de Louvain,
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Liège, Belgium

Summary. This paper provides an introduction to the topic of optimization on
manifolds. The approach taken uses the language of differential geometry, however,
we choose to emphasise the intuition of the concepts and the structures that are
important in generating practical numerical algorithms rather than the technical
details of the formulation. There are a number of algorithms that can be applied
to solve such problems and we discuss the steepest descent and Newton’s method
in some detail as well as referencing the more important of the other approaches.
There are a wide range of potential applications that we are aware of, and we briefly
discuss these applications, as well as explaining one or two in more detail.

1 Introduction

This paper is written as an invitation for the reader to the area of optimiza-
tion on manifolds. It follows quite closely the structure of the plenary talk
given by the first author at the 14th Belgian-French-German Conference on
Optimization, Leuven, 14–18 September 2009. The style is rather on the in-
formal side, and there is a definite bias towards the exposition given in the
monograph [5], to which we refer for more details and for a larger bibliogra-
phy. When we cite [5], we do not imply that it is the original reference for
the topic in question and we refer the reader to the “Notes and References”
sections of [5] for details of the history.

The general problem of optimization on manifolds is introduced in Sec-
tion 2. A motivation for considering the problem in its most abstract form
is given in Section 3. Manifolds are defined in more technical terms in Sec-
tion 4. Several specific manifolds are presented in Section 5, along with point-
ers to applications where they are involved. Section 6 describes a steepest-
descent optimization scheme on Riemannian manifolds. Its application to a
simple problem is worked out in Section 7. Section 8 is dedicated to Newton’s
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Fig. 1. Optimization on manifolds in one picture.

method on Riemannian manifolds. Other optimization methods on manifolds
are briefly discussed in Section 9. Section 10 provides some conclusions.

2 Optimization on manifolds in one picture

The archetypal problem in optimization on manifolds is pictured in Figure 1.
The set of feasible points is a manifold M that, for the sake of developing
intuition, can be viewed as a smooth surface. We will argue in Section 3,
however, that it is beneficial to depart from this restrictive representation.
Anticipating Section 4, one can think of M as a collection of points, endowed
with a yet-to-be-defined manifold structure that turns M into a topological
set—so we can talk about neighborhoods—and that makes it possible to de-
clare whether a real-valued function on M is smooth or not. The reader who
cannot wait to get a more precise definition of the concept of a manifold is
invited to take a peek at Section 4. It may also be reassuring to have a look
at the list of specific manifolds in Section 5.

The smooth real-valued function f on the set M that defines the goal of
the optimization problem is termed the objective function. A few of its level
curves f−1(c), c ∈ R, are represented in Figure 1. The dot inside the level
curves is an optimal point of f , say, a minimizer of f .

Computing minimizers of f is our goal. More precisely, the problem is as
follows:

Problem 1 (optimization on manifolds).
Given: a manifold M and a smooth function f : M → R.
Sought: an element x∗ of M such that there is a neighborhood V of x∗ in M
with f(x∗) ≤ f(x) for all x ∈ V .

Such an x∗ is termed a local minimizer of f .
The methods we are interested in for solving Problem 1 are iterative algo-

rithms on the manifold M. Given a starting point x0 ∈ M, such an algorithm
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produces a sequence (xk)k≥0 in M that converges to x∗ whenever x0 is in a
certain neighborhood, or basin of attraction, of x∗. As in classical optimiza-
tion algorithms, the following properties are desirable: (i) the set of points
x0 for which convergence to x∗ occurs should be large; (ii) convergence to x∗
should be fast; (iii) the numerical effort required to compute each new iterate
should be reasonable.

3 Why consider general manifolds?

A motivation for considering general manifolds—and not only manifolds that
come to us as subsets of Euclidean spaces—is that they offer an adequate
common framework for dealing with the following two problems.

Problem 2. Given a matrix A = AT ∈ R
n×n and a diagonal n × n matrix

N = diag(1, . . . , p) with p ≤ n, solve

min f(X) = trace(XTAXN)

subj. to X ∈ R
n×p,XTX = I.

Solving this problem yields the p “leftmost” eigenvectors of A, i.e., those
associated with the p algebraically smallest eigenvalues of A; see Section 7
or [5, §4.8] for details.

The optimization domain in Problem 2 is the set

St(p, n) = {X ∈ R
n×p : XTX = I}, (1)

which is a subset of the Euclidean space R
n×p. If a subset of a Euclidean

space can be locally smoothly straightened—the submanifold property—, then
it admits one and only one “natural” manifold structure [5, Prop. 3.3.2]; see
Figure 2 for an illustration. The set St(p, n) happens to be such a subset [5,
§3.3.2]. Endowed with its natural manifold structure, St(p, n) is termed the
Stiefel manifold of orthonormal p-frames in R

n.4

Problem 3. Given a matrix A = AT ∈ R
n×n, solve

min f(Y ) = trace
(

(Y TY )−1Y TAY
)

subj. to Y ∈ R
n×p
∗ ,

where R
n×p
∗ denotes the set of all full-rank n× p matrices (p < n).

4 The Stiefel manifold is named in honor of Eduard L. Stiefel who studied its
topology in [55]. Stiefel is perhaps better known for proposing with M. R. Hestenes
the conjugate gradient method [25]. Incidentally, he was born 100 years ago.
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Fig. 2. The set M ⊂ R
n is termed a submanifold of R

n if the situation described
above holds for all x ∈ M. Charts for M are obtained by extracting the d first
coordinates.

The function f in Problem 3 has the following invariance property:

f(YM) = f(Y ), for all Y ∈ R
n×p
∗ and all M ∈ R

p×p
∗ . (2)

In other words, f is constant on each equivalence class

[Y ] = {YM : M ∈ R
p×p
∗ }, (3)

Y ∈ R
n×p
∗ . The equivalence class [Y ] is precisely the set of all n× p matrices

that have the same column space as Y , and Y is a minimizer of f if and
only if the column space of Y is a p-dimensional minor eigenspace of A (i.e.,
associated with the smallest eigenvalues); see [5, §2.1.1]. It is thus tempting
to reconsider Problem 3 on a search space whose elements are the equivalence
classes [Y ], Y ∈ R

n×p
∗ , and optimize the function

f̌ : {[Y ] : Y ∈ R
n×p
∗ } → R : [Y ] 7→ f(Y ), (4)

which is well defined in view of (2) and (3).
A major advantage of this reformulation of Problem 3 is that, for generic

A, the minimizers of f̌ are isolated, while they are never isolated in the original
formulation in view of the invariance property (2). The apparent downside is
that the new search space, the quotient space

Gr(p, n) = {[Y ] : Y ∈ R
n×p
∗ }, (5)

is no longer a Euclidean space. However, it turns out (see [5, §3.4.4]) that (5)
admits one and only one “natural” manifold structure, which is inherited from
the fact that, around every element of R

n×p
∗ , the bundle of equivalence classes

can be smoothly straightened; see Figure 3 for an illustration. Endowed with
this natural manifold structure, the set Gr(p, n) is termed the Grassmann

manifold5 of p-planes in R
n×p. (The set (5) is identified with the set of all p-

dimensional subspaces of R
n because [Y ] is the set of all n×p matrices whose

5 The Grassmann manifold is named in honor of Hermann Günther Graßmann
who proposed a representation of the manifold known as Plücker coordinates.
Graßmann is perhaps better known for his Sanskrit dictionary and his translation
of the Rgveda [21]. Incidentally, he was born 200 years ago.



Optimization On Manifolds: Methods And Applications 5

M

π(x)

M = M/ ∼

x

[x] = {y ∈ M : y ∼ x}

π

R
q

R
n−q

∃ϕ(x)

diffeo

Fig. 3. The set M/ ∼:= {[x] : x ∈ M} is termed a quotient manifold if the situation
described above holds for all x ∈ M. Charts for M/ ∼ are obtained by extracting
the q first coordinates.

columns form a basis of the same p-dimensional subspace of R
n.) Dealing

with optimization problems such as the minimization of (4) is precisely what
optimization on (quotient) manifolds is all about.

In summary, Problem 2 and the reformulated Problem 3 have the follow-
ing properties in common: (i) their search space admits a natural manifold
structure; (ii) in the sense of the manifold structure, the objective function is
smooth, as a consequence of [33, Prop. 8.22] and [33, Prop. 7.17]. In the next
section, we explain more technically what a manifold structure is, and what
it means for a objective function on a manifold to be smooth.

4 Manifolds and smooth objective functions

The time has come to give an informal, application-driven, definition of a
manifold structure. Details can be found in [5, §3.1.1] or in any textbook on
differential geometry.

The intuition can be obtained from Figure 4. We are given a set M, which
initially is just a collection of points without any particular structure, and we
are given a real-valued function f on the set M. Since M does not have a
vector space structure, the classical definition of differentiability of a function
f : M → R at a point x ∈ M does not apply. The remedy is to consider a one-
to-one correspondence ϕ between a subset U of M containing x and an open
subset ϕ(U) of some R

d. Then f is declared to be differentiable at x ∈ M when
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Fig. 4. Manifold structures and smoothness of objective functions.

the function f ◦ ϕ−1 : ϕ(U) → R : y 7→ f(ϕ−1(y)) is differentiable at ϕ(x).
Since ϕ(U) is an open subset of R

d, the usual definition of differentiability
applies.

For this procedure to be applicable to every point of the set M, we need
to provide a collection of ϕ’s such that the union of their domains is the whole
set M. Moreover, whenever the domains U and V of two correspondences ϕ
and ψ overlap on a point x ∈ M, we must require that, for all f : M → R,
f ◦ϕ−1 is differentiable at ϕ(x) if and only if f ◦ψ−1 is differentiable at ψ(x);
otherwise differentiability of f at x is not well defined. This goal is achieved by
imposing that the charts overlap smoothly, i.e., ψ◦ϕ−1 is a diffeomorphism—a
smooth bijection with smooth inverse—between ϕ(U ∩ V) and ψ(U ∩ V). The
collection of correspondences is then called an atlas, and the correspondences
are called charts. The maximal atlas generated by an atlas is the collection
of all charts that overlap smoothly with those of the given atlas. Finally, a
manifold is a pair (M,A+), where M is a set and A+ is a maximal atlas
on the set M. In other words, a maximal atlas uniquely specifies a manifold
structure on M. For brevity, it is common to say “the manifold M” when the
maximal atlas is clear from the context or irrelevant.

Let us work out an example. When p = 1 and n = 2, the Stiefel mani-
fold (1) reduces to the unit circle in R

2. Let U = St(1, 2)\{(0, 1), (0,−1)}, ϕ :
U → R : x 7→ x2/x1, V = St(1, 2) \ {(1, 0), (−1, 0)}, ψ : V → R : x 7→ x1/x2.
Then {ϕ,ψ} is an atlas of the set St(1, 2). Moreover, it can be shown that
this atlas induces the natural manifold structure mentioned in the previous
section.

Let us show that the objective function f defined in Problem 2 is smooth.
To this end, pick x ∈ St(1, 2), and assume that x ∈ U ∩ V. Observe that

ϕ−1(y) = 1√
1+y2

[

1 y
]T

for all y ∈ R. Hence f ◦ϕ−1(y) = 1√
1+y2

[

1 y
]

A
[

1
y

]

,

and we see that f is a smooth function on U . A similar reasoning shows that f



Optimization On Manifolds: Methods And Applications 7

is a smooth function on V. Hence f is smooth on the whole manifold M. (An
alternate way of obtaining this result is by invoking the fact [33, Prop. 8.22]
that the restriction of a smooth function to a submanifold is smooth.)

Looking back at the original Problem 1, we see that all the concepts in-
volved therein are now well defined, except for “neighborhood”. The notion of
neighborhood in M is directly inherited from its manifold structure: a neigh-

borhood of a point x in a manifold M is a subset of M that contains a set
of the form ϕ−1(Ω), where ϕ is a chart of the manifold M whose domain
contains x and Ω is an open subset that contains ϕ(x).

If all the charts of the maximal atlas are into the same R
d, then d is called

the dimension of the manifold. In particular, when the manifold is connected,
its dimension is well defined.

Finally, we point out that the notion of smoothness extends to functions
between two manifolds: the definition relies on expressing the function in
charts and checking whether this expression is smooth. Note also that the
Cartesian product of two manifolds admits a manifold structure in a natural
way.

5 Specific manifolds, and where they appear

In this section, we present a few specific manifolds, and we discuss their use
in science and engineering applications.

5.1 Stiefel manifold

The (compact) Stiefel manifold St(p, n) is the set of all p-tuples (x1, . . . , xp)
of orthonormal vectors in R

n. The notation Vn,p or Vp(R
n) is also frequently

encountered in the literature.
If we view R

n as the space of length-n column vectors and turn the p-tuples
into n× p matrices,

(x1, . . . , xp) 7→
[

x1 · · · xp

]

,

we obtain the definition (1), i.e.,

St(p, n) = {X ∈ R
n×p : XTX = I}.

To relate this definition with the illustration in Figure 1, imagine that each
point of M stands for an orthonormal p-frame (x1, . . . , xp), and that the
objective function f assigns a real value to each orthonormal p-frame. We
have already encountered such an f in Problem 2.

Here are a few domains of application for optimization methods on the
Stiefel manifold, along with related references, which are by no means ex-
haustive: principal component analysis and the singular value decomposition
[24, 18]; independent component analysis and the related problem of joint di-
agonalization of matrices [8, 42, 26, 56]; more generally, several applications
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related to machine learning [46, 57, 15]; Procrustes problems [20, 38]; com-
puter vision [34, 59]; Lyapunov exponent computation for dynamical systems
[14].

5.2 Sphere

When p = 1, the Stiefel manifold St(p, n) reduces to the unit sphere Sn−1, a
particularly simple nonlinear manifold.

5.3 Orthogonal group

When p = n, the Stiefel manifold St(p, n) admits a group structure, where the
group operation is the matrix product. This group is termed the orthogonal

group, often denoted by On or O(n). Moreover, the group operation and its
inverse are smooth in the sense of the manifold structure of St(p, n). This
makes On a Lie group. For more information on Lie groups at an introductory
level, see, e.g., [62].

The orthogonal group On has two connected components. The component
that contains the identity matrix is called the special orthogonal group SO(n).
The set SO(3) corresponds to the set of rotations.

5.4 Grassmann manifold

The Grassmann manifold Gr(p, n) is the set of all p-dimensional subspaces
of R

n. Most applications bear some relation with dimensionality reduction:
[24, 18, 40, 53, 4, 39, 54, 12, 23, 52, 59, 15, 27].

5.5 Set of fixed-rank positive-semidefinite matrices

The differential geometry of the set

S+(p, n) = {X ∈ R
n×n : X � 0, rk(X) = p}

is a topic of interest, in view of its application in rank reduction of positive-
definite matrices [13, 30, 60, 61].

5.6 Shape manifold

A quotient geometry arises because the notion of shape is invariant by rotation
and by reparameterization; see, e.g., [31, 32, 29].

5.7 Oblique manifold and products of spheres

The oblique manifold {Y ∈ R
n×p
∗ : diag(Y Y T ) = Ip}—where diag(Y Y T ) = Ip

means that the rows of Y belong to the unit sphere—and Cartesian products of
spheres appear, e.g., in the oblique Procrustes problem [58], in nonorthogonal
joint diagonalization [3], and in time-varying system identification [49].
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5.8 Flag manifold

Given 0 < p1 < . . . < pk, the flag manifold of type (p1, . . . , pk) is the collection
of all k-tuples of linear subspaces of R

pk (V1, . . . , Vk) with dim(Vi) = pi and
Vi subspace of Vi+1. Flag manifolds are useful in the analysis of eigenvalue
methods [9, 28] and in independent subspace analysis [47].

5.9 Essential manifold

An essential matrix is the product E = ΩR of a skew-symmetric matrix
Ω and a rotation matrix R. The essential manifold appears in stereo vision
processing [41, 22].

5.10 Other products of manifolds

Various Cartesian products of manifolds appear in applications. For example,
the Euclidean group SE(3), an important manifold in computer vision and
robotics, can be identified with SO(3) × R

3. A product of 16 copies of SO(3)
was used in [7] to specify the position of a human spine.

The next step is to consider products of infinitely many copies of a man-
ifold, which brings us to curve fitting on manifolds; see [50] and references
therein. See also [51] where the problem consists in finding a curve in the
Euclidean group SE(3).

5.11 Other quotient manifolds

Quotient manifolds appear in several applications where the objective function
has an invariance property that induces a regular equivalence relation; a char-
acterization of regular equivalence relations can be found in [5, Prop. 3.4.2].
In fact, most of the manifolds above admit well-known quotient representa-
tions. For example, St(p, n) can be identified with O(n)/O(n− p); see [18] for
details.

6 Steepest descent: from R
n to manifolds

We now turn to optimization algorithms on manifolds. Amongst optimization
methods on manifolds that exploit the smoothness of the cost function, the
steepest-descent scheme is arguably the most basic.

The next table, where ∇f(x) =
[

∂1f(x) · · · ∂nf(x)
]T

denotes the classical
Euclidean gradient, sketches a comparison between steepest-descent in R

n and
its generalization to manifolds. An illustration is given in Figure 5.
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Fig. 5. Steepest descent on Riemannian manifolds.

R
n Manifold

Search direction Vector at x Tangent vector at x
Steepest-desc. dir. −∇f(x) −grad f(x)
Search curve γ : t 7→ x− t∇f(x) γ s.t. γ(0) = x and

γ̇(0) = −grad f(x)

Figure 5 corresponds to a submanifold of a Euclidean space. However,
we are interested in a theory that subsumes both submanifolds and quotient
manifolds, for which we will need definitions of tangent vectors and gradients
that are rather abstract. Nevertheless, the reader is invited to keep Figure 5
in mind, because it helps in developing the intuition.

The particularization of the abstract steepest-descent scheme to subman-
ifolds of Euclidean spaces is rather simple and will be covered in this paper.
For quotient manifolds, the situation is a bit more complicated, and we refer
to [5] for details.

6.1 Tangent vectors and tangent spaces

The notion of a tangent vector at a point x ∈ M is intuitively clear when
M is a submanifold of a Euclidean space E . To obtain a tangent vector at x,
take a smooth curve γ : R → M with γ(0) = x; then γ̇(0)—the derivative of
γ at t = 0—is a tangent vector to M at x. Here the derivative is the usual
derivative: since M is a subset of the Euclidean space E , γ can be viewed as
a curve in E , and the derivative of γ is understood in this sense. The set of all
tangent vectors at x is termed the tangent space to M at x and denoted by
TxM. Given ξx ∈ TxM, we say that a curve γ on M realizes ξx if γ(0) = x
and γ̇(0) = ξx.

A tangent vector ξx can be paired with any smooth real-valued function
f on M to yield the real number

Df(x)[ξx] =
d

dt
f(γ(t))

∣

∣

∣

∣

t=0

, (6)
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where γ is any curve that realizes ξx. This property is the key to generalizing
tangent vectors to abstract manifolds. A mapping ξx : f 7→ ξx(f) is a tangent

vector to M at x is there exists a curve γ on M such that γ(0) = x and
ξx(f) = d

dt
f(γ(t))

∣

∣

t=0
for all smooth real-valued functions f on M. Again,

the curve γ is said to realize ξx. An alternate notation for ξx(f) is Df(x)[ξx],
but one should bear in mind that it is only for M submanifold of a Euclidean

space that Df(x)[ξx] is equal to limt→0
f̄(x+tξx)−f̄(x)

t
for any smooth extension

f̄ of f .
The above is a curve-based definition of tangent vectors; several equivalent

definitions can be found in the literature. We also point out that the disjoint
union of the tangent spaces admits a natural manifold structure. This manifold
is called the tangent bundle and denoted by TM. This concept will reappear
below when we introduce the notion of retraction.

6.2 Descent directions

With the notion of a tangent vector at hand, we can define a descent direction

for an objective function f on a manifold M at a point x to be a tangent vector
ξx at x such that Df(x)[ξx] < 0. In this case, for any curve γ that realizes
ξx, we have d

dt
f(γ(t))

∣

∣

t=0
< 0. Hence, for all t positive and sufficiently small,

f(γ(t)) < f(x).

6.3 Steepest-descent direction and the gradient

By definition, the steepest ascent direction is along

arg max
ξx∈TxM
‖ξx‖=1

Df(x)[ξx].

For this expression to be well-defined, we need a norm on TxM. The most
convenient way of introducing such a norm is via an inner product. For all
x ∈ M, let gx be an inner product in TxM, and define

‖ξx‖ :=
√

gx(ξx, ξx).

When gx smoothly depends on x, (M, g) is termed a Riemannian manifold .
As was the case with the maximal atlas, the notation (M, g) is often replaced
by M when no confusion arises.

There is a unique element of TxM, called the gradient of f at x and
denoted by grad f(x), such that

{

grad f(x) ∈ TxM
gx(grad f(x), ξx) = Df(x)[ξx], ∀ξx ∈ TxM.

The gradient of f at x, whose definition depends on the Riemannian met-
ric, is along the steepest-ascent direction of f at x, whose definition also
depends on the Riemannian metric:
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grad f(x)

‖grad f(x)‖ = arg max
ξx∈TxM
‖ξx‖=1

Df(x)[ξx].

Hence, the steepest-descent direction is along −grad f(x).
Moreover, the norm of the gradient of f at x is equal to the slope at t = 0

of t 7→ f(γ(t)), where γ is any curve that realizes grad f(x)
‖grad f(x)‖ :

‖grad f(x)‖ = Df(x)

[

grad f(x)

‖grad f(x)‖

]

.

6.4 Gradient on submanifolds

Let (M, g) be a Riemannian manifold and M be a submanifold of M. Then

gx(ξx, ζx) := gx(ξx, ηx), ∀ξx, ζx ∈ TxM

defines a Riemannian metric g on M. With this Riemannian metric, M is a
Riemannian submanifold of M. Let T⊥

x M denote the orthogonal complement
of TxM in TxM in the sense of g. Every z ∈ TxM admits a decomposition
z = Pxz+P⊥

x z, where Pxz belongs to TxM and P⊥
x z to T⊥

x M. If f̄ : M → R

and f = f̄ |M, then
grad f(x) = Pxgrad f̄(x). (7)

6.5 Gradient on quotient manifolds

For the case of quotient manifolds, see [5, §3.6.2].

6.6 Choice of the search curve

The next task is to choose a curve γ through x at t = 0 such that

γ̇(0) = −grad f(x).

The curve selection process can be specified by a retraction. A retraction on
M is a smooth mapping R : TM → M such that, for all x ∈ M and all
ξx ∈ TxM,

1. R(0x) = x, where 0x denotes the origin of TxM;
2. d

dt
R(tξx)

∣

∣

t=0
= ξx.

Given a retraction R on M, the curve γ : t 7→ R(−tgrad f(x)) is a descent
curve at t = 0 provided that grad f(x) 6= 0.

Note that, in topology, a continuous map from a topological space X to a
subspace A is termed a retraction if the restriction of the map to domain A
is the identity map on A. In view of the property R(0x) = x and the natural
inclusion of M in TM, the differential-geometric retractions are topological
retractions.
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6.7 Line-search procedure

It remains to find t∗ such that f(γ(t∗)) is sufficiently smaller than f(γ(0)).
Since t 7→ f(γ(t)) is simply a function from R to R, we can use the step
selection techniques that are available for classical line-search methods, e.g.,
exact minimization or Armijo backtracking.

The next iterate of the steepest-descent method is defined to be x+ =
γ(t∗). Observe that the method can be tuned by modifying the Riemannian
metric and the retraction.

7 A steepest-descent method for Problem 2

As an illustration, we apply the steepest-descent method of the previous sec-
tion to Problem 2.

Let A = AT ∈ R
n×n with (unknown) eigenvalues λ1 ≥ · · · ≥ λn. The

goal is to compute the p dominant eigenvectors of A, i.e., those associated to
λ1, . . . , λp, which are uniquely defined (up to sign reversal, assuming a unit-
norm constraint) if λ1 > · · · > λp. To this end, we define N = diag(p, p −
1, · · · , 1) and solve

max
XT X=Ip

trace(XTAXN). (8)

The columns of the solution X (unique up to sign reversal) are the p dominant
eigenvectors or A; see [24] or [5, §4.8].

Let us sketch the derivation of a steepest-ascent method on St(p, n) =
{X ∈ R

n×p : XTX = I} for solving (8). Details can be found in [5, §4.8].
Define f̄ : R

n×p → R : X 7→ trace(XTAXN) and f = f̄ |St(p,n). We have
1
2grad f̄(X) = AXN . Thus, in view of (7), 1

2grad f(X) = PTXSt(p,n)(AXN) =
AXN−Xsym(XTAXN), where sym(Z) := (Z+ZT )/2. This is the gradient in
the sense of the Riemannian metric inherited from the embedding of St(p, n)
in R

n×p. Possible choices for the retraction are given in [5, Ex. 4.1.3]. For
example, the mapping given by R(ξX) = qf(X + ξX) is a retraction, where qf
returns the Q factor of the QR decomposition of A.

This basic steepest-descent algorithm is given as an illustration; it is not
meant to be competitive with state-of-the-art algorithms for eigenvalue com-
putation. Competitive algorithms that stem from a Riemannian optimization
approach can be found in [11, 10].

8 Newton’s method on manifolds

We first present Newton’s method on general manifolds. Then we particularize
the algorithm to obtain an algorithm for Problem 2 with p = 1.
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8.1 Newton on abstract manifolds

The central equation for Newton’s method in R
n is

D(grad f)(x)[ηx] = −grad f(x),

a linear equation in the update vector ηx. On a Riemannian manifold, it
is clear that ηx becomes a tangent vector at x, and that grad f becomes the
gradient vector field defined in Section 6.3. It remains to define the directional
derivative of a vector field such as grad f . A thoughtless extension of (6) would

yield the formula limt→0
grad f(γ(t))−grad f(x)

t
, which is inapplicable to abstract

manifolds since grad f(γ(t)) and grad f(x) belong to Tγ(t)M and TxM, which
are two different vector spaces. The remedy is given by endowing M with an
object called an affine connection and denoted by ∇, that takes as argument
a vector field and a tangent vector and returns the (covariant) derivative of
the vector field along the tangent vector.

The Riemannian Newton method given below is formulated as in [7] (or
see [5, §6.2]).

Required: Riemannian manifold M; retraction R on M; affine connection
∇ on M; real-valued function f on M.

Iteration xk ∈ M 7→ xk+1 ∈ M defined by

1. Solve the Newton equation

Hess f(xk)ηk = −grad f(xk)

for the unknown ηk ∈ Txk
M, where

Hess f(xk)ηk := ∇ηk
grad f.

2. Set
xk+1 := Rxk

(ηk).

The algorithm has convergence properties akin to those of Newton’s algo-
rithm in R

n [5, §6.3].

8.2 Newton on submanifolds of R
n

If M is a submanifold of R
n, it naturally inherits a Riemannian metric by

the restriction of the standard inner product of R
n. If moreover the so-called

Levi-Civita connection is chosen for ∇, the algorithm below is obtained.
Required: Riemannian submanifold M of R

n; retraction R on M; real-
valued function f on M.

Iteration xk ∈ M 7→ xk+1 ∈ M defined by

1. Solve the Newton equation

Hess f(xk)ηk = −grad f(xk)
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for the unknown ηk ∈ Txk
M, where

Hess f(xk)ηk := PTxk
MDgrad f(xk)[ηk].

2. Set
xk+1 := Rxk

(ηk).

8.3 Newton on the unit sphere S
n−1

Let us now particularize the algorithm to the case where M is the unit sphere
Sn−1, viewed as a Riemannian submanifold of R

n, with a particular choice
for the retraction. We obtain a numerical algorithm that can be formulated
without any reference to differential-geometric objects, and that inherits the
desirable convergence properties of the abstract Riemannian Newton method.

Required: real-valued function f on Sn−1.
Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation
{

Pxk
D(grad f)(xk)[ηk] = −grad f(xk)

xT ηk = 0,

for the unknown ηk ∈ R
n, where Pxk

= (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk

‖xk + ηk‖
.

In the algorithm above, grad f(x) = (I−xxT )grad f̄(x), where f̄(x) is any
smooth extension of f .

8.4 Newton for Rayleigh quotient optimization on unit sphere

Finally, if we apply the above algorithm to a specific objective function, such
as the one given in Problem 2 with p = 1, we obtain a concrete numerical
algorithm.

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation
{

Pxk
APxk

ηk − ηkx
T
kAxk = −Pxk

Axk,

xT
k ηk = 0,

for the unknown ηk ∈ R
n, where Pxk

= (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk

‖xk + ηk‖
.

Not surprisingly for such a fundamental problem, we fall back on a known
eigenvalue algorithm, the Rayleigh quotient iteration. On several other prob-
lems, the Riemannian Newton method has led to novel numerical algorithms;
see, e.g., [41, 7, 40, 58, 22, 19].



16 P.-A. Absil, R. Mahony, and R. Sepulchre

9 Other optimization methods on manifolds

Besides steepest descent and Newton, several other classical methods for
unconstrained optimization admit a generalization to manifolds. Chapter 8
in [5] briefly mentions approximate Newton methods and conjugate gradient
schemes. A Riemannian trust-region method was proposed in [2] (or see [5,
Ch. 7]), which led to competitive algorithms for symmetric eigenvalue prob-
lems [11, 10]. For a Riemannian BFGS method, see [48] and references therein.

The relation between optimization methods on manifolds and feasible
methods for equality-constrained optimization is investigated in [6]. This
concerns in particular the theory of U-Lagrangians, and the related VU-
decompositions and fast tracks [35, 43], as well as the theory of partly smooth
functions [36], both of which coincide in the convex case [44, Th. 2.9]. The
concepts of U-Lagrangian and partly smooth functions led to several Newton-
like algorithms whose iterates are constrained to a submanifold M such that
the restriction f|M is smooth. These algorithms are unified in [16] under a
common two-step, predictor-corrector form, and connections with SQP and
Riemannian Newton are studied in [44].

We also mention the literature on proximal point algorithms on Hadamard
manifolds; see [37] and references therein.

10 Conclusion

We have proposed an introduction to the area of optimization on manifolds,
written as a digest of [5] enhanced with references to the most recent litera-
ture. In summary, optimization on manifolds is about exploiting tools of dif-
ferential geometry to build optimization schemes on abstract manifolds, then
turning these abstract geometric algorithms into practical numerical methods
for specific manifolds, with applications to problems that can be rephrased
as optimizing a differentiable function over a manifold. This research pro-
gram has shed new light on existing algorithms and produced novel numerical
methods backed by a strong convergence analysis.

We close by pointing out that optimization of real-valued functions on
manifolds, as formulated in Problem 1, is not the only place where numerical
optimization and differential geometry meet. Noteworthy are the Riemannian
geometry of the central path in linear programming [17, 45], and an intriguing
continuous-time system on the Grassmann manifold associated with linear
programs [63, 1].
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