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Abstract. Joint diagonalization for ICA is often performed on the or-
thogonal group after a pre-whitening step. Here we assume that we only
want to extract a few sources after pre-whitening, and hence work on
the Stiefel manifold of p-frames in Rn. The resulting method does not
only use second-order statistics to estimate the dimension reduction and
is therefore denoted as soft dimension reduction. We employ a trust-
region method for minimizing the cost function on the Stiefel manifold.
Applications to a toy example and functional MRI data show a higher
numerical efficiency, especially when p is much smaller than n, and more
robust performance in the presence of strong noise than methods based
on pre-whitening.

1 Introduction

The common approach to blind source separation of a set of multivariate data
is to first whiten the data and to then search on the more restricted orthogonal
group. This has two advantages: (i) instead of optimizing a cost function on
n2, the optimization takes place on a n(n − 1)/2 dimensional manifold. (ii)
During whitening via PCA, the dimension can already be reduced. However
a serious drawback of this sometimes called hard-whitening technique is that
the resulting method is biased towards the data correlation (which is used in
the PCA step). Using the empirical correlation estimator, the method perfectly
trusts the correlation estimate, whereas it ‘mistrusts’ any later sample estimates.

In contrast to hard-whitening, soft-whitening tries to avoid the bias towards
second-order statistics. In algorithms based on joint diagonalization (JD) of a
set of source conditions, reviewed for example in [1], this implies using a non-
orthogonal JD algorithm [2–5]. It jointly diagonalizes both the source conditions
together with the mixture covariance matrix. Then possible estimation errors in
the second-order part do not influence the total error disproportionately high.

Soft-whitening essentially does away with issue (i). In this contribution, we
propose a method to deal with issue (ii) instead: The above argument of bias
towards correlation with respect to source estimation also applies to the bias



with respect to dimension reduction. This can be solved by a subspace extraction
algorithm followed by an ICA algorithm, see e.g. [6,7], which however may lead
to an accumulation of errors in the two-step procedure. Hence, we propose the
following integrated solution implementing a soft dimension reduction: We will
first whiten the data, so we will assume (i) and hard-whitening. However we
do not reduce the data dimension beforehand. Instead we propose to search for
a non-square pseudo-orthogonal matrix (Stiefel matrix) such that it minimizes
the JD cost function. An efficient minimization procedure will be proposed in
the following. Examples to speech and fMRI data confirm the applicability of
the method. In future research a combination of (i) soft-whitening and (ii) soft
dimension reduction may be attractive.

2 Joint Diagonalization on the Stiefel manifold

Let St(p, n) = {Y ∈ Rn×p : Y T Y = I} denote the Stiefel manifold of orthogonal
p-frames in Rn for some p ≤ n. The JD problem on the Stiefel manifold consists
of minimizing the cost function

fdiag : St(p, n) → R : Y 7→ fdiag(Y ) = −
N∑

i=1

‖diag(Y T CiY )‖2F , (1)

where ‖diag(X)‖2F returns the sum of the squared diagonal elements of X. In
the context of ICA, the matrices Ci can for example be cumulant matrices (as
in the JADE algorithm [8]) or time-lagged covariance matrices (as in SOBI [9]).

2.1 Diagonal maximization versus off-diagonal minimization

In the case p = n, minimizing fdiag is equivalent to minimizing the sum of the
squared off-diagonal elements

foff : St(p, n) → R : Y 7→ foff(Y ) =
∑

i

‖off(Y T CiY )‖2F .

Indeed, ‖off(Y T CiY )‖2F = ‖Y T CiY ‖2F −‖diag(Y T CiY )‖2F and ‖Y T CiY ‖2F does
not depend on Y ∈ St(n, n) = O(n). When p < n, we can still observe that if
Y∗ minimizes fdiag, then it minimizes foff over {Y∗Q : Q ∈ O(p)} ⊂ St(p, n);
this follows from the same argument applied to the function Q 7→ fdiag(Y∗Q).
Note that minimizing foff is clearly not sufficient for minimizing fdiag. As an
illustration, consider the case N = 1, i.e., there is only one target matrix, C,
assumed to be symmetric positive definite with distinct eigenvalues. Then the
minimizers of foff are all the matrices Y ∈ St(p, n) such that Y T CY is diagonal
(when p < n, there are infinitely many such Y ), whereas the optimizers of fdiag

are Y∗ =
[
v1 . . . vp

]
π, where v1, . . . , vp are the p dominant eigenvectors of C and

π denotes any signed permutation matrix.



2.2 A trust-region method for minimizing fdiag

Minimizing fdiag is an optimization problem over the Stiefel manifold. Recently,
several methods have been proposed to tackle optimization problems on mani-
folds; see, e.g., [10,11] and references therein. In this paper, we use a trust-region
approach, which combines favorable global and local convergence properties with
a low numerical cost.

In Rn, trust-region methods proceed as follows. At the current iterate xk, a
model mxk

is chosen to approximate a cost function f . The model is “trusted”
within a ball of radius ∆k around xk, termed the trust region. A candidate for
xk+1 is selected as an (approximate) solution of the trust-region subproblem,
namely, the minimization of mxk

under the trust-region constraint. The new
iterate is accepted and the trust-region radius ∆k updated according to the
agreement between the values of f and mxk

at the candidate. We refer to [12]
for more information.

The concept of trust-region was generalized to Riemannian manifolds in [13].
On a manifold M, the trust-region subproblem at xk becomes a subproblem
on the tangent space Txk

M. Since the tangent space is a linear space, the clas-
sical techniques for solving trust-region subproblems apply as well. The corre-
spondence between the tangent spaces and the manifold M is specified by a
mapping R, called retraction, that is left to the user’s discretion but for some
rather lenient requirements. The retraction makes it possible to pull back the
cost function f on M to a cost function f̂xk

= f ◦ Rxk
on Txk

M, where Rxk

denotes the restriction of R to Txk
M.

More specifically, the Riemannian trust-region method proceeds along the
following steps.

1. Consider the local approximation of the pulled back cost function f̂xk

mxk
(ξ) = f(xk) + 〈ξ, gradf(xk)〉+

1
2
〈ξ, Hessf(xk) [ξ]〉 ,

where gradf and Hessf stand for the gradient and the Hessian of f , respec-
tively, and obtain ξk by (approximately) solving

min
ξ∈Txk

M
mxk

(ξ) s.t. ‖ξk‖ ≤ ∆k,

where ∆k denotes the radius.
2. Evaluate the quality of the model mxk

through the quotient

ρk =
f̂xk

(0)− f̂xk
(ξk)

mxk
(0)−mxk

(ξk)
.

If ρk is exceedingly small, then the model is very inaccurate, the trust-region
radius is reduced and xk+1 := xk. If ρk is small but less dramatically so, then
Yk+1 = Rxk

(ξk) but the trust-region radius is reduced. Finally, if ρk is close
to 1, then there is good agreement between the model and the function, and
the trust-region radius can be expanded.



Note that trust-region algorithms (much as steepest-descent, Newton, and
conjugate gradient algorithms) are local methods: they efficiently exploit infor-
mation from the derivatives of the cost function, but they are not guaranteed
to find the global minimizer of the cost function. (This is not dishonorable, as
computing the global minimizer is a very hard problem in general.) Nevertheless,
they can be shown to converge globally (i.e., for every initial point) to station-
ary points of the cost function; moreover, since they are descent methods, they
only converge to minimizers (local or global), except in maliciously-crafted cases.
More details on the Riemannian trust-region method can be found in [11, 13].
We also refer to [14] for recent developments.

2.3 Implementing the Riemannian trust-region method

A generic Matlab code for the Riemannian trust-region method can be obtained
from http://www.scs.fsu.edu/∼cbaker/GenRTR/. The optimization method
utilizes Matlab function handles to access user-provided routines for the objec-
tive function, gradient, Hessian, retraction, etc. This allows the encapsulation of
a problem into a single driver. In the remainder of this section, we describe the
essential elements of the driver that we have created for minimizing fdiag (1).

The driver must contain a routine that returns the inner product of two
vectors of TY St(p, n), so as to specify the Riemannian structure of St(p, n). We
choose 〈ξ1, ξ2〉 = tr(ξT

1 ξ2), which makes St(p, n) a Riemannian submanifold of
Rn×p. The retraction is chosen as

RY : TY St(p, n) → St(p, n) : ξ 7→ RY ξ := qf(Y + ξ)

where qf(Y ) denotes the Q factor of the QR decomposition of Y . We further need
a formula for the gradient of fdiag. We have gradfdiag(Y ) = PY gradf̂diag(Y ),
where gradf̂diag(Y ) = −

∑
i 4CiY ddiag(Y T CiY )is the gradient of

f̂diag : Rn×p → R : Y 7→ f̂diag(Y ) = −
∑

i

‖diag(Y T CiY )‖2F ,

and where PY denotes the orthogonal projection onto TY St(p, n) i.e. PY ξ :=
ξ − Y sym

(
Y T ξ

)
. Finally, the Hessian of fdiag is given by

Hessf(Y ) [ξ] = ∇ξgradf(Y )

where ∇ is the Riemaniann connection on M (see [11, Section 5.3.2]). In our
case we choose ∇ηξ := PY (Dξ(Y )[η]) where Y denotes the foot of η. Therefore,
the Hessian of fdiag is given by

Hessfdiag(Y )[ξ] = PY Dgradf̂diag(Y )[ξ]− ξ sym(Y T gradf̂diag(Y ))

where Dgradfdiag(Y ) is

Dgradfdiag(Y )[ξ] = −
∑

i

4Ci

 ξ ddiag(Y T CiY )
+Y ddiag(ξT CiY )
+Y ddiag(Y T Ciξ)

 .
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(a) source speech data set
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(b) low noise performance
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(c) high noise performance

Fig. 1. Application of the algorithm to speech data:

3 Simulations

We propose two applications of the above ‘JD Stiefel’ algorithm in the following.
As source conditions, we will follow the SOBI algorithm [9] and calculate lagged
auto-covariance matrices.

3.1 Artificial data

In the first example, we apply the JD Stiefel algorithm to the SOBI cost function
in order to separate artificially mixed speech data. n = 5 speech sources with
3500 samples were chosen3. These were embedded using a matrix chosen with
3 Data set ‘acspeech16’ from ICALAB http://www.bsp.brain.riken.jp/ICALAB/

ICALABSignalProc/benchmarks/



independent normal random elements into a m = 10-dimensional mixture space.
White Gaussian noise was added with varying strength.

Algorithmically, the noisy mixture data was first whitened. Then either SOBI
[9] with dimension reduction was applied or the JD Stiefel algorithm. For both
algorithms, N = 20 lagged autocovariance matrices were calculated (with lags
2, 4, 6, ..., 40). We are interested in the performance of the algorithm when recov-
ering parts of the mixing matrix A. We only recover part of the data in order
to simulate the situation of larger dimension than source dimension of interest.
This is realized by extracting only a n′ ≤ n dimensional subspace, either by
PCA and SOBI or by the non-squared JD Stiefel algorithm.

In order to measure deviation from perfect recovery, given a projection matrix
W, we want the resulting matrix WA to have only one large number per row.
This is measured by Amari’s performance index [15] E(WA) generalized to non-
square matrices:

E(C) =
n′∑

i=1

 n∑
j=1

|cij |
maxk |cik|

− 1


In figure 1(b,c), we show the results for a low and a high noise setting with

signal-to-noise ratios of 32.4dB and 4.65dB, respectively. Clearly the JD Stiefel
algorithm is able to take advantage of the full dimensionality of the data when
searching the correct subspace, so it always considerably outperforms the SOBI
algorithm, which only operates on the PCA-dimension-reduced data. Moreover,
we see that even in the case of low signal-to-noise ratio (SNR), the JD Stiefel
algorithm performs satisfactorily well.

3.2 Recording from functional MRI

Functional magnetic-resonance imaging (fMRI) can be used to measure brain
activity. Multiple MRI scans are taken in various functional conditions; the
extracted task-related component reveals information about the task-activated
brain regions. Classical power-based methods fail to blindly recover the task-
related component as it is very small with respect to the total signal, usually
around one percent in terms of variance. Hence we propose to use the autoco-
variance structure (in this case spatial autocovariances) in combination with the
soft dimension reduction to properly identify the task component.

fMRI data with 98 images (TR/TE = 3000/60 msec) were acquired with
five periods of rest and five photic simulation periods with rest. Simulation and
rest periods comprised 10 repetitions each, i.e. 30s. Resolution was 3 × 3 × 4
mm. The slices were oriented parallel to the calcarine fissure. Photic stimulation
was performed using an 8 Hz alternating checkerboard stimulus with a central
fixation point and a dark background with a central fixation point during the
control periods [16]. The first scans were discarded for remaining saturation
effects. Motion artifacts were compensated by automatic image alignment. In
order to speed up computation, we reduce the 98 slices to 10 slices by PCA.

As before, in order to compare the performance of JD Stiefel versus SOBI
after PCA (with N = 100 lagged autocovariance matrices), we analyze how well
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(b) performance comparison

Fig. 2. Application of the algorithm to data acquired from functional MRI: (a) shows
the temporal mean of the 128 × 128 × 98 data set. (b) shows the comparison of JD
Stiefel and PCA+SOBI algorithm when recovering the task-related component.

the task-related component with the known task vector v ∈ {0, 1}98 is contained
in a component by the maximal crosscorrelation of all columns of A with v.

We compare the two algorithms for dimension reductions n′ ∈ {1, . . . , 10}
in figure 2. The key result is that JD Stiefel already detects the main task
component when reducing to only one dimension (crosscorrelation larger than
80%). SOBI is only able to find this when having access to at least 5 dimensions.
Then SOBI outperforms JD Stiefel, which is prone to fall in local minima during
its search. Multiple restarts and more extended searches should resolve this issue,
as the cost functions coincide if n = m. More complex analyses of fMRI data
using dimension reduction can now be approached, as generalization of e.g. [17].

4 Conclusions

Instead of reducing the dimension of the data and searching for independent
components in two distinct steps, we have proposed a two-in-one approach which
consists of optimizing the JD cost function on a Stiefel manifold. Numerical ex-
periments on artificially mixed toy and fMRI data are promising. In analogy to
soft-whitening, where the correlation estimate is weighed equally with respect
to higher-order moments of the data, the proposed method implements a soft
dimension reduction strategy, by using both second- and higher-order informa-
tion of the data. In future work, we propose merging soft-whitening and soft
dimension reduction.
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