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Abstract

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of

corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian ver-

sion of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of

one-dimensional subspaces in the classical case. The new iteration generically converges

locally cubically to the pairs of left-right p-dimensional invariant subspaces of C. More-

over, Grassmannian versions of the Rayleigh quotient iteration are given for the general-

ized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian

eigenproblem.

Keywords. Block Rayleigh quotient iteration, two-sided iteration, Grassmann manifold,

generalized eigenproblem, Hamiltonian eigenproblem.
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1 Introduction

The Rayleigh quotient iteration (RQI) is a classical single-vector iteration for computing

eigenvectors of a Hermitian matrix A = AH ; see, e.g., [Gu00]. It generates a sequence of

vectors {xk}k=0,1,... from a given starting vector x0 by solving the linear systems

(A − ρ(xk)I)xk+1 = skxk, k ≥ 0, (1)
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where ρ(xk) = xH
k Axk/(xH

k xk) is the Rayleigh quotient of A at xk, I denotes the identity

matrix, sk is a scaling factor, and the superscript H stands for the conjugate transpose. The

RQI can be viewed as combination of Lord Rayleigh’s technique for improving an approxi-

mate eigenvector x by solving (A − ρ(x)I)y = e1 (i.e., (1) with fixed right-hand side), and

Wielandt’s inverse iteration with fixed shift; see [Ray77, Wie44], and [Ips97] and references

therein for a historical perspective on inverse iteration. The RQI per se is attributed to Cran-

dall [Cra51], and major contributions to its analysis were made by Ostrowski [Ost59a], Parlett

and Kahan [PK69, Par74, Par80], and Batterson and Smillie [BS89, BS90]. A key element

behind the popularity of the Rayleigh shift in inverse iteration is that, around an eigenvector,

it produces a quadratic approximation of the corresponding eigenvalue; see [Par80, (4.20)].

This property endows the RQI with a cubic rate of convergence to the eigenvectors of A;

see [Par74, Par80] or the sketch of proof in [AMSV02]. Another reason to find the RQI of

particular interest is that it lives in hiding within the Rayleigh-shifted QR algorithm [Wat82].

The purpose of this paper is to propose and analyze a method that combines two existing

generalizations of the RQI: a two-sided version, and a block version.

The underlying idea for the two-sided version is that when the matrix A is nonnormal—

we will call it C to follow Parlett’s convention of letting letters that are symmetric about

a vertical axis stand for Hermitian matrices—, the quadratic approximation property of the

Rayleigh quotient is lost. This drawback was avoided by Ostrowski [Ost59b] (or see [Par74])

by considering the generalized Rayleigh quotient ρ(yL, yR) := yH
L CyR/yH

L yR which displays

the quadratic property in the neighborhood of the pairs of left-right eigenvectors that belong

to a nondefective eigenvalue of C. Using this Rayleigh quotient as a shift, Ostrowski derived

a two-sided iteration that operates on pairs of vectors and aims at converging to pairs of

left-right eigenvectors of C. The rate of convergence is cubic in nondegenerate cases. The

two-sided RQI generalizes the RQI in the sense that, if C is Hermitian and the initial left and

right vectors are chosen identical, then the two-sided RQI reduces to two copies of the RQI.

The other existing generalization of the RQI is the block version proposed by Smit [Smi97]

and rediscovered in [AMSV02] under the name Grassmann-Rayleigh quotient iteration (GRQI).

The choice of the name Grassmann was prompted by the fact that the block RQI induces an

iteration on the set of p dimensional subspaces of R
n, where p is the block size and n is the

order of A; the set of all p-dimensional subspaces of R
n is a Grassmann manifold, whose dif-

ferentiable structure underpins the convergence analysis proposed in [AMSV02]. The GRQI

converges locally cubically to the p-dimensional eigenspaces of the Hermitian matrix A. The

method is similar, but not identical, to several other block methods for eigenspace compu-

tation chiefly stemming from a Newton approach [Ste73, DMW83, Cha84, Dem87, LST98],

as well as to Newton-like iterations for eigenspace refinement derived from a differential-

geometric approach [EAS98, LE02, AMS04] (or see [AMS08] for an overview).

Thus, in the present paper, we merge Ostrowski’s two-sided RQI with the block (or Grass-
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mann) RQI to obtain an two-sided iteration that operates on pairs of p-dimensional sub-

spaces. While the definition of the new iteration, which we dub Two-Sided Grassmann-RQI

(2sGRQI ), is straightforward, its convergence analysis is more challenging. We show that the

iteration converges locally cubically to the pairs of left-right p-dimensional eigenspaces of C.

On the way to the result, we prove several lemmas that may be of interest in their own right.

The choice of the practical implementation of 2sGRQI is also a nontrivial issue, because of

the need to solve Sylvester equations that become increasingly ill-conditioned as the iteration

progresses, in such a way that the column space of the solution is accurate. It should be

emphasized that solving increasingly ill-conditioned systems is inherent to RQI-like methods:

it is indeed this ill-conditioning that confers to the method its superlinear convergence. In the

classical RQI, it has been shown in [PW79] that, barring particular situations with clustered

eigenvalues, the column space (namely, here, the direction) of the solution is only mildly

affected by numerical errors. In the classical two-sided RQI and in the GRQI, numerical

experience points to similar conclusions. In the case of 2sGRQI, we report on numerical

experiments showing that certain ways of solving the Sylvester equations are preferrable to

others. We found that, when the Sylvester equations are solved by diagonalizing the small

matrix, the accuracy is similar with the one obtained with the previously-known versions of

RQI.

We also show that in some structured eigenproblems, namely E-(skew-)Hermitian matrices

with E = ±EH , a relation YL = EYR between left and right subspaces is invariant by the

2sGRQI mapping (Section 5). In particular, this observation yields a modified one-sided

Grassmann-RQI for the Hamiltonian eigenproblem.

2 Preliminaries

This paper uses a few elementary concepts related to the algebraic eigenvalue problem, such

as principal vectors, Jordan blocks and nonlinear elementary divisors. A classical reference

is [Wil65].

The superscript H denotes the conjugate transpose. In accordance with Parlett’s conven-

tions [Par74, Par80], we try to reserve the letter A for Hermitian matrices while C may denote

any matrix. We use Grass(p, n) to denote the Grassmann manifold of the p-dimensional sub-

spaces of C
n, P

n−1 to denote the projective space (i.e., the set of all one-dimensional subspaces

of C
n), and C

n×p
∗ to denote the noncompact Stiefel manifold, i.e., the set of n-by-p matrices

with full rank. The space spanned by the columns of Y ∈ C
n×p
∗ is denoted by ⌊Y ⌋ and called

the span of Y . The norm of a vector x is ‖x‖ =
√

xHx. The spectral norm of a matrix F , de-

noted by ‖F‖, is the largest singular value of F . The Hermitian angle ∠(x, y) in [0, π
2 ] between

two vectors x and y in C
n is given by cos ∠(x, y) = |xHy|

‖x‖‖y‖ ; see, e.g., [Sch01]. The angle be-

tween a vector y ∈ C
n and a subspace X spanned by X ∈ C

n×p
∗ is ∠(X, y) = minx∈X ∠(x, y).
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The angle ∠(X, Y ) between two subspaces spanned by X ∈ C
n×p
∗ and Y ∈ C

n×p
∗ is defined as

the largest principal angle between the two subspaces, given by cos∠(X, Y ) = σmin(X̃
H Ỹ ),

where X̃ and Ỹ are orthonormal bases for ⌊X⌋ and ⌊Y ⌋ respectively, and σmin denotes the

smallest singular value; see, e.g., [Ste01b, §4.2.1]. The angle between subspaces defines a

metric (i.e., a distance function) on the Grassmann manifold [QZL05].

We now briefly recall some basic facts about invariant subspaces.

Definition 2.1 (eigenspaces) Let X be a p-dimensional subspace of C
n and let X =

[

X1 X2

]

be a unitary n × n matrix such that X1 spans X . Partition XHCX in the form XHCX =
[

C11 C12

C21 C22

]

where C11 ∈ C
p×p. The subspace X is an eigenspace (or invariant subspace) of C

if C21 = 0, i.e., CX ⊂ X . By spectrum of X , we mean the set of eigenvalues of C11. The

invariant subspace X is termed simple [SS90, Ste01b], or spectral [GLR86], if C11 and C22

have no eigenvalue in common. We say that X is a nondegenerate invariant subspace of C

if all the eigenvalues of C11 are simple, i.e., distinct. The eigenspaces of CH are called left

eigenspaces of C. We say that (YL,YR) is a pair of simple left-right eigenspaces of C if YL

and YR are simple left and right eigenspaces of C with the same spectrum.

The span of Y ∈ C
n×p
∗ is an eigenspace of C if and only if there exists a matrix M such that

CY = Y M . Every simple eigenspace V is isolated, i.e., there exists a neighborhood of V in

Grass(p, n) that does not contain any eigenspace of C other than V. We will also need the

following result [GV96, §7.6.3], which is a reformulation of [SS90, Th. V.1.5].

Proposition 2.2 If (YL,YR) is a pair of simple left-right eigenspaces of C, then there exists

an invertible matrix S such that the first p columns of S span YR, the first p columns of S−H

span YL, and S−1CS =
[

D1 0
0 D2

]

with D1 ∈ C
p×p.

The Rayleigh quotient iteration (RQI) is a classical method for computing a single eigen-

vector of a Hermitian matrix A. It induces an iteration on the projective space P
n−1 that can

be written as follows.

Algorithm 2.3 (RQI on projective space) Let A = AH be an n × n matrix. Given S0

in the projective space P
n−1, the RQI algorithm produces a sequence of elements of P

n−1 as

follows. For k = 0, 1, 2, . . .,

1. Pick y in C
n \ {0} such that ⌊y⌋ = Sk.

2. Compute the Rayleigh quotient ρk = (yHAy)/(yHy).

3. If A − ρkI is singular, then solve for its kernel and stop. Otherwise, solve the system

(A − ρkI)z = y (2)

for z.

4



4. Sk+1 := ⌊z⌋.

It is shown in [BS89] that around each (isolated) eigenvector of A, there is a ball in which

cubic convergence to the eigenvector is uniform. The size of the ball depends on the spacing

between the eigenvalues. Globally, the RQI converges to an eigenvector for all initial points

outside a certain set of measure zero described in [BS89].

The Grassmann-Rayleigh Quotient Iteration (GRQI) is a generalization of the RQI that

operates on Grass(p, n), the set of all p-dimensional subspaces of C
n [AMSV02].

Algorithm 2.4 (GRQI) Let A = AH be an n × n matrix. Given Y0 ∈ Grass(p, n), the

GRQI algorithm produces a sequence of p-dimensional subspaces of C
n by iterating from Y0

the mapping Grass(p, n) → Grass(p, n) : Y 7→ Y+ defined as follows.

1. Pick Y ∈ C
n×p
∗ such that ⌊Y ⌋ = Y.

2. Solve the Sylvester equation

AZ − Z(Y HY )−1Y HAY = Y (3)

for Z ∈ C
n×p.

3. Define Y+ := ⌊Z⌋.

It is shown in [AMSV02] that the subspace Y+ does not depend on the choice of basis Y for

Y in the first step. This iteration converges cubically to the p-dimensional eigenspaces of A,

which are the only fixed points.

When the matrix A is not normal, the Rayleigh quotient no longer produces a quadratic

approximation of the eigenvalues. Consequently, the convergence rate of the RQI can be

at best quadratic. In order to recover cubic convergence, Ostrowski [Ost59b] proposed a

two-sided version of the RQI, formulated as follows in [Par74].

Algorithm 2.5 (Two-Sided RQI) Let C be an n × n matrix. Pick initial vectors v0 and

u0 satisfying vH
0 u0 6= 0, ‖v0‖ = ‖u0‖ = 1. For k = 0, 1, 2, . . .,

1. Compute ρk = vH
k Cuk/vH

k uk.

2. If C − ρkI is singular solve yH(C − ρkI) = 0 and (C − ρkI)x = 0 for y, x 6= 0 and stop,

otherwise

3. Solve both vH
k+1(C −ρkI) = vH

k νk, (C −ρkI)uk+1 = ukτk, where νk and τk are normalizing

factors.

4. If vH
k+1uk+1 = 0, then stop and admit failure.

The Two-Sided RQI converges with cubic rate to the pairs of left-right eigenvectors of C with

linear elementary divisor [Par74].
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3 Two-Sided GRQI

We propose the following generalization of the Two-Sided RQI, which we call the Two-Sided

Grassmann-Rayleigh Quotient Iteration (2sGRQI).

Algorithm 3.1 (2sGRQI) Let C be an n × n matrix. Given (YL0
,YR0

) ∈ Grass(p, n) ×
Grass(p, n), the 2sGRQI algorithm produces a sequence of pairs of p-dimensional subspaces

of C
n by iterating from (YL0

,YR0
) the mapping (YL,YR) 7→ (YL+,YR+) defined as follows.

1. Pick YL and YR in C
n×p
∗ such that ⌊YL⌋ = YL and ⌊YR⌋ = YR.

2. Solve the Sylvester equations

CZR − ZR (Y H
L YR)−1Y H

L CYR
︸ ︷︷ ︸

RR

= YR (4a)

and

ZH
L C − Y H

L CYR(Y H
L YR)−1

︸ ︷︷ ︸

RL

ZH
L = Y H

L (4b)

for ZL and ZR in C
n×p.

3. Define YL+ := ⌊ZL⌋ and YR+ := ⌊ZR⌋.

In point 1, one has to choose bases for YL and YR. There are infinitely many possibilities.

Indeed, if Y is a basis of Y, then {Y M : M ∈ C
p×p
∗ } is the (infinite) set of all bases of Y.

Therefore, one has to make sure that YL+ and YR+ do not depend on the choice of basis.

By a straightforward adaptation of the development carried out in [AMSV02] for the GRQI

algorithm, if (YL, YR, ZL, ZR) solve (4) then (YLM, YRN, ZLM, ZRN) also solve (4) for all M ,

N in C
p×p
∗ . Hence, the spans of ZL and ZR only depend on YL and YR, and not on the choice

of the bases YL and YR.

In point 2, the matrix Y H
L YR may not be invertible. This corresponds to point 4 in the

Two-Sided RQI (Algorithm 2.5). However, if (YL,YR) is a pair of simple left-right eigenspaces

of C, then Y H
L YR is invertible as a consequence of Proposition 2.2 and, by continuity, invert-

ibility holds on a neighborhood of the pair of eigenspaces.

In point 2, equations (4) are two uncoupled Sylvester equations. Numerical methods for

solving these equations are discussed in Section 6.
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The Sylvester equations (4) may fail to admit one and only one solution. This situation

happens if and only if (YR, YL) belongs to the set

S := {(YL, YR) ∈ C
n×p
∗ × C

n×p
∗ : RR exists and spec(C) ∩ spec(RR) 6= ∅}

=
⋃

λ∈spec(C)

{(YL, YR) ∈ C
n×p
∗ × C

n×p
∗ : RR exists and det(RR − λI) = 0},

where spec(C) denotes the spectrum of C; this follows directly from the characterization of

the eigenvalues of Sylvester operators [Ste73, Th. 4.4]. Since S is the finite union of algebraic

sets, it has measure zero and the interior of its closure is empty. This means that if (ŶL, ŶR)

does not yield a unique solution, then there exists, arbitrarily close to (ŶL, ŶR), a pair (YL, YR)

and a neighborhood of this pair on which the solution (ZL, ZR) of (4) exists and is unique.

Hence, when such a singularity occurs (in Matlab, when the computed solution of the Sylvester

equations contains Inf’s or NaN’s), a simple remedy is to slightly perturb the system. We

have used this remedy in our numerical experiments described in Section 6.

In point 3, if ZL or ZR is not full rank, then (YL+,YR+) does not belong to Grass(p, n)×
Grass(p, n). A tall n× p matrix Z is rank deficient if and only if all its p× p minors are zero.

Therefore, the set

D := {(YL, YR) : rank(ZL) < p or rank(ZR) < p}

is a subset of a finite union of algebraic sets. So here again, ZL and ZR are full rank for a

generic choice of YL, YR.

In practice, only a few iterates will be computed. In finite precision arithmetic, the iterates

no longer improve after a few (typically two or three) iterations because of numerical errors;

see numerical experiments in Section 6. Stopping criteria can rely on the principal angles

between two successive iterates and on the principal angles between YR and AYR or YL and

AHYL.

4 Local convergence

This section is dedicated to showing local cubic convergence of 2sGRQI. The analysis can be

thought of as a two-sided generalization of the proof of cubic convergence of the block RQI

(equivalent to the Grassmann-RQI of [AMSV02]) given in [Smi97]. The development is rather

long, but the rationale is quite simple. It is presented in the next two paragraphs.

Let (VL,VR) be a pair of simple left-right eigenspaces of C, and let VL and VR be cor-

responding eigenbases. We assume that the eigenspaces are nondegenerate, that is, all the

eigenvalues of the matrix (V H
L VR)−1V H

L CVR are simple. The set of matrices with all simple

eigenvalues is open (this follows, e.g., from [SS90, Th.IV.1.1]), therefore, for all YL and YR
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sufficiently close to VL and VR, the block Rayleigh quotients RR and RL have all simple

eigenvalues, and are thus diagonalizable by similarity transformations WR and WL. Equa-

tions (4) can then be solved in a two-step procedure, which relates to the Bartels-Stewart

approach [BS72]: (i) Diagonalize the small block Rayleigh quotients, hence decoupling the

2sGRQI equations (4) and reducing them to classical two-sided RQI equations:

CZ̃R − Z̃Rdiag(ρ1, . . . , ρp) = ỸR (5a)

CHZ̃L − Z̃Ldiag(ρ̄1, . . . , ρ̄p) = ỸL, (5b)

where RR = WR diag(ρ1, . . . , ρp)W−1
R , RL = WL diag(ρ1, . . . , ρp)W−1

L , ỸR = YRWR, ỸL =

YLW−H
L , Z̃R = ZRWR, and Z̃L = ZLW−H

L . Observe that RR and RL have the same spectrum

since they are related by a similarity transformation, and WL can be chosen as (Y H
L YR)WR.

(ii) Solve the decoupled two-sided RQI equations, yielding matrices Z̃L and Z̃R that span

YL+ and YR+.

In view of this two-step procedure for solving the 2sGRQI equations (4), the local conver-

gence analysis of 2sGRQI can be carried out in three steps: (a) Show that the column-wise

angles between ỸR and VR is O(ǫ), where ǫ = ∠(YL, VL) + ∠(YR, VR), and likewise for the

left-side objects. (b) Invoke the cubic local convergence of the classical two-sided RQI to

show that the column-wise angles between Z̃R and VR is O(ǫ3), and likewise for the left-side

objects. (c) Show that ∠(Z̃R, VR) is O(ǫ3), and likewise for ∠(Z̃L, VL).

We find that obtaining an explicit bound, rather than simply an O(ǫ3), is informative. To

reach this goal, we need a succession of technical lemmas that produce explicit bounds for

the three steps.

As in [SS90], we let

sep(L1, L2) = inf
‖P‖=1

‖PL1 − L2P‖.

Observe that sep is unitarily invariant, i.e., for all unitary matrices Q1 and Q2,

sep(QH
1 L1Q1, Q

H
2 L2Q2) = sep(L1, L2).

For any diagonalizable matrix L of order n, we let

κ(L) = inf{cond(S) : S ∈ C
n×n, S−1LS diagonal},

where cond(S) denotes the condition number of S. We refer to [SS90, §IV.3.2] for more

information on the concept of condition number of matrices of eigenvectors. Finally, we let

BXL,XR
:= (XH

L XR)−1XH
L CXR

denote the block two-sided Rayleigh quotient; the matrix C is always clear from the context,
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and the subscripts will sometimes be omitted, too.

The first lemma below is a preparation for the lemma that addresses step (a).

Lemma 4.1 Let VL, VR be orthonormal bases of a pair of left-right simple nondegenerate

eigenspaces of an n × n matrix C, and let λ1, . . . , λp be the eigenvalues of the block two-

sided Rayleigh quotient BVL,VR
. Observe that, if ∠(YL, VL) and ∠(YR, VR) are sufficiently

small, then the eigenvalues of BYL,YR
are sufficiently close to the eigenvalues λ1, . . . , λp, and,

therefore, they can be assigned to them in a unique manner. Then for all θ > 0, there exists

ǫsep > 0 such that, for all indices 1 ≤ i ≤ p and for all n × p orthonormal matrices YR and

YL with ∠(YL, VL) < ǫsep and ∠(YR, VR) < ǫsep, we have

min
i

sep(wH
i,YL,YR

BYL,YR
wi,YL,YT

, (wi,YL,YR
)H
⊥BYL,YR

(wi,YL,YR
)⊥)

≥ (1 − θ)min
i

minj 6=i |λj − λi|
κ((wi,VL,VR

)H
⊥BVL,VR

(wi,VL,VR
)⊥)

> 0,

where wi,YL,YR
is the eigenvector of BYL,YR

associated to its eigenvalue that converges to λi,

(wi,VL,VR
)⊥ denotes an orthonormal basis of the orthogonal complement of wi,YL,YR

in C
p.

Proof. F := (wi,VL,VR
)H
⊥BVL,VR

(wi,VL,VR
)⊥ is diagonalizable to D = diag(λj)j 6=i by a matrix

S. For any scalar µ, we have sep(F, µ) = min‖x‖=1 ‖(F − µI)x‖. We also have ‖(F −
µI)x‖ = ‖S(D − µI)S−1x‖ ≥ σmin(S)‖(D − µI)S−1x‖ ≥ σmin(S)minj 6=i |λj − µ|‖S−1x‖ ≥
σmin(S)
σmax(S) minj 6=i |λj − µ|. For the choice µ = wH

i,VL,VR
BVL,VR

wi,VL,VT
= λi, this shows that

sep(wH
i,VL,VR

BVL,VR
wi,VL,VT

, (wi,VL,VR
)H
⊥BVL,VR

(wi,VL,VR
)⊥)

≥ minj 6=i |λj − λi|
κ((wi,VL,VR

)H
⊥BVL,VR

(wi,VL,VR
)⊥)

.

Observe now that sep(wH
i,YL,YR

BYL,YR
wi,YL,YT

, (wi,YL,YR
)H
⊥BYL,YR

(wi,YL,YR
)⊥) is a continuous

(and even smooth) function of (YL, YR) around (VL, VR). Moreover, since sep is unitarily

invariant, the function only depends on (YL, YR) through (YL,YR), thus it projects to a

function on Grass(p, n) × Grass(p, n) (see, e.g., [AMS08, §3.4.2]). This function is as smooth

as the original function (see, e.g., [AMR88, §3.5.21(i)]); in particular it is continuous. The

result follows, since ∠(YL, VL)+∠(YR, VR) is a measure of distance that induces the manifold

topology on Grass(p, n) × Grass(p, n). �

The next lemma gives a bound for step (a). It can be viewed as an “oblique” generalization

of [Ste01a, Th. 2], showing that the angles between the right Ritz vectors (the columns of

YRWR) and the “corresponding” right eigenvectors of C are of the order of the largest principal

angle between YR and VR, and likewise for the left Ritz vectors and eigenvectors. We give an

explicit asymptotic bound, but we do not attempt to make it tight.

9



Lemma 4.2 Let (VL,VR) be a pair of simple nondegenerate left-right eigenspaces of an n×n

matrix C, let VL, VR be orthogonal bases for VL, VR, and let (λ, x) be an eigenpair of C with

x ∈ VR. Given YL and YR n × p orthonormal with Y H
L YR invertible, let ǫL = ∠(YL, VL) and

ǫR = ∠(YR, VR). Then there exists ǫ0 > 0 such that, whenever ǫL < ǫ0 and ǫR < ǫ0, there

exists an eigenvector wR of the block Rayleigh quotient BYL,YR
such that

sin∠(YRwR, x) ≤
[

1 +
2(cos δ)−1rLαδ(ǫx)

sep(wH
R BwR, wH

R⊥BwR⊥
) − rLγδ(ǫx)

]

(1 + tan δ)ǫx (6)

where ǫx := sin∠(YR, x) is the angle between the direction of x and the span of YR, δ :=

∠(YR, YL) is the largest principal angle between the spans of YR and YL, αδ(ǫx) := 1√
1−ǫ2x−ǫx tan δ

satisfies limǫx→0 αδ(ǫx) = 1, γδ(ǫx) := (cos δ(
√

1 − ǫ2x − ǫx tan δ))−1(1 + tan δ)ǫx satisfies

limǫx→0 γδ(ǫx) = 0, and rL := ‖Y H
L⊥AHYL‖ where YL⊥ ∈ C

n×(n−p) is an orthonormal basis

of the orthogonal complement of the span of YL. In particular, for all θ > 0, by taking ǫ0

sufficiently small, we have that

∠(YRwR, x) ≤ (1 + θ) (1 + tan∠(VL, VR))∠(YR, VR). (7)

Proof. It is readily checked that the statement is not affected by a unitary change of coor-

dinates in C
n. Therefore, without loss of generality, we work in a unitary coordinate system

such that YR =

[

Ip

0(n−p)×p

]

. Let YL⊥ ∈ C
n×(n−p) and YR⊥ ∈ C

n×(n−p) be orthonormal bases

of the orthogonal complements of the spans of YL and YR, respectively. Assume without

loss of generality that the eigenvector x has unit norm. Consider the block decompositions

x =

[

xa

xb

]

and YL =

[

YLa

YLb

]

. Consider also the decomposition x = YRxR + YL⊥xL⊥, which

yields

xR := (Y H
L YR)−1Y H

L x, xL⊥ := (Y H
R⊥YL⊥)−1Y H

R⊥x.

Since ǫx = sin∠(YR, x), we have ‖xa‖2 = 1−ǫ2x and ‖xb‖ = ǫx. We also have (Y H
L YR)−1Y H

L =
[

I T
]

where T = (YLa)
−1YLb. It follows as a direct consequence of [Ste01b, Th. 4.2.4] that

‖T‖ = tan δ. We also obtain

YRxR =

[

I

0

]
[

I T
]

x =

[

xa + Txb

0

]

.

Acceptable choices for YL⊥ and YR⊥ are YL⊥ =

[

−T

In−p

]

(In−p + THT )−1/2 and YR⊥ =

[

0p×(n−p)

In−p

]

. This yields xL⊥ = (In−p + THT )1/2xb and thus ‖xL⊥‖ ≤
√

1 + tan2 δ ǫx.
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Since sin∠(u, v) ≤ sin∠(u, w) + sin∠(w, v) for all u, v, w ∈ C
n
0 , we have

∠(YRwR, x) ≤ ∠(YRwR, YRxR) + ∠(YRxR, x). (8)

Let us first consider the second term in (8). Since

sin ∠(YRxR, x) ≤ ‖YRxR − x‖ ≤ ‖YRxR −
[

xa

0

]

‖ + ‖
[

xa

0

]

− x‖,

it follows that

sin∠(YRxR, x) ≤ ‖Txb‖ + ‖xb‖ ≤ tan δ ǫx + ǫx = (1 + tan δ)ǫx. (9)

Note also for later use that, for all small ǫx such that
√

1 − ǫ2x > ǫx tan δ, we also obtain that

‖xR‖ ≥ |‖xa‖ − ‖Txb‖| ≥
√

1 − ǫ2x − ǫx tan δ.

We now tackle the first term in (8). Since YR is orthonormal, it follows that ∠(YRwR, YRxR) =

∠(wR, xR). Pre-multiplying the equation Cx = λx by (Y H
L YR)−1Y H

L yields

(Y H
L YR)−1Y H

L C(YRxR + YL⊥xL⊥) = xRλ,

which can be rewritten as

(B + E)x̂R = λx̂R,

where x̂R := xR‖xR‖−1 and

E := (Y H
L YR)−1Y H

L AYL⊥xL⊥‖xR‖−1x̂H
R .

Then, by [SS90, Th. V.2.7] and using [Ste01b, Th. 4.2.4], there exists an eigenvector wR of B

such that

sin∠(wR, x̂R) ≤ tan ∠(wR, x̂R) ≤ 2‖E‖
sep

(
wH

R BwR, (wR)H
⊥B(wR)⊥

)
− 2‖E‖

holds under some conditions that, in view of Lemma 4.1, hold whenever ‖E‖, ǫR, and ǫL are

sufficiently small. Choosing ‖E‖ sufficiently small is achieved by taking ǫx sufficiently small,

since

‖E‖ = ‖(Y H
L YR)−1Y H

L CYL⊥xL⊥‖‖xR‖−1 ≤ ‖(Y H
L YR)−1‖‖Y H

L⊥CHYL‖‖xL⊥
‖‖xR‖−1

≤ 1

cos δ
rL(1 + tan δ)ǫx

1
√

1 − ǫ2x − ǫx tan δ
,

where we have used the bound
√

1 + tan2 δ ≤ (1+tan δ) that holds for all δ ∈ [0, π
2 ). Replacing

11



all these results in (8) yields the desired bound.

The bound (7) follows from (6) and from the fact that ∠(YR, VR) ≥ ∠(YR, x) since x ∈ VR.

�

The next lemma is about how well the two-sided Rayleigh quotient approximates the

eigenvalues.

Lemma 4.3 Let C be an n × n matrix, let vL and vR be left and right eigenvectors of C

with eigenvalue λ and vH
L vR 6= 0. Let wL and wR be unit vectors orthogonal to vL and vR

respectively. Then, for all θ > 0 and for all ǫ, η sufficiently small,

∣
∣
∣
∣

(vL + ǫwL)HC(vR + ηwR)

(vL + ǫwL)H(vR + ηwR)
− λ

∣
∣
∣
∣
≤ (1 + θ)ǫη

‖P⊥
vL

(C − λI)P⊥
vR
‖

|vH
L vR|

,

where P⊥
v denotes the orthogonal projector onto the orthogonal complement of v.

Proof. Routine manipulations show that
∣
∣
∣
(vL+ǫwL)HC(vR+ηwR)
(vL+ǫwL)H(vR+ηwR)

− λ
∣
∣
∣ =

∣
∣
∣

ǫηwH
L

(C−λI)wR

vH
L

vR+ǫwH
L

vR+ηvH
L

wR+ǫηwH
L

wR

∣
∣
∣,

and the result directly follows. �

We now obtain a bound for step (b). In view of the preceding lemma, a careful inspection

of the proof of local convergence in [Par74, §11] yields the following local convergence result

for the classical two-sided RQI.

Lemma 4.4 Let C be an n × n matrix, let vL and vR be left and right eigenvectors of C

with eigenvalue λ and vH
L vR 6= 0. Let wL and wR be unit vectors orthogonal to vL and vR

respectively. Then, for all θ > 0 and for all ǫ, η sufficiently small and such that

ρ :=
(vL + ǫwL)HC(vR + ηwR)

(vL + ǫwL)H(vR + ηwR)

is not an eigenvalue of C, if we let (vL + ǫ+wL+)(C −ρI) = (vL + ǫwL)Hν and (C −ρI)(vR +

η+wR+) = (vR + ηwR)τ with wL+ and wR+ unit vectors orthogonal to vL and vR respectively,

then we have

ǫ+ ≤ ǫ2η(1 + θ)
‖P⊥

vL
(C − λI)P⊥

vR
‖‖P⊥

vL
(C − λI)−1P⊥

vR
‖

|vH
L vR|

η+ ≤ η2ǫ(1 + θ)
‖P⊥

vL
(C − λI)P⊥

vR
‖‖P⊥

vL
(C − λI)−1P⊥

vR
‖

|vH
L vR|

.

It remains to address step (c). The final lemma gives a bound for the angle between two

subspaces in terms of the column-wise angles between bases.

Lemma 4.5 Let X be a full-rank n × p matrix. Then for all θ > 0, there exists ǫ > 0 such

12



that, for all Y ∈ C
n×p with ∠(Xei, Y ei) ≤ ǫ, i = 1, . . . , p, one has

∠(X, Y ) ≤ (1 + θ)‖(X̂HX̂)−1/2‖p max
i

∠(Xei, Y ei),

where X̂ei = Xei/‖Xei‖, i = 1, . . . , p.

Proof. Let DX and DY be such that X̂ = XDX and Ŷ = Y DY have unit columns with

(Ŷ ei)
HX̂ei > 0, i = 1, . . . , p, which can be achieved by an appropriate choice of DY , i.e., by

an additional scaling of Ŷ ei by a phase factor exp(iαi). Let E be such that Ŷ = X̂ + E.

Observe that ⌊X̂⌋ = ⌊X⌋ and likewise for Y . We have ‖E‖ ≤ ‖E‖F ≤ ‖Ee1‖+ · · ·+ ‖Eep‖ ≤
∑

i 2 sin(∠(Xei, Y ei)/2) ≤ ∑

i ∠(Xei, Y ei) ≤ p maxi ∠(Xei, Y ei), where ‖E‖F denotes the

Frobenius norm of E. Since by definition cos∠(X, Y ) = σmin(X̃
H Ŷ (Ŷ H Ŷ )−1/2), where X̃ is

any orthonormal basis of ⌊X⌋, it is easily deduced (e.g., from the CS decomposition) that

sin∠(X, Y ) = σmax(X
H
⊥ Ŷ (Ŷ H Ŷ )−1/2), where X⊥ is n×(n−p) orthonormal with XHX⊥ = 0.

We have

sin∠(X, Y ) = σmax(X
H
⊥ E(X̂HX̂ + X̂HE + EHX̂ + EHE)−1/2)

= ‖XH
⊥ E(X̂HX̂ + X̂HE + EHX̂ + EHE)−1/2‖

≤ (1 + θ)‖E‖‖(X̂HX̂)−1/2‖
≤ (1 + θ)p max

i
∠(Xei, Y ei)‖(X̂HX̂)−1/2‖

whenever maxi ∠(Xei, Y ei) is sufficiently small. �

We are now ready to prove the main theorem, showing local cubic convergence of 2sGRQI.

Theorem 4.6 Let (VL,VR) be a pair of p-dimensional simple nondegenerate left-right eigenspaces

of an n × n matrix C (Definition 2.1). Then there is a neighborhood N of (VL,VR) in

Grass(p, n) × Grass(p, n) and a c > 0 such that, for all (YL,YR) ∈ N for which the Sylvester

equations (4) admit one and only one solution, the subspaces YL+ and YR+
produced by the

2sGRQI mapping (Algorithm 3.1) satisfy

∠(YL+
,VL) + ∠(YR+

,VR) ≤ c (∠(YL,VL) + ∠(YR,VR))3 . (10)

Letting VL and VR denote matrices of unit left and right eigenvectors that span VL and VR,

the bound (10) is satisfied with

c = (1 + θ)p(‖(V H
R VR)−1/2‖ + ‖(V H

L VL)−1/2‖)

max
vL=VLei,vR=VRei

‖P⊥
vL

(C − λI)P⊥
vR
‖‖P⊥

vL
(C − λI)−1P⊥

vR
‖

|vH
L vR|

(1 + tan∠(VL, VR))3 ,
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for any θ > 0, by taking N sufficiently small.

Proof. Since the pair of eigenspaces is assumed to be simple, it follows that ∠(VL, VR) < π/2.

Therefore, taking the neighborhood N sufficiently small, one has ∠(YR, YL) ≤ δ′ < π/2. The

result follows from (5) by exploiting Lemmas 4.2, 4.4, and 4.5 successively. �

5 Structured eigenproblems

In this section, we show that the 2sGRQI algorithm induces particular one-sided formulations

for some structured eigenproblems.

5.1 E-Hermitian eigenproblem

Let C be an n × n matrix. If there exists an invertible matrix E such that

EC = CHE, (11)

then we say that C is E-Hermitian. If C is E-Hermitian, then its left and right eigenspaces

are related by the action of E. Indeed, let S be a (complex) matrix of principal vectors of C,

i.e.,

CS = SD

where D is a (complex) Jordan matrix; then, from (11), one obtains CH(ES) = (ES)D.

The case where E is Hermitian or skew-Hermitian, i.e., EH = ±E, is of particular interest

because, as we show in the next proposition, the relation YL = EYR is invariant under

2sGRQI (Algorithm 3.1). Therefore, if YL = EYR, it is not necessary to solve both (4a)

and (4b): just solve (4a) to get YR+, and obtain YL+ as YL+ := EYR+. Moreover, since the

pairs of left-right eigenspaces of C also satisfy VL = EVR, Theorem 4.6 also applies.

Proposition 5.1 Let E be invertible with EH = ±E and let C be E-Hermitian, i.e., EC =

CHE. If YL = EY , YR = Y , and Z satisfies

CZ − Z (Y HEY )−1(Y HECY ) = Y, (12)

then ZL = EZ and ZR = Z satisfy the 2sGRQI equations (4). Hence, if YL = EYR, then

YL+ = EYR+. Moreover, the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ defined by (12) converges locally

cubically to the simple nondegenerate right-eigenspaces of C.

Proof. It is easy to check that replacing YR := Y , ZR := Z, YL := EYR, ZL := EZR in (4a)

and (4b) yields (12) in both cases. In order to prove cubic convergence, it is sufficient to notice

14



that the pairs (VL,VR) of eigenspaces satisfy VL = EVR, as was shown above. Therefore, if

Y is close to VR, then the pair (YL,YR) := (EY,Y) is close to (VL,VR) and local cubic

convergence to VR follows from Theorem 4.6. �

The discussion in Section 6 on solving Sylvester equations applies likewise to (12).

5.1.1 Generalized Hermitian eigenproblem

Using Proposition 5.1, we show that 2sGRQI yields a Grassmannian RQI for the Hermitian

generalized eigenproblem AV ⊂ BV which does not involve an explicit computation of B−1A.

Let A and B be two Hermitian n-by-n matrices with B invertible. Consider the problem of

finding a p-dimensional subspace V such that AV ⊂ BV. Let V ∈ C
n×p be a basis for V, then

AV ⊂ BV if and only if there is a matrix M such that AV = BV M . Equivalently, V spans

a right-eigenspace of B−1A, i.e.,

B−1AV = V M.

The problem is thus to find a right-eigenspace of C := B−1A. The conditions in Proposi-

tion 5.1 are satisfied with E := B. The modified GRQI equation (12) becomes

AZ − BZ (Y HBY )−1(Y HAY ) = BY (13)

and the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ converges locally cubically to the simple nondegenerate

eigenspaces of B−1A.

5.1.2 Skew-Hamiltonian eigenproblem

Let T be a skew-Hamiltonian matrix, i.e., (TJ)H = −TJ , where J =
(

0 I
−I 0

)
, see e.g. [BBMX02].

Equivalently, JT = THJ , i.e., T is J-Hermitian. Conditions in Proposition 5.1 are satisfied

with C := T and E := J . The modified GRQI equation (12) becomes

TZ − Z (Y HJY )−1(Y HJTY ) = Y (14)

and the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ converges locally cubically to the simple nondegenerate

right-eigenspaces of T .

5.2 E-skew-Hermitian eigenproblem

Let E be an invertible n×n matrix and let C be an E-skew-Hermitian n×n matrix, namely

EC = −CHE. (15)
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We saw in the previous section that the corresponding left and right eigenspaces of E-

Hermitian matrices are related by a multiplication by E. The case of E-skew-Hermitian

matrices is slightly different.

Proposition 5.2 Let C be an E-skew-Hermitian matrix. Then the spectrum of C is sym-

metric with respect to the imaginary axis. In other words, if λ is an eigenvalue of C, then

so is −λ. Moreover, if VL and VR are left and right eigenspaces of C whose spectra are the

symmetric image one of the other with respect to the imaginary axis, then VL = EVR.

Proof. Letting S be an invertible matrix of principal vectors of C, i.e.,

CS = SD (16)

where D is a Jordan matrix, (15) yields

CHES = ES(−D). (17)

Hence, the matrix −D is a Jordan matrix of CH . Therefore, if λ is an eigenvalue of C, then

−λ is an eigenvalue of CH , and thus −λ is an eigenvalue of C. Moreover, equations (16)

and (17) show that if V is a right-eigenspace of C with eigenvalues λi1 , . . . , λip , then EV is a

left-eigenspace of C with eigenvalues −λi1 , . . . ,−λip . �

Consequently, letting V be a simple right-eigenspace of C, we have that (EV,V) forms a

pair of simple left-right eigenspaces of C if and only if the spectrum of V is symmetric with

respect to the imaginary axis. We call such an invariant subspace V a full eigenspace of the

E-skew-Hermitian matrix C.

If E is Hermitian or skew-Hermitian, then the relation YL = EYR is invariant by 2sGRQI

(Algorithm 3.1), as we show in the forthcoming proposition. Therefore, if YL = EYR, it

is sufficient to solve (4a) only, and then compute YL+ := EYR+. Moreover, the 2sGRQI

method restricted to the pairs (YL,YR) = (EY,Y) converges locally cubically to the full

nondegenerate eigenspaces of C.

Proposition 5.3 Let E be invertible with EH = ±E and let C be E-skew-Hermitian, i.e.,

EC = −CHE. If YL = EY and YR = Y , then ZL = −EZ and ZR = Z satisfy the 2sGRQI

equations (4) with

CZ − Z (Y HEY )−1(Y HECY ) = Y. (18)

Therefore, if YL = EYR, then YL+ = EYR+.

Moreover, let V be a full nondegenerate right-eigenspace of C (which means that the eigenval-

ues of C|V have the same multiplicity as in C, the spectrum of C|V is symmetric with respect

to the imaginary axis, and C|V has all simple eigenvalues). Then the subspace iteration

⌊Y ⌋ 7→ ⌊Z⌋ defined by (12) converges locally cubically to V.
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Note that this proposition differs from Proposition 5.1 in two points: ZL = −EZ and the

specification that V must be full.

Proof. It is easy to check that replacing YR := Y , ZR := Z, YL := EYR, ZL := −EZR in (4a)

and (4b) yields (18) in both cases. In order to prove cubic convergence, it is sufficient to

notice that the pairs (VL,VR) of full nondegenerate left-right eigenspaces satisfy VL = EVR,

as was shown above. Therefore, if Y is close to VR, then the pair (YL,YR) := (EY,Y) is close

to (VL,VR) and local cubic convergence to V follows from Theorem 4.6. �

5.2.1 Skew-Hermitian eigenproblem

Let Ω be skew-Hermitian. Then we have EC = −CHE with C := Ω and E := I. The

modified GRQI equation (18) becomes

ΩZ − Z (Y HY )−1(Y HΩY ) = Y. (19)

This is simply the classical GRQI equation (3). This is not surprising as skew-Hermitian

matrices are normal matrices.

5.2.2 Hamiltonian eigenproblem

Let H be Hamiltonian, i.e., (HJ)H = HJ , where J =
(

0 I
−I 0

)
. This is equivalent to JH =

−HHJ . Thus we have EC = −CHE with C := H and E := J , and the modified GRQI

equation (18) reads

HZ − Z (Y HJY )−1(Y HJHY ) = Y. (20)

Proposition 5.3 implies that the subspace iteration with iteration mapping ⌊Y ⌋ 7→ ⌊Z⌋ defined

by (20) converges locally cubically to the full nondegenerate right-eigenspaces of H.

5.3 The generalized eigenvalue problem

We briefly discuss the application of the 2sGRQI concept to the generalized eigenvalue prob-

lem. Let A, B ∈ C
n×n. The generalized eigenvalue problem consists in finding the nontrivial

solutions of the equation Ax = λBx. Corresponding to the notion of invariant subspace

for a single matrix, we have the notion of a deflating subspace, see e.g. [Ste73, GV96]. The

p-dimensional subspace X is deflating for the pencil A − λB if there exists a p-dimensional

subspace Y such that

AX , BX ⊂ Y. (21)

Here we suppose that the pencil A − λB is nondegenerate, i.e., det(A − λB) is not trivially

zero. Then there exists α and β such that B̂ := αB − βA is invertible. Now take γ, δ such
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that αδ − γβ 6= 0 and let Â := γB − δA. Then (21) is equivalent to

B̂−1ÂX ⊂ X
B̂X = Y,

i.e., X is an invariant subspace of B̂−1Â. Replacing this expression for C in (4), one obtains

after some manipulations

ÂZRŶ H
L B̂YR − B̂ZRŶ H

L ÂYR = B̂YR (22a)

ÂHẐLY H
R B̂H ŶL − B̂HẐLY H

R ÂH ŶL = B̂H ŶL (22b)

where ŶL := B̂−HYL and ẐL := B̂−HZL. It yields an iteration for which YR and ŶL locally

cubically converge to pairs of left-right deflating subspaces of the pencil A − λB. Note that

if B is invertible then we can choose B̂ := B and Â := A.

6 Numerical experiments

In our numerical tests, 2sGRQI (Algorithm 3.1) has been implemented in Matlab as follows.

The initial spaces YL0
and YR0

are represented by orthonormal bases YL0
and YR0

. Step 1 is

irrelevant. In Step 3, YR+ is represented by an orthonormal basis obtained as the Q factor of

the thin QR decomposition of ZR; likewise for the left-hand objects. Remains Step 2, which

is the topic of the next section.

6.1 Solving the Sylvester equations

The crucial point in the practical implementation is to choose a method for solving the

decoupled Sylvester equations (4) in Step 2. We discuss the case of (4a), namely,

CZR − ZR (Y H
L YR)−1Y H

L CYR
︸ ︷︷ ︸

RR

= YR;

the discussion is easily adapted to the case of (4b). There is a vast literature on the solution

of Sylvester equations; we refer to [BS72, GNV79, GLAM92, Sim96, Bra03] and references

therein. We performed a set of experiments to investigate whether the choice of the Sylvester

solver has an impact on the accuracy with which 2sGRQI is able to compute eigenspaces. We

compared two approaches.

In the first approach, the Sylvester equation (4a) is decoupled into p classical two-sided

RQI equations as explained in (5). This involves a diagonalization of the block Rayleigh

quotient RR, which can always be performed if (YL,YR) are sufficiently close to a pair of
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simple nondegenerate left-right eigenspaces of C.

It should be observed, however, that even though RR is diagonalizable for almost all

(YL,YR), its eigenstructure may be very ill-conditioned, in the sense that the eigensystem

condition number κ(RR) may be very large. A remedy is to reduce RR to a certain triangular

structure (Schur form) by means of unitary transformations and solve the new system of

equations using back substitution, as described in [GLAM92]. This is the second approach.

It is known [BS89] that the basins of attraction of RQI (Algorithm 2.3) may collapse

around attractors when the eigenvalues of A are not well separated. This property also

holds for GRQI [ASVM04] and obviously extends to 2sGRQI (Algorithm 3.1). Moreover, in

2sGRQI the matrix C is not necessarily Hermitian; its eigenspaces can thus be arbitrarily

close to each other. In this set of experiments, in order to ensure a reasonably large basin

of attraction around the left-right eigenspaces, we ruled out clustered eigenvalues and ill-

separated eigenvectors by choosing C as follows: C = SDS−1, where D is a diagonal matrix

whose diagonal elements are random permutations of 1, . . . , n and

S = I + α
‖E‖2

E, (23)

where the elements of E are observations of independent random variables with standard

normal distribution and α is chosen from the uniform distribution on the interval (0, 0.1). The

initial matrices YL0
and YR0

are randomly chosen such that ∠(YR0
, VR) < 0.1 and ∠(YL0

, VL) <

0.1, where VR denotes the p first columns of S, VL denotes the first p columns of S−H , and

where ∠ still denotes the largest principal angle.

Algorithm 3.1 was run 106 times with n = 4, p = 2. We chose these very low dimen-

sions because we found that they reveal the same kind of behavior as the higher-dimensinal

cases, while making it possible to run many experiments and to investigate more easily the

pathological runs. The matrices C, YL0
, and YR0

were randomly chosen in each experiment as

explained above. Experiments were run using Matlab 7.2 with floating point relative accuracy

approximately equal to 2 · 10−16. Results are summarized in Tables 1 (diagonal form) and 2

(Schur form), where the error e is defined as

e := ∠(YR, VR) + ∠(YL, VL). (24)

These results show that convergence to the target eigenspace occurred in each of the 106

runs. The evolution of the error is compatible with cubic order of convergence.

We also observe that the worst error observed over the 106 runs is slightly favorable to the

diagonal version. We tried to understand the reason by investigating a case where the Schur

version performs much more poorly than the diagonal version. For a certain C = SDS−1,
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Iterate number mean(log10(e)) max(log10(e))

0 -1.43 -1.00
1 -4.70 -2.81
2 -13.93 -7.48
3 -17.17 -12.70
4 -17.17 -11.96
5 -17.17 -12.82

Table 1: Numerical experiments for Algorithm 3.1 with diagonal form.

Iterate number mean(log10(e)) max(log10(e))

0 -1.43 -1.00
1 -4.70 -2.81
2 -13.92 -6.95
3 -17.17 -10.98
4 -17.17 -10.39
5 -17.16 -11.20

Table 2: Numerical experiments for Algorithm 3.1 with Schur form.

XL, XR, we obtained

S−1Z̃R(diag) =









8.1250e − 01 −1.8226e + 15

5.5567e + 18 1.0681e − 03

−9.5000e + 00 −5.2490e − 03

0 7.8125e − 03









, S−1Z̃R(Schur) =









8.1250e − 01 −9.1049e + 13

5.5567e + 18 −1.2981e + 17

−9.5000e + 00 −8.0141e + 01

0 −6.9000e + 01









.

We have ∠(Z̃R(diag), VR) = 5.8849e − 16 and ∠(Z̃R(Schur), VR) = 1.2525e − 12. The matrix

Z̃R(Schur) is a source of worry because the angle between its columns is very small (of the

order of the machine precision), and hence the subspace that it spans is very ill-conditioned.

6.2 Clustered eigenvalues

We now report on experiments where the matrices C are chosen as in Section 6.1, except

that the matrix D of eigenvalues is chosen as diag(
[

1 1 + 10−3 2 3
]

), i.e., with a small

internal gap. Convergence is declared when the error (24) is below 10−12 at the 10th iterate.

For 2sGRQI (in diagonal form), convergence was declared 100% of the time over the 104 runs

that we have performed.

We compared with a simple “independent 2sRQI” method that works as follows: first

compute the Ritz vectors, then run a certain number of steps of the classical two-sided RQI

starting from these p vectors, and without any coupling. This contrasts with 2sGRQI, where
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the Ritz vectors are extracted after each step. For the “independent 2sRQI” method, con-

vergence was declared 74% of the time. This shows that 2sGRQI improves on independent

2sRQI in case of clustered eigenvalues.

6.3 Ill-conditioned eigenspaces

In these experiments, the matrices C are chosen as in Section 6.1, except that the matrix

S of eigenvectors is chosen as in (23) with I replaced by
[

e1 e1 e3 e4

]

. Convergence is

declared when the error (24) is below 10−12 at the 10th iterate. For 2sGRQI (in diagonal

form), convergence was declared 83% of the time. With the “independent 2sRQI” method,

convergence was declared 78% of the time. In this case, 2sGRQI does not improve much on

independent 2sRQI.

6.4 Hamiltonian eigenproblem

In another set of experiments, real Hamiltonian matrices C were selected randomly as

C =

[

F G̃ + G̃H

H̃ + H̃H −FH

]

where F , G̃ and H̃ are matrices of dimension n
2 × n

2 whose elements are independent obser-

vations of the standard normally distributed random variable. A new matrix C was selected

for each experiment. For testing purposes, an eigenvalue decomposition C = SDS−1 was

computed using the Matlab eig function, and the full left and right real eigenspaces corre-

sponding to the eigenvalues with largest real part in magnitude were chosen as the target

left and right eigenspaces. (The notion of full eigenspace is defined in Section 5.2. The

real eigenspace associated to a pair (λ, λ) of complex conjugate eigenvalues with eigenvectors

vr + ivi and vr − ivi is the span of vr and vi.) The eigenvalue decomposition was ordered

in such a way that ⌊VL⌋ is the target left-eigspace and ⌊VR⌋ is the target right-eigenspace,

where VR denotes the first p columns of S and VL the first p columns of S−H . Note that

we have p = 2 when the target eigenvalues are real (λ and −λ), or p = 4 when the target

eigenvalues have a nonzero imaginary part (λ, λ, −λ, and −λ). The initial matrix YR0
was

randomly chosen such that ∠(YR0
, VR) < 0.1, and YL0

was chosen as JYR0
in accordance with

the material of Section 5.2. Convergence to the target left and right eigenspaces was declared

when the error e as defined above was smaller than 10−12 at the 10th iterate. Algorithm 3.1

was run 106 times with n = 20 with the matrices C, YL0
and YR0

randomly chosen in each

experiment as described above. Note that, in accordance with the material in Section 5.2,

only ZR was computed at each iteration; ZL was chosen as JZR. We observed that conver-

gence to the target eigenspaces was declared for 99.95% of the 106 experiments. Next, the
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experiment was run 106 times with the distance bound on the initial condition set to 0.001

instead of 0.1. Convergence to the target eigenspaces was declared for all but seven of the 106

randomly generated experiments. This confirms the potential of Algorithm 3.1 for refining

initial estimates of full eigenspaces of Hamiltonian matrices.

7 Conclusion

We have shown that Ostrowski’s two-sided iteration generalizes to an iteration on Grass(p, n)×
Grass(p, n) that converges locally cubically to the pairs of simple nondegenerate left-right

eigenspaces of arbitrary square matrices. The cubic order of convergence has been corrobor-

rated by numerical experiments. The behavior of the 2sGRQI algorithm in case of ill-separated

eigenvectors or eigenvalues would deserve further investigation, akin to the one performed for

the Hermitian case in [ASVM04], where improvements of GRQI and of the Riemannian New-

ton algorithm were also proposed.
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