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CONVERGENCE OF THE ITERATES OF DESCENT METHODS
FOR ANALYTIC COST FUNCTIONS∗
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Abstract. In the early eighties �Lojasiewicz [in Seminari di Geometria 1982-1983, Università
di Bologna, Istituto di Geometria, Dipartimento di Matematica, 1984, pp. 115–117] proved that a
bounded solution of a gradient flow for an analytic cost function converges to a well-defined limit
point. In this paper, we show that the iterates of numerical descent algorithms, for an analytic cost
function, share this convergence property if they satisfy certain natural descent conditions. The
results obtained are applicable to a broad class of optimization schemes and strengthen classical
“weak convergence” results for descent methods to “strong limit-point convergence” for a large class
of cost functions of practical interest. The result does not require that the cost has isolated critical
points and requires no assumptions on the convexity of the cost nor any nondegeneracy conditions
on the Hessian of the cost at critical points.
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1. Introduction. Unconstrained numerical optimization schemes can be classi-
fied into two principal categories: line-search descent methods and trust-region meth-
ods. Seminal work by Goldstein [16] and Wolfe [36] on line-search descent methods
introduced easily verifiable bounds on step-size selection that led to weak convergence
results (lim ‖∇φ(xk)‖ = 0) for a wide class of inexact line-search descent algorithms;
see, e.g., [15, Theorem 2.5.1] or [30, Theorem 3.2]. For trust-region methods, classical
convergence results guarantee weak convergence (lim ‖∇φ(xk)‖ = 0) if the total model
decrease is at least a fraction of that obtained at the Cauchy point; see, e.g., [30, The-
orem 4.8] or [7, Theorem 6.4.6]. Thus, classical convergence results establish that
accumulation points of the sequence of iterates are stationary points of the cost func-
tion φ. Convergence of the whole sequence to a single limit point is not guaranteed.
Curry [8, p. 261] first gave the following intuitive counterexample to the existence of
such a result for steepest descent methods with line minimization.

Let G(x, y) = 0 on the unit circle and G(x, y) > 0 elsewhere. Outside
the unit circle let the surface have a spiral gully making infinitely
many turns about the circle. The path1 C will evidently follow the
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gully and have all points of the circle as limit points.2

It is possible to prove single limit-point convergence for descent algorithms by
exploiting additional properties of the cost that ensure critical points are isolated
or impose nondegeneracy conditions on the Hessian of the cost on critical sets [17].
Strong convexity of the cost function guarantees that the global minimum is a unique
isolated critical point of the cost function and single limit-point convergence is recov-
ered; see, e.g., Byrd and Nocedal [4] for the BFGS algorithm and Kiwiel and Murty
[18] for the steepest descent method. Convergence results obtained by Dunn [12, The-
orem 4.3] require a uniform growth condition of φ and uniqueness of the minimizer
within a certain subset. For a class of approximate trust-region methods, Moré and
Sorensen [29, Theorem 4.13] show that if the Hessian of φ is nonsingular at an accu-
mulation point x∗, then the whole sequence converges to x∗. Conn et al. [6] (or see [7,
Theorem 6.5.2]) show that the same result holds for a class of trust-region methods
that ensure a fraction of Cauchy decrease. The capture theorem [1], for a class of
line-search methods, shows convergence to a single local minimum x∗, provided x∗ is
an isolated stationary point of φ and the iteration comes sufficiently close to x∗; see
also [13].

In this paper, we consider the question of convergence given certain regularity
conditions on the cost function considered. The motivation for our study is a result
in dynamical systems theory that has only recently become widely recognized. For
a generic smooth cost function, the ω-limit set [35, p. 42] of a bounded gradient
flow is a connected subset of critical points, and not necessarily a single point [17,
Prop. C.12.1]. If the cost function is real analytic,3 then �Lojasiewicz’s theorem [25]
states that the associated gradient flow converges to a single limit point; see section 2
or the introduction of [20] for an overview of �Lojasiewicz’s argument. A comprehensive
treatment of the continuous-time convergence results with applications in optimization
theory is contained in the Diploma thesis [22]. The key to the proof lies in showing
that the total length of the solution trajectory to the gradient flow is bounded. The
proof utilizes the �Lojasiewicz gradient inequality (see Lemma 2.1) which gives a lower
bound for the norm of the gradient of φ in terms of φ itself. Due to the importance
of this result in the motivation of our work, we provide a review of this result in the
early part of the paper, and go on to present an explicit counterexample that shows
that single limit-point convergence cannot be proved in general for C∞ cost functions.

The main contribution of the paper is to adapt these results to iterates of nu-
merical descent algorithms. We define a pair of descent conditions termed the strong
descent conditions that characterize the key properties of a sequence of iterates that
leads to single limit-point convergence. These conditions are deliberately chosen to be
as weak as possible in order to apply to the widest possible class of numerical descent
algorithms. For line-search methods, it is sufficient to impose an angle condition and
the first Wolfe condition (also known as Armijo’s condition). For trust-region meth-
ods, we give several easily verified conditions involving the Cauchy point that guaran-
tee that the strong descent conditions hold. The main theorem uses these conditions
to prove that the whole sequence of iterates {xk} of a numerical descent algorithm,
applied to an analytic cost function, either escapes to infinity (i.e., ‖xk‖ → +∞) or
converges to a single limit point. An interesting aspect of the development is that

2A point x is a limit point or accumulation point of a sequence {xk}k∈N if there exists a subse-
quence {xki

}i∈N that converges to x.
3A real function is said to be analytic if it possesses derivatives of all orders and agrees with its

Taylor series in the neighborhood of every point.
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the strong descent conditions themselves do not guarantee convergence to a critical
point of the cost, ‖∇φ(xk)‖ �→ 0. However, combining single limit-point convergence
with classical weak convergence results leads to convergence to a single critical point
for a wide range of classical numerical descent algorithms applied to analytic cost
functions.

Apart from ensuring continuity of φ, the only purpose of the analyticity assump-
tion is to guarantee that the �Lojasiewicz gradient inequality holds in a neighborhood
of every point. Therefore, the domain of application of our results goes beyond the
(already large) class of analytic functions to functions that satisfy a simple growth
condition (see (2.7)). If moreover it is known that a point x∗ is an accumulation
point, then in order to have convergence of the whole sequence to x∗ it is sufficient to
require that this growth condition holds in a neighborhood of x∗.

A preliminary version of the results presented in this paper appeared in the pro-
ceedings of the 13th MTNS conference [28]. Generalizations to Riemannian manifolds
have been considered in [22].

The paper is organized as follows. The continuous-time case is reviewed in sec-
tion 2 and the Mexican hat example is presented. The general convergence theory for
descent iterations is developed in section 3 and applied to line-search and trust-region
methods in section 4. Conclusions are presented in section 5.

2. Convergence of analytic gradient descent flows. In this section, we
briefly review �Lojasiewicz’s argument for the convergence of analytic gradient flows
and give an explicit counterexample to show that single limit-point convergence does
not hold for certain C∞ gradient flows. In the past five years, many authors have
revisited the original gradient flow convergence results of �Lojasiewicz [25]. Our pre-
sentation follows the generalization proposed by Lageman [22], where the steepest
descent direction was relaxed to an angle condition. The proof is included to provide
motivation for the discrete-time analysis in section 3. A concise presentation of the
standard argument for �Lojasiewicz’s theorem is contained in [20].

Let R
n be the linear space of column vectors with n components, endowed with

the usual inner product 〈x, y〉 = xT y. Let ∇φ(x) := (∂1φ(x), . . . , ∂nφ(x))T denote
the Euclidean gradient of the differentiable function φ. A point x∗ where ∇φ(x∗) = 0
is called a stationary point or critical point of φ.

The proof of �Lojasiewicz’s theorem is based on the following property of real
analytic functions.

Lemma 2.1 (�Lojasiewicz gradient inequality). 4 Let φ be a real analytic function
on a neighborhood of x∗ in R

n. Then there are constants c > 0 and μ ∈ [0, 1) such
that

‖∇φ(x)‖ ≥ c|φ(x) − φ(x∗)|μ(2.1)

in some neighborhood U of x∗.
Proof. See [24, p. 92], [2, Prop. 6.8], or the short proof in [21].
Theorem 2.2. Let φ be a real analytic function and let x(t) be a C1 curve in

R
n, with ẋ(t) = dx

dt (t) denoting its time derivative. Assume that there exist a δ > 0

4The �Lojasiewicz gradient inequality is a special instance of a more general �Lojasiewicz inequal-
ity [23, 26]. The latter result has been used in the study of error bounds of analytic inequality systems
in optimization [27, 9]. In turn, such error bounds have been used in the convergence analysis of
optimization algorithms in the same general spirit as in the present paper; see, e.g., [14, 37]. We
thank an anonymous reviewer for pointing this out.
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and a real τ such that for t > τ , x(t) satisfies the angle condition

dφ(x(t))

dt
≡ 〈∇φ(x(t)), ẋ(t)〉 ≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖(2.2)

and a weak decrease condition[
d

dt
φ(x(t)) = 0

]
⇒ [ẋ(t) = 0].(2.3)

Then, either limt→+∞ ‖x(t)‖ = ∞ or there exists x∗ ∈ R
n such that limt→+∞ = x∗.

Proof. Assume that ‖x(t)‖ � +∞ as t → +∞. Then x(t) has an accumulation
point x∗ in R

n. It remains to show that limt→+∞ x(t) = x∗ and the proof will be
complete.

It follows from (2.2) that φ(x(t)) is nonincreasing. Moreover, since x∗ is an
accumulation point of x(t), it follows by continuity of φ that

φ(x(t)) ↓ φ(x∗).

We distinguish two cases.
Case (i). There exists a t1 > τ such that φ(x(t1)) = φ(x∗). Since φ(x(t)) is

nonincreasing then it is straightforward to see that φ(x(t)) = φ(x∗) and d
dtφ(x(t)) = 0

for all t ≥ t1. From the weak decrease condition (2.3) this implies that ẋ(t) = 0 for
all t ≥ t1 and x(t) = x(t1) = x∗.

Case (ii). φ(x(t)) > φ(x∗) for all t > τ . In order to simplify the forthcoming
equations we assume without loss of generality that φ(x∗) = 0. It follows from the
�Lojasiewicz gradient inequality (Lemma 2.1) and from (2.2) that

dφ(x(t))

dt
≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ ≤ −δc|φ(x(t))|μ‖ẋ(t)‖(2.4)

holds in a neighborhood U of x∗ for some μ ∈ [0, 1). Since we have assumed that
φ(x(t)) > φ(x∗) = 0, it follows from (2.4) that

c1
d(φ(x(t)))1−μ

dt
≤ −‖ẋ(t)‖,(2.5)

where c1 := [δc(1 − μ)]−1 > 0. Given t1 and t2 with τ < t1 < t2, if x(t) ∈ U for all
t ∈ (t1, t2), then by integration of (2.5)

L12 :=

∫ t2

t1

‖ẋ(t)‖dt ≤ c1((φ(x(t1)))
1−μ − (φ(x(t2)))

1−μ) ≤ c1(φ(x(t1)))
1−μ.(2.6)

Now let r be such that Br(x
∗) ⊂ U , where

Br(x
∗) := {x ∈ R

n : ‖x− x∗‖ < r}.

We show that x(t) eventually enters and remains in Br(x
∗). Since r is arbitrarily

small, it follows that x(t) converges to x∗ and the theorem will be proven.
Let t1 be such that ‖x(t1)− x∗‖ < r/2 and c1φ

1−μ(x(t1)) < r/2. Such a t1 exists
by continuity of φ since x∗ is an accumulation point of x(t) and φ(x∗) = 0. Then we
show that the entire trajectory after t1 lies in Br(x

∗). By contradiction, suppose not,
and let t2 be the smallest t > t1 such that ‖x(t2) − x∗‖ = r. Then x(t) lies in U for
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Fig. 2.1. A plot of the smooth “Mexican hat” function defined in (2.8).

all t ∈ (t1, t2). Therefore (2.6) holds and it follows that L12 ≤ c1(φ(x(t1)))
1−μ < r/2.

Then ‖x(t2) − x∗‖ ≤ ‖x(t2) − x(t1)‖ + ‖x(t1) − x∗‖ < L12 + r/2 < r, which is a
contradiction. Thus x(t) remains in Br(x

∗) for all t ∈ [t1,+∞), and the proof is
complete.

The role of the weak decrease condition (2.3) is to prevent the trajectory x(t)
from wandering endlessly in the critical set ∇φ = 0. It is possible to weaken this
condition somewhat to allow the trajectory to spend finite periods of time wandering
in this set as long as it eventually either converges or continues to decrease the cost
(see [22]).

Considering Theorem 2.2, a natural question to ask is if it is possible to relax
the condition of analyticity on the cost function and retain the convergence results.
Clearly, analyticity is principally used to invoke the �Lojasiewicz gradient inequality.
The rationale goes through if φ is continuous at an accumulation point x∗ of x(t) and
a growth condition of the type

‖∇φ(x∗)‖ ≥ ψ(φ(x(t)) − φ(x∗))(2.7)

holds in a neigborhood of x∗, where 1/ψ is positive and integrable on an interval (0, ε).
In practice, such a growth condition may be difficult to check. This is especially true
when no accumulation point is known a priori so that the condition must be verified
on a set.

Theorem 2.2 does not hold for the general class of smooth cost functions φ ∈ C∞.
It is instructive to provide an explicit counterexample. The following function f ∈ C∞

(cf. Figure 2.1) is a smooth example of a “Mexican hat” cost function. Let

f(r, θ) :=

{
e
− 1

1−r2

[
1 − 4r4

4r4+(1−r2)4 sin
(
θ − 1

1−r2

)]
if r < 1,

0 if r ≥ 1,
(2.8)

where (r, θ) denote polar coordinates in R
2.
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Since 0 ≤ 4r4

4r4+(1−r2)4 < 1 for all r < 1, it follows that f(r, θ) > 0 for all r < 1.

The exponential factor in f ensures that all derivatives at r = 1 are well defined (and
equal to zero) and it follows that f ∈ C∞. The example has been constructed such
that, for initial conditions (r0, θ0) with θ0(1 − r2

0) = 1 and 0 < r0 < 1, the solution
(r(t), θ(t)) of the gradient descent flow (expressed in polar coordinates) satisfies

θ(t) =
1

1 − r(t)2
.(2.9)

By inspection, the ω-limit set of the trajectory (2.9) considered is the entire circle
{(r, θ) r = 1}.

The origin of the colloquial name “Mexican hat” function for a counterexample
of this form is not clear. Certainly, the structure of the counterexample was known
by the time of Curry [8]. Prior examples of Mexican hats were proposed in [38]
(mentioned in [1, Exercise 2.18]) and [31, Example 3, p. 13]. The merit of the cost
function (2.8) is to provide a closed-form trajectory (2.9) and render the convergence
analysis trivial.

3. Convergence of analytic descent iterations. In this section, a discrete-
time analogue of Theorem 2.2 (�Lojasiewicz’s theorem with an angle condition) is
obtained. We propose a pair of “strong descent conditions” that encapsulate the key
properties of the iterates of a numerical descent algorithm that lead to single limit-
point convergence for an analytic cost function. In later sections we show that the
strong descent conditions are satisfied naturally by most numerical descent algorithm
iterates.

3.1. Main result. In the discrete-time case, a solution trajectory is a sequence
{xk} instead of a curve x(t). The key to extending the results of section 2 to this
case is to adapt the conditions (2.2) and (2.3) to the discrete-time case. For (2.2) we
propose a primary descent condition:

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖(3.1)

for all k and for some σ > 0. Condition (3.1) is satisfied under Armijo’s condition (4.4)
along with an angle condition (4.2). This fact will be exploited in section 4.1 in the
context of line-search methods. Moreover (3.1) is sufficiently general to accomodate
the framework of trust-region methods; see section 4.2.

Condition (3.1) itself does not preclude {xk} from endlessly wandering in a critical
set of φ. To overcome this, we introduce a complementary descent condition:

[φ(xk+1) = φ(xk)] ⇒ [xk+1 = xk] .(3.2)

This condition simply requires that any nonvanishing update, xk+1 �= xk, produce
a change in the cost function. Condition (3.2) adds information to (3.1) only when
xk is a critical point (i.e., ∇φ(xk) = 0). Note that conditions (3.1) and (3.2) allow
the sequence {xk} to stagnate for arbitrarily many iterations, a behavior observed,
e.g., in trust-region methods when the model estimate turns out to be so poor that
the proposed update is rejected (see section 4.2). Together, we term conditions (3.1)
and (3.2) the strong descent conditions.

Definition 3.1 (strong descent conditions). We say that a sequence {xk} in R
n

satisfies the strong descent conditions if (3.1) and (3.2) hold for some σ > 0 and for
all k larger than some K.
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The main result (Theorem 3.2 below) shows that if the iterates {xk} of a nu-
merical descent algorithm satisfy the strong descent conditions (Definition 3.1) and
the cost function φ is analytic, then {xk} converges to a single point or diverges to
infinity. Note that we do not claim that the limit point is a stationary point of φ;
indeed, the assumptions are not strong enough (in particular, they do not preclude
stagnation). For classical descent algorithms, convergence to a stationary point can
be obtained by invoking classical weak convergence results (∇φ → 0) in combination
with Theorem 3.2.

Theorem 3.2 (main result). Let φ : R
n �→ R be an analytic cost function. Let

the sequence {xk}k=1,2,... satisfy the strong descent conditions (Definition 3.1). Then,
either limk→∞ ‖xk‖ = +∞, or there exists a single point x∗ ∈ R

n such that

lim
k→∞

xk = x∗.

Proof. Without loss of generality, discard all iterates up to the K iterate and
relabel the sequence, such that (3.1) and (3.2) hold explicitly on the new sequence.
Assume moreover that ‖xk‖ � ∞; i.e., {xk} has at least one accumulation point x∗

in R
n. It is sufficient to show that limk→+∞ xk = x∗ to complete the proof.
For simplicity, we assume without loss of generality that φ(x∗) = 0. If the se-

quence {xk} is eventually constant (i.e., there exists a K such that xk = xK for all
k > K), then the result follows directly. For the remaining case we remove from the
sequence all the xk’s such that xk+1 = xk and we renumber the sequence accordingly.
It follows that the new sequence is infinite, never stagnates, and admits the same limit
set as the original sequence. By continuity of φ, since x∗ is an accumulation point of
{xk} and φ(xk) is strictly decreasing as a consequence of (3.2), it follows that

φ(x0) > φ(x1) > · · · > 0.(3.3)

(Note that this is the only place in this proof where (3.2) is utilized.)
It then follows from the �Lojasiewicz gradient inequality (Lemma 2.1) and the

primary descent condition (3.1) that, in some neighborhood U of x∗,

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖ ≥ σc|φ(xk)|μ‖xk+1 − xk‖.

That is, since we have shown that φ(xk) > 0 for all k,

‖xk+1 − xk‖ ≤ φ(xk) − φ(xk+1)

σc (φ(xk))μ
,(3.4)

provided xk belongs to U .
Since μ ∈ [0, 1), it follows from (3.3) that 1

(φ(xk))μ ≤ 1
φμ for all φ in the interval

[φ(xk+1), φ(xk)], and therefore

φ(xk) − φ(xk+1)

(φ(xk))μ
=

∫ φ(xk)

φ(xk+1)

1

(φ(xk))μ
dφ ≤

∫ φ(xk)

φ(xk+1)

1

φμ
dφ(3.5)

=
1

1 − μ

(
(φ(xk))

1−μ − (φ(xk+1))
1−μ

)
.

Substituting (3.5) into (3.4) yields

‖xk+1 − xk‖ ≤ 1

σc(1 − μ)

(
(φ(xk))

1−μ − (φ(xk+1))
1−μ

)
.(3.6)
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This bound plays a role similar to the bound (2.5) on the exact derivative obtained
in the continuous-time case.

Given k2 > k1 such that the iterates xk1
up to xk2−1 belong to U , we have

k2−1∑
k=k1

‖xk+1 − xk‖ ≤ c1
(
(φ(xk1))

1−μ − (φ(xk2))
1−μ

)
≤ c1(φ(xk1))

1−μ,(3.7)

where c1 = [σc(1 − μ)]−1. This bound plays the same role as (2.6).

Now the conclusion comes much as in the proof of Theorem 2.2. Let r > 0 be
such that Br(x

∗) ⊂ U , where

Br(x
∗) = {x ∈ R

n : ‖x− x∗‖ < r}

is the open ball of radius r centered at x∗. Let k1 be such that ‖xk1 − x∗‖ < r/2 and
c1(φ(xk1

))1−μ < r/2. Such a k1 exists since x∗ is an accumulation point and φ(x∗) = 0.
Then we show that xk2 ∈ Br(x

∗) for all k2 > k1. By contradiction, suppose not, and
let K be the smallest k > k1 such that ‖xK − x∗‖ ≥ r. Then xk remains in U for

k1 ≤ k < K, so it follows from (3.7) that
∑K−1

k=k1
‖xk+1 − xk‖ ≤ c1(φ(xk1

))1−μ < r/2.

It then follows that ‖xK − x∗‖ ≤ ‖xK − xk1
‖ + ‖xk1 − x∗‖ ≤

∑K−1
k=k1

‖xk+1 − xk‖ +
‖xk1

− x∗‖ < r
2 + r

2 ≤ r. But we have supposed that ‖xK − x∗‖ ≥ r, which is a
contradiction.

We have thus shown that, given r sufficiently small, there exists k1 such that
‖xk2 − x∗‖ < r for all k2 > k1. Since r > 0 is arbitrary (subject to Br(x

∗) ⊂ U),
this means that the whole sequence {xk} converges to x∗, and the proof is com-
plete. (The same conclusion follows by noting that the “length”

∑+∞
k=1 ‖xk+1 −xk‖ is

finite.)

3.2. Discussion. We now comment on Theorem 3.2 and propose a few variations
and extensions to this result.

3.2.1. C∞ is not sufficient to guarantee single limit-point convergence.
Similar to the continuous-time case, it is natural to wonder whether the analyticity
assumption on φ can be relaxed to indefinite differentiability (φ ∈ C∞). The answer
is again negative: as we now show, there exist a sequence {xk} in R

n and a function
φ in C∞ such that {xk} satisfies the strong descent conditions (Definition 3.1) and
nevertheless the limit set of {xk} contains more than one point of R

n.

Consider the Mexican hat function (2.8) and let xk = (rk cos θk, rk sin θk)
T with

θk = kω and rk =
√

(θk − 1)/θk, so that xk belongs to the trajectory given by (2.9).
Choose ω > 0 such that ω/π is an irrational number. Then the limit set of {xk} is
the unit circle in R

2. However, f is C∞ and the primary descent condition (3.1) is

satisfied for σ = 1−e−ω

4 . Indeed, simple manipulations yield

∂rf(rk, θk) = −e
− 1

1−r2
k

2rk(1−r2
k)2

4r4
k+(1−r2

k)4
,

1
r∂θf(rk, θk) = −e

− 1

1−r2
k

4r3
k

4r4
k+(1−r2

k)4
,

‖∇xf(xk)‖ = e−θk 2rk
4r4

k+(1−r2
k)4

√
(1 − r2

k)
4 + 4r4

k.

Thus ‖∇xf(xk)‖ ≤ 2e−kω when rk is sufficiently close to 1, i.e., when k is sufficiently
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large. Thus

f(xk) − f(xk+1) = e−kω − e−(k+1)ω = e−kω(1 − e−ω) ≥ 1−e−ω

4 2e−kω 2

≥ 1−e−ω

4 ‖∇f(xk)‖‖xk − xk+1‖.

3.2.2. Ruling out escape to infinity. There are several ways to rule out the
case limk→+∞ ‖xk‖ = ∞ in Theorem 3.2. Convergence results often assume that φ has
compact sublevel sets, in which case {xk} is bounded. Note also that limk→∞ ‖xk‖ =
+∞ occurs if and only if {xk} has no accumulation point in R

n.
It is interesting to consider what happens in the close vicinity of a critical point.

Proposition 3.3 guarantees that if the iteration starts close enough to a local minimum
x∗ of φ, and if the complementary descent condition (3.2) is replaced by a termination
condition, then the sequence of iterates stays in a neighborhood of x∗. Strengthening
the weak descent condition to condition (3.9) is required since it is not possible to
center the analysis at an accumulation point as was done in the proof of Theorem 3.2.

Proposition 3.3 (Lyapunov stability of minima). Let x∗ be a (possibly nonstrict)
local minimum of the analytic cost function φ. Let

xk+1 = F (xk)(3.8)

be a discrete-time dynamical system satisfying the primary descent condition (3.1)
and the termination condition

∇φ(xk) = 0 ⇒ terminate.(3.9)

Then x∗ is Lyapunov-stable for (3.8). That is, given ε > 0, there exists δ > 0 such
that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ ε for all k.

Proof. Without loss of generality, we again assume that φ(x∗) = 0. Let Um

be a neighborhood of x∗ such that φ(x) ≥ φ(x∗) for all x ∈ Um. Let U�L be a
neighborhood of x∗ where the �Lojasiewicz inequality (Lemma 2.1) holds. Let ε be
such that Bε(x

∗) ⊂ Um ∩ U�L. Let δ < ε/2 be such that c1(φ(x))1−μ < ε/2 for all
x ∈ Bδ(x

∗), where c1 = [σc(1 − μ)]−1 and c, μ, and σ are the constants appearing
in the �Lojasiewicz inequality and the primary descent condition (3.1). Then we show
that xk belongs to Bε(x

∗) and the proof is complete. By contradiction, suppose that
xk eventually leaves Bε(x

∗). Let K be the smallest k such that xk is not in Bε(x
∗).

We dismiss the trivial case where the algorithm terminates. Thus ∇φ(xk) �= 0 for all
k < K. It follows that φ(xk) > 0 for all k < K; otherwise the assumption on Um

would not hold. The rationale given in the proof of Theorem 3.2 yields that

‖xk − x0‖ ≤ c1(φ(x0))
1−μ < ε/2

for all k ≤ K, and it follows from the triangle inequality that ‖xK − x∗‖ < ε, which
is a contradiction.

Note that Proposition 3.3 is a Lyapunov stability result and one must prove local
attractivity of x∗ in addition to Proposition 3.3 to prove asymptotic stability of x∗.
It would be sufficient to additionally require weak convergence of the iterates (i.e.,
∇φ(xk) → 0) and that x∗ is an isolated stationary point of φ. A similar result is given
by the capture theorem [1].
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3.2.3. A stronger result. The proof of Theorem 3.2 does not use the analyt-
icity of φ to its full extent. Instead, the proof requires only that φ be continuous
at the accumulation point x∗ and that the �Lojasiewicz gradient inequality hold in a
neighborhood of x∗.

There is a large class of functions that are not real analytic but nevertheless satisfy
the �Lojasiewicz gradient inequality; see, e.g., [19, 3]. As an illustration, consider
φ(x) = f(g(x)), where g is real analytic and f is C1. Assume for simplicity that
g(x∗) = 0 and f(0) = 0, and so φ(x∗) = 0. Assume moreover that f ′(0) = c1 > 0,
where f ′ denotes the first derivative of f . Since f ′ ◦ g is continuous, it follows that
there exists a neighborhood U of x∗ such that f ′(g(x)) > c1

2 for all x ∈ U . Shrinking
U if necessary, it follows from the �Lojasiewicz gradient inequality on g that there
are constants c > 0 and μ ∈ [0, 1) such that ‖∇φ(x)‖ = |f ′(g(x))| · ‖∇g(x)‖ ≥
c1
2 ‖∇g(x)‖ ≥ c1

2 c|g(x)|μ for all x ∈ U . Shrinking U further if necessary, since f ′(0) =
c1 > 0, f(0) = 0, and f ∈ C1, we have |g(x)| ≥ |f(g(x))|/(2c1) for all x ∈ U .
Consequently, ‖∇φ(x)‖ ≥ c1c

2(2c1)μ
|φ(x)|μ for all x ∈ U , and this is a �Lojasiewicz

inequality.
It is interesting to consider what would be the weakest general condition on the

cost function that would ensure single limit-point convergence of a descent iteration
under the strong descent conditions (Definition 3.1). In general, this question is
difficult to answer; however, the following result provides the weakest condition on
the cost function such that the proof given for Theorem 3.2 applies. Note that the
class of functions covered is again larger than those satisfying the �Lojasiewicz gradient
inequality, shown earlier to be a superset of analytic functions.

Theorem 3.4. Let x∗ be a point of R
n and let φ be a cost function on R

n

continuous at x∗. Assume that there exist a neighborhood U of x∗, an ε > 0, and a
nondecreasing strictly positive function ψ : (0, ε) → R such that 1/ψ is integrable over
(0, ε) and

‖∇φ(x)‖ ≥ ψ(φ(x) − φ(x∗))

for all x in {x ∈ U : 0 < φ(x) − φ(x∗) < ε}. Consider a sequence {xk} satisfying
the strong descent conditions (Definition 3.1) and assume that x∗ is an accumulation
point of {xk}. Then limk→∞ xk = x∗.

4. Application to classical optimization schemes. In this section, we show
that the strong descent conditions (Definition 3.1) hold for a wide variety of nu-
merical optimization methods. Consequently, these methods have single limit-point
convergence when the cost function is analytic, or more generally when the condi-
tions of Theorem 3.4 are satisfied. We will successively consider methods of the
line-search type and of the trust-region type. References on numerical optimization
include [10, 15, 1, 30, 7].

4.1. Convergence of line-search methods. Any line-search method proceeds
in two steps. First, the algorithm chooses a search direction pk from the current iterate
xk. Then the algorithm searches along this direction for a new iterate

xk+1 = xk + αkpk(4.1)

satisfying some criteria.
We first consider the choice of the search direction pk. An obvious choice is the

steepest descent direction pk = −∇φ(xk), which is often relaxed to a direction pk
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satisfying an angle condition

〈pk,∇φ(xk)〉
‖pk‖‖∇φ(xk)‖

= cos θk ≤ −δ < 0;(4.2)

i.e., the angle between pk and −∇φ(xk) is bounded away from 90◦. A wide variety of
optimization schemes obtain the search direction by solving an equation of the form

Bkpk = −∇φ(xk).(4.3)

In particular, the choice Bk = ∇2φ(xk), the Hessian of φ at xk, yields the Newton
direction. When some approximation of the Hessian is used, pk is called a quasi-
Newton search direction. From (4.2) and (4.3), standard manipulations (see, e.g., [30,
p. 45]) yield cos θk ≥ 1/κ(Bk), where κ(Bk) = ‖Bk‖ ‖B−1

k ‖ is the condition number
of Bk. Therefore, for the angle condition (4.2) to hold true with (4.3), it is sufficient
that the condition number of Bk be bounded.

Now consider the choice of αk in (4.1). A very usual condition on α is the first
Wolfe condition, also known as the Armijo condition (see, e.g., [30]):

φ(xk) − φ(xk+1) ≥ −c1〈∇φ(xk), xk+1 − xk〉,(4.4)

where c1 ∈ (0, 1) is a constant. The Armijo condition is satisfied for all sufficiently
small values of αk. Therefore, in order to ensure that the algorithm makes sufficient
progress, it is usual to require moreover that, for some constant c2 ∈ (c1, 1),

〈∇φ(xk+1), xk+1 − xk〉 ≥ c2〈∇φ(xk), xk+1 − xk〉,(4.5)

known as the curvature condition. Conditions (4.4) and (4.5) are known collectively
as the Wolfe conditions. Several schemes exist that compute an αk such that the
Wolfe conditions hold; see, e.g., [1, 30].

Theorem 4.1. (i) Consider the line-search descent algorithm given by (4.1). Let
the algorithm terminate if ∇φ(xk) = 0. Assume that the search direction pk sat-
isfies the angle condition (4.2). Let the step-size be selected such that the Armijo
condition (4.4) holds. Then the strong descent conditions (Definition 3.1) hold.

(ii) Assume moreover that the cost function φ is analytic. Then either limk→∞ ‖xk‖ =
+∞, or there exists a single point x∗ ∈ R

n such that

lim
k→∞

xk = x∗.

(iii) In the latter case, if moreover the curvature condition (4.5) holds, then x∗ is
a stationary point of φ, i.e.,

∇φ(x∗) = 0.

Proof. (i) Combining the angle condition (4.2) and the Armijo condition (4.4)
yields φ(xk) − φ(xk+1) ≥ c1δ‖∇φ(xk)‖‖xk+1 − xk‖, i.e., the primary descent condi-
tion (3.1) with σ = c1δ. The complementary descent condition (3.2) is also satisfied:
if ∇φ(xk) = 0, then the algorithm terminates and if ∇φ(xk) �= 0, then (3.2) follows
from (3.1).

(ii) The proof is direct from (i) and Theorem 3.2.
(iii) The proof is a direct consequence of (ii) and a classical convergence result

(proven, e.g., in [15, Theorem 2.5.1] and [30, section 3.2]).
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4.2. Convergence of trust-region methods. Most trust-region methods com-
pute the trust-region step such that the model decrease is at least a fraction of that
obtained at the so-called Cauchy point. This condition alone is not sufficient to guar-
antee that the primary descent condition (3.1) holds. However, we show in this section
that the strong descent conditions (Definition 3.1) hold under a mild modification of
the Cauchy decrease condition.

Before stating the results in Theorem 4.4, we briefly review the underlying prin-
ciples of trust-region methods. The vast majority of trust-region methods proceed
along the following lines. At each iterate xk, a model mk(p) is built that agrees with
φ(xk + p) to the first order, that is,

mk(p) = φ(xk) + ∇φ(xk)
T p +

1

2
pTBkp,(4.6)

where Bk is some symmetric matrix. Then the problem

min
p∈Rn

mk(p) s.t. ‖p‖ ≤ Δk,(4.7)

where Δk > 0 is the trust-region radius, is solved within some approximation, yielding
an update vector pk. Finally the actual decrease of φ is compared with the decrease
predicted by mk in the ratio

ρk =
φ(xk) − φ(xk + pk)

mk(0) −mk(pk)
.(4.8)

If ρ is exceedingly small, then the model is very bad: the step must be rejected and
the trust-region radius must be reduced. If ρ is small but less dramatically so, then
the step is accepted but the trust-region radius is reduced. If ρ is close to 1, then
there is a good agreement between the model and the function over the step, and the
trust region can be expanded. This can be formalized into the following algorithm
(similar formulations are given, e.g., in [29, 7]).

Algorithm 4.2 (trust region; see, e.g., [30]). Given Δ̄ > 0, Δ0 ∈ (0, Δ̄), and
η ∈ (0, 1

4 ):
for k = 0, 1, 2, . . .

Obtain pk, ‖pk‖ < Δk, by (approximately) solving (4.7);
evaluate ρk from (4.8);
if ρk < 1

4
Δk+1 = 1

4‖pk‖
else if ρk > 3

4 and ‖pk‖ = Δk

Δk+1 = min(2Δk, Δ̄)
else

Δk+1 = Δk;
if ρk > η

xk+1 = xk + pk
else

xk+1 = xk;
end (for).

Trust-region methods essentially differ in the way they approximately solve the
trust-region subproblem (4.7). Most of the algorithms compute a step such that
the model decrease is at least a fraction of that obtained at the Cauchy point. By
definition, the Cauchy point is the solution pCk of the one-dimensional problem

pCk = arg min{mk(p) : p = α∇φ(xk), ‖p‖ ≤ Δk}.(4.9)
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The class of methods that ensure a fraction of the Cauchy decrease includes the dogleg
method of Powell [32], the double-dogleg method of Dennis and Mei [11], the truncated
conjugate-gradient method of Steihaug [33] and Toint [34], and the two-dimensional
subspace minimization strategy of Byrd, Schnabel, and Shultz [5]. These methods
have weak convergence properties (‖∇φ(xk)‖ → 0) in general; see, e.g., [30, Theo-
rem 4.8]. Other methods, including the one of Moré and Sorensen [29], do even better
as they attempt to find a nearly exact solution of the trust-region subproblem (4.7).
In this case a strong limit-point convergence result is available [29, Theorem 4.13]
under some additional hypotheses, including nonsingularity of the Hessian of φ at an
accumulation point.

Assuming that the cost function φ is analytic, we have to check that the strong de-
scent conditions (Definition 3.1) hold in order to apply our main result (Theorem 3.2)
and conclude to single limit-point convergence.

The following technical lemma will prove to be useful.
Lemma 4.3. If pCk is the Cauchy point defined in (4.9), then

mk(0) −mk(p
C
k ) ≥ 1

2
‖∇φ(xk)‖‖pCk ‖.

Proof. The Cauchy point pCk is given explicitly by (see, e.g., [30, eq. (4.8)])

pCk = −τk
Δk

‖∇φ(xk)‖
∇φ(xk),(4.10a)

where

τk =

{
1 if ∇φ(xk)

TBk∇φ(xk) ≤ 0;

min( ‖∇φ(xk)‖3

Δk∇φ(xk)TBk∇φ(xk)
, 1) otherwise.

(4.10b)

We have

mk(0) −mk(p
C
k ) − 1

2
‖∇φ(xk)‖ ‖pCk ‖ = βk

(
1 − τkΔk

‖∇φ(xk)‖3
∇φ(xk)

TBk∇φ(xk)

)

with βk := 1
2τkΔk‖∇φ(xk)‖; thus the claim is equivalent to

1 − τkΔk

‖∇φ(xk)‖3
∇φ(xk)

TBk∇φ(xk) ≥ 0,

which follows from the definition of τk.
Due to the variety of trust-region methods and the flexibility in the choice of

the update direction, it is not possible to prove a generic convergence result of the
nature of Theorem 4.1. Instead, Theorem 4.4 provides several easily verified conditions
for the iterates of Algorithm 4.2 in order that its iterates satisfy the strong descent
conditions (Definition 3.1). Once this is verified then the results of Theorem 3.2 apply.
Convergence to a critical point again depends on additional weak convergence results
for the algorithm considered.

The conditions given in Theorem 4.4 are progressively more restrictive on the
iterates of Algorithm 4.2. Condition (B) imposes condition (3.1) on the model mk.
We show that this in turn implies condition (3.1) on the cost function φ. Condition
(C) imposes a fraction of the Cauchy decrease that becomes more restrictive as the
ratio ‖pk‖/‖pCk ‖ grows. Condition (D) simply states that the model decrease is at
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least a fraction of that obtained at the Cauchy point. This condition holds for most of
the standard trust-region algorithms. However, (D) alone is not sufficient to guarantee
single limit-point convergence for analytic φ. To see this, consider, for example, the
function in R

3 given by

f(x) =

(√
x2

1 + x2
2 − 1

)2

+ x2
3

which has a symmetry of revolution around the third axis. If Bk is chosen to be
singular along the θ direction, then a sequence {xk} can be constructed that satisfies
(D) but nevertheless loops endlessly toward the set {x : x2

1 +x2
2 = 1, x3 = 0}. Condi-

tion (D) becomes sufficient with complementary conditions, like (E) which imposes a
bound on ‖pk‖/‖pCk ‖ or like (F) which imposes that Bk remains positive definite and
does not become ill-conditioned.

Theorem 4.4. Let {xk}, {Δk}, {pk}, {φ(xk)}, {∇φ(xk)}, and {Bk} be infinite
sequences generated by Algorithm 4.2 (trust region). Let mk, ρk, and pCk be defined
as in (4.6), (4.8), and (4.9), respectively. Consider the following conditions.

(A) The strong descent conditions (Definition 3.1) hold.
(B) There exists σ1 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk) ≥ σ1‖∇φ(xk)‖‖pk‖.(4.11)

(C) There exists σ2 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk)

mk(0) −mk(pCk )
≥ σ2

‖pk‖
‖pCk ‖

.(4.12)

(D) There exists c2 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk) ≥ c2(mk(0) −mk(p
C
k )).(4.13)

(E) There exists κ1 > 0 such that for all k with ∇φ(xk) �= 0,

‖pk‖ ≤ κ1‖pCk ‖.(4.14)

(F) Bk is positive definite for all k and there exists a κ2 ≥ 1 such that cond(Bk) :=
‖Bk‖‖B−1

k ‖ ≤ κ2 for all k (where the matrix norms are 2-norms).
Then (D) and (F) ⇒ (D) and (E) ⇒ (C) ⇒ (B) ⇒ (A). Furthermore, if (A) holds
and the cost function φ is analytic, then either limk→∞ ‖xk‖ = +∞ or there exists a
single point x∗ ∈ R

n such that limk→∞ xk = x∗.
Proof. First note that the condition ∇φ(xk) �= 0 guarantees that pCk �= 0 and

mk(0) −mk(p
C
k ) > 0.

(D) and (F) ⇒ (D) and (E). If ‖pCk ‖ = Δk, then (E) holds with κ1 = 1. Assume
then that ‖pCk ‖ < Δk. Let λmax(Bk), respectively, λmin(Bk), denote the largest,
respectively, smallest, eigenvalue of the positive definite matrix Bk. Then

‖∇φ(xk)‖
λmax(Bk)

≤ ‖∇φ(xk)‖3

∇φ(xk)TBk∇φ(xk)
= ‖pCk ‖,(4.15)

where the equality follows from (4.10) and ‖pCk ‖ < Δk. In view of (D), one has
mk(0) −mk(pk) ≥ 0 and thus −∇φ(xk)

T pk − 1
2p

T
kBkpk ≥ 0. Therefore

1

2
λmin(Bk)‖pk‖2 ≤ 1

2
pTkBkpk ≤ −∇φ(xk)

T pk ≤ ‖∇φ(xk)‖ ‖pk‖.(4.16)
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It follows from (4.15) and (4.16) that

‖pk‖ ≤ 2
‖∇φ(xk)‖
λmin(Bk)

≤ 2
λmax(Bk)

λmin(Bk)
‖pCk ‖ = 2cond(Bk)‖pCk ‖ ≤ 2κ2‖pCk ‖;

i.e., (E) holds with κ1 := 2κ2.
(D) and (E) ⇒ (C). The proof is direct, with σ2 = c2/κ1.
(C) ⇒ (B). The proof directly follows from Lemma 4.3, with σ1 = σ2/2.
(B) ⇒ (A). If xk+1 = xk, then the strong descent conditions trivially hold. As-

sume then that xk+1 �= xk, in which case the complementary descent condition (3.2)
holds by the definition of Algorithm 4.2. If ∇φ(xk) = 0, then the primary descent
condition (3.1) trivially holds. On the other hand, if ∇φ(xk) �= 0, then it follows from
(B) that (3.1) holds with σ = ησ1, where η is defined in Algorithm 4.2.

The final claim follows directly from Theorem 3.2.
Convergence of the iterates of Algorithm 4.2 to a critical point depends on ad-

ditional weak convergence (‖∇φ(xk)‖ → 0) results for the particular algorithm con-
sidered. For example, if assumptions (D) and (E) hold, φ is analytic, and ‖Bk‖ ≤ β
for some constant β, then either limk→∞ ‖xk‖ = +∞ or there exists a single point
x∗ ∈ R

n such that

lim
k→∞

xk = x∗ and ∇φ(x∗) = 0.

This follows from the above result along with a classical convergence result for trust-
region methods (see [30, Theorem 4.8]).

5. Conclusion. We have shown strong limit-point convergence results that do
not rely on the usual requirement that critical points are isolated. Instead, we require
two conditions: the �Lojasiewicz gradient inequality (2.1), i.e., a lower bound on the
norm of the gradient of the cost function in terms of the cost function itself, and
some “strong descent conditions” stated in Definition 3.1. The �Lojasiewicz gradient
inequality is satisfied in particular for analytic cost functions. The strong descent
conditions are satisfied for a wide variety of optimization schemes; they include line-
search methods with an angle condition on the search direction and Armijo’s condition
on the step length, and trust-region methods under the condition that the length of
the update vector is bounded by a multiple of the length of the Cauchy update.
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