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Abstract. We consider the problem of minimizing a differentiable function with locally Lipschitz
continuous gradient on the real determinantal variety and present a first-order algorithm designed
to find a stationary point of that problem. This algorithm applies steps of a retraction-free descent
method proposed by Schneider and Uschmajew [SIAM J. Optim., 25 (2015), pp. 622--646], while
taking the numerical rank into account to attempt rank reductions. We prove that this algorithm
produces a sequence of iterates whose accumulation points are stationary and therefore does not follow
the so-called apocalypses described by Levin, Kileel, and Boumal [Math. Program., 199 (2023), pp.
831--864]. Moreover, the rank reduction mechanism of this algorithm requires at most one rank
reduction attempt per iteration, in contrast with the one of the P2GDR algorithm introduced by
Olikier, Gallivan, and Absil [An Apocalypse-Free First-Order Low-Rank Optimization Algorithm,
Technical report UCL-INMA-2022.01, https://arxiv.org/abs/2201.03962, 2022], which can require a
number of rank reduction attempts equal to the rank of the iterate in the worst-case scenario.
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1. Introduction. As in [7], we consider the problem

(1) min
X\in \BbbR m\times n

\leq r

f(X)

of minimizing a differentiable function f :\BbbR m\times n\rightarrow \BbbR with locally Lipschitz continuous
gradient on the determinantal variety [4, Lecture 9]

(2) \BbbR m\times n
\leq r := \{ X \in \BbbR m\times n | rankX \leq r\} ,

m, n, and r being positive integers such that r <min\{ m,n\} . This problem appears in
several applications such as matrix equations, model reduction, matrix sensing, and
matrix completion; see, e.g., [11, 3] and the references therein. As problem (1) is, in
general, intractable [1], our goal is to find a stationary point of this problem, i.e., a
zero of the stationarity measure

(3) s(\cdot ;f,\BbbR m\times n
\leq r ) :\BbbR m\times n

\leq r \rightarrow \BbbR :X \mapsto \rightarrow \| PT
\BbbR m\times n
\leq r

(X)( - \nabla f(X))\| 

that returns the norm of any projection of  - \nabla f(X) onto the tangent cone to \BbbR m\times n
\leq r

at X; the notation is introduced in section 2. Indeed, by [5, Lemmas A.7 and A.8],
the correspondence

\ast Received by the editors August 25, 2022; accepted for publication (in revised form) by D. Orban
April 3, 2023; published electronically September 22, 2023.

https://doi.org/10.1137/22M1518256
Funding: This work was supported by the Fonds de la Recherche Scientifique (FNRS) and the

Fonds Wetenschappelijk Onderzoek -- Vlaanderen under EOS Project 30468160.
\dagger ICTEAM Institute, UCLouvain, Avenue Georges Lema\^{\i}tre 4, 1348 Louvain-la-Neuve, Belgium

(guillaume.olikier@uclouvain.be, pa.absil@uclouvain.be).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1421

https://doi.org/10.1137/22M1518256
mailto:guillaume.olikier@uclouvain.be
mailto:pa.absil@uclouvain.be


1422 GUILLAUME OLIKIER AND P.-A. ABSIL

\BbbR m\times n
\leq r \multimap \BbbR m\times n :X \mapsto \rightarrow PT

\BbbR m\times n
\leq r

(X)( - \nabla f(X))

depends on f only through its restriction f | \BbbR m\times n
\leq r

, and, by [10, Theorem 6.12] and [5,

Proposition 2.5], if X \in \BbbR m\times n
\leq r is a local minimizer of f | \BbbR m\times n

\leq r
, then s(X;f,\BbbR m\times n

\leq r ) = 0.

To the best of our knowledge, the second-order method given in [5, Algorithm 1]
and the first-order method given in [7, Algorithm 2], dubbed P2GDR, are the only
two algorithms in the literature that provably accumulate at stationary points of (1).
Other algorithms, such as [11, Algorithm 3], known as P2GD, and [11, Algorithm 4],
which we call RFD because it is a retraction-free descent method, can fail as they can
produce a feasible sequence (Xi)i\in \BbbN that converges to some point X with the property
that limi\rightarrow \infty s(Xi;f,\BbbR m\times n

\leq r ) = 0 < s(X;f,\BbbR m\times n
\leq r ). Such a triplet (X, (Xi)i\in \BbbN , f) is

called an apocalypse and the point X, which necessarily satisfies rankX < r, is said
to be apocalyptic [5, Definition 2.7].

P2GDR is P2GD equipped with a rank reduction mechanism. On the one hand,
this mechanism ensures the apocalypse-free property. On the other hand, as men-
tioned in [7, section 6], it can generate a significant computational overhead in some
situations. Indeed, its for loop can consider up to r rank reductions of the current
iterate to each of which the P2GD map [7, Algorithm 1] is applied. This is further
discussed in section 7.

In this paper, we introduce a first-order optimization algorithm on \BbbR m\times n
\leq r (Al-

gorithm 3), called RFDR, that accumulates at stationary points (Theorem 6.2) and
is thus apocalypse-free. We also deduce that s(\cdot ;f,\BbbR m\times n

\leq r ) goes to zero along every
convergent subsequence of the generated sequence (Corollary 6.3). RFDR is RFD
equipped with a rank reduction mechanism. RFDR and P2GDR, which is the only
other first-order optimization algorithm on \BbbR m\times n

\leq r known to accumulate at stationary
points, have their own advantages. On the one hand, the search directions used by
P2GD are more closely related to the negative gradient than those used by RFD;
while this does not imply that P2GD converges faster than RFD, such an observation
was made experimentally in [11, section 3.4] on a matrix completion problem. On
the other hand, RFDR presents two advantages over P2GDR. First, it inherits the
advantage that RFD has over P2GD, namely being retraction-free; in other words,
the updates are performed along a straight line. Second, its rank reduction mecha-
nism is more efficient than the one of P2GDR because it ensures the apocalypse-free
property by performing at most one rank reduction attempt per iteration (compare
Algorithm 2 with [7, Algorithm 3]).

This paper is organized as follows. After introducing the notation in section 2,
we define in section 3 the restricted tangent cone to \BbbR m\times n

\leq r ; the descent direction used
by RFD is the projection of the negative gradient onto that closed cone. In section 4,
we analyze the iteration map of RFD (Algorithm 1) under the assumption of local
Lipschitz continuity of \nabla f . We introduce the RFDR algorithm in section 5, analyze
its convergence properties in section 6, and compare its computational cost with the
one of P2GDR in section 7. Section 8 contains concluding remarks.

2. Notation. In this section, we introduce the notation used throughout the
paper. This is the same notation as in [7], to which we refer for a more complete
review of the background material. The real vector space \BbbR m\times n is endowed with the
Frobenius inner product \langle \cdot , \cdot \rangle , \| \cdot \| denotes the Frobenius norm, and, for all X \in \BbbR m\times n

and all \rho \in (0,\infty ), B(X,\rho ) and B[X,\rho ] respectively denote the open ball and the
closed ball of center X and radius \rho in \BbbR m\times n. Given a nonempty subset \scrS of \BbbR m\times n,
the tangent cone to \scrS at X \in \scrS is denoted by T\scrS (X), the distance from X \in \BbbR m\times n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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to \scrS is denoted by d(X,\scrS ), and the projection of X \in \BbbR m\times n onto \scrS is denoted by
P\scrS (X). For every r \in \{ 0, . . . ,min\{ m,n\} \} ,

\BbbR m\times n
r := \{ X \in \BbbR m\times n | rankX = r\} 

is the smooth manifold of m\times n rank-r real matrices, and, if r\geq 1,

St(r,n) := \{ U \in \BbbR n\times r | U\top U = Ir\} 

is a Stiefel manifold. We also write \BbbR m\times n
\ast := \BbbR m\times n

min\{ m,n\} . The singular values of

X \in \BbbR m\times n are denoted by \sigma 1(X)\geq \cdot \cdot \cdot \geq \sigma min\{ m,n\} (X)\geq 0.

3. The restricted tangent cone to the determinantal variety. In this
section, we define the restricted tangent cone to \BbbR m\times n

\leq r (Definition 3.1) and prove
that the descent direction introduced in [11, section 3.4] is the projection of the
negative gradient onto that closed cone (Proposition 3.2). Throughout this section,
r \in \{ 1, . . . , r\} , X \in \BbbR m\times n

r , U \in St(r,m), U\bot \in St(m  - r,m), V \in St(r,n), V\bot \in 
St(n - r,n), imU = imX, imU\bot = (imX)\bot , imV = imX\top , and imV\bot = (imX\top )\bot .

The set introduced in the following definition is a closed cone contained in

T\BbbR m\times n
\leq r

(X) =

\biggl\{ 
[U U\bot ]

\biggl[ 
A B
C D

\biggr] 
[V V\bot ]

\top 
\bigm| \bigm| \bigm| \bigm| A\in \BbbR r\times r, B \in \BbbR r\times n - r,

C \in \BbbR m - r\times r, D \in \BbbR m - r\times n - r
\leq r - r

\biggr\} 
.

Definition 3.1. The restricted tangent cone to \BbbR m\times n
\leq r at X is

\u T\BbbR m\times n
\leq r

(X) :=

\left\{   [U U\bot ]

\biggl[ 
A B
C D

\biggr] 
[V V\bot ]

\top 
\bigm| \bigm| \bigm| \bigm| A\in \BbbR r\times r, B \in \BbbR r\times n - r,

C \in \BbbR m - r\times r, D \in \BbbR m - r\times n - r
\leq r - r ,

B = 0r\times n - r or C = 0m - r\times r

\right\}   .

Furthermore,

\u T\BbbR m\times n
\leq r

(0m\times n) := T\BbbR m\times n
\leq r

(0m\times n) =\BbbR m\times n
\leq r .

The following proposition can be compared to [7, Proposition 2.7].

Proposition 3.2. Let Z \in \BbbR m\times n be written as

Z = [U U\bot ]

\biggl[ 
A B
C D

\biggr] 
[V V\bot ]

\top 

with A=U\top ZV , B =U\top ZV\bot , C =U\top 
\bot ZV , and D=U\top 

\bot ZV\bot . Then,

P \u T
\BbbR m\times n
\leq r

(X)(Z) =

\left\{                                 

[U U\bot ]

\Biggl[ 
A B

0m - r\times r P\BbbR m - r\times n - r
\leq r - r

(D)

\Biggr] 
[V V\bot ]

\top if \| B\| > \| C\| ,

[U U\bot ]

\Biggl[ 
A B

0m - r\times r P\BbbR m - r\times n - r
\leq r - r

(D)

\Biggr] 
[V V\bot ]

\top 

\cup [U U\bot ]

\Biggl[ 
A 0r\times n - r

C P\BbbR m - r\times n - r
\leq r - r

(D)

\Biggr] 
[V V\bot ]

\top 

if \| B\| = \| C\| ,

[U U\bot ]

\Biggl[ 
A 0r\times n - r

C P\BbbR m - r\times n - r
\leq r - r

(D)

\Biggr] 
[V V\bot ]

\top if \| B\| < \| C\| .

(4)
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Moreover,

(5)

\bigm\| \bigm\| \bigm\| \bigm\| PT
\BbbR m\times n
\leq r

(X)(Z)

\bigm\| \bigm\| \bigm\| \bigm\| \geq \bigm\| \bigm\| \bigm\| \bigm\| P \u T
\BbbR m\times n
\leq r

(X)(Z)

\bigm\| \bigm\| \bigm\| \bigm\| \geq 1\surd 
2

\bigm\| \bigm\| \bigm\| \bigm\| PT
\BbbR m\times n
\leq r

(X)(Z)

\bigm\| \bigm\| \bigm\| \bigm\| 
and, for all \u Z \in P \u T

\BbbR m\times n
\leq r

(X)(Z),

(6) \langle Z, \u Z\rangle = \| \u Z\| 2.
Furthermore,

(7) \| Z\| \geq 
\bigm\| \bigm\| \bigm\| \bigm\| PT

\BbbR m\times n
\leq r

(X)(Z)

\bigm\| \bigm\| \bigm\| \bigm\| \geq \sqrt{} 
r - r

min\{ m,n\}  - r
\| Z\| .

Proof. We prove only (4) as (5) and (6) are given in [11, section 3.4] and (7) in
[11, (3.7)]. Let \u Z \in \u T\BbbR m\times n

\leq r
(X). Then,

\u Z = [U U\bot ]

\biggl[ 
\u A \u B
\u C \u D

\biggr] 
[V V\bot ]

\top 

for some \u A \in \BbbR r\times r, \u B \in \BbbR r\times n - r, \u C \in \BbbR m - r\times r, and \u D \in \BbbR m - r\times n - r
\leq r - r such that \u B =

0r\times n - r or \u C = 0m - r\times r. Thus,

\| Z  - \u Z\| 2 =
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A - \u A B  - \u B

C  - \u C D - \u D

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
= \| A - \u A\| 2 + \| B  - \u B\| 2 + \| C  - \u C\| 2 + \| D - \u D\| 2

\geq 0 +min\{ \| B\| ,\| C\| \} 2 + d(D,\BbbR m - r\times n - r
\leq r - r )2.

Therefore,

d(Z, \u T\BbbR m\times n
\leq r

(X))2 \geq min\{ \| B\| ,\| C\| \} 2 + d(D,\BbbR m - r\times n - r
\leq r - r )2,

a bound which is reached only by (4).

In practice, the projection onto T\BbbR m\times n
\leq r

(X) can be computed thanks to [11, Al-

gorithm 2]. This does not rely on U\bot and V\bot , which are huge in the frequently
encountered case where r\ll min\{ m,n\} . The practical computation of the projection
onto \u T\BbbR m\times n

\leq r
(X) is described in [11, section 3.4] and does not rely on U\bot and V\bot either.

We discuss the practical implementation and the computational cost in section 7.

4. The RFD map. In this section, we analyze Algorithm 1---which corresponds
to the iteration map of RFD [11, Algorithm 4] except that the initial step size for the
backtracking procedure is chosen in a given bounded interval---under the assumption
that f is differentiable with \nabla f locally Lipschitz continuous. This serves as a basis
for the convergence analysis conducted in section 6 since the RFD map (Algorithm 1)
is used as a subroutine by the RFDR map (Algorithm 2). The analysis conducted in
this section is to RFD as the analysis conducted in [7, section 3] is to P2GD, although
it is simpler since RFD does not require any retraction as X + \alpha G \in \BbbR m\times n

\leq r for all

X \in \BbbR m\times n
\leq r , all \alpha \in (0,\infty ), and all G\in \u T\BbbR m\times n

\leq r
(X).

Let us recall that, since \nabla f is locally Lipschitz continuous, for every closed ball
\scrB \subsetneq \BbbR m\times n,

Lip
\scrB 

(\nabla f) := sup
X,Y \in \scrB 
X \not =Y

\| \nabla f(X) - \nabla f(Y )\| 
\| X  - Y \| 

<\infty ,
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Algorithm 1. RFD map (based on [11, Algorithm 4]).

Require: (f, r,\alpha , \=\alpha ,\beta , c) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, 0<\alpha \leq \=\alpha <\infty , and
\beta , c\in (0,1).

Input: X \in \BbbR m\times n
\leq r such that s(X;f,\BbbR m\times n

\leq r )> 0.

Output: a point in RFD(X;f, r,\alpha , \=\alpha ,\beta , c).
1: Choose G\in P \u T

\BbbR m\times n
\leq r

(X)( - \nabla f(X)) and \alpha \in [\alpha , \=\alpha ];

2: while f(X + \alpha G)> f(X) - c\alpha \| G\| 2 do
3: \alpha \leftarrow \alpha \beta ;
4: end while
5: Return X + \alpha G.

which implies, by [6, Lemma 1.2.3], that, for all X,Y \in \scrB ,

(8) | f(Y ) - f(X) - \langle \nabla f(X), Y  - X\rangle | \leq Lip\scrB (\nabla f)
2

\| Y  - X\| 2.

Proposition 4.1. Let X \in \BbbR m\times n
\leq r and \=\alpha \in (0,\infty ). Let \scrB \subsetneq \BbbR m\times n be a closed ball

such that, for all G\in P \u T
\BbbR m\times n
\leq r

(X)( - \nabla f(X)) and all \alpha \in [0, \=\alpha ], X+\alpha G\in \scrB ; an example

of such a ball is B[X, \=\alpha s(X;f,\BbbR m\times n
\leq r )]. Then, for all G \in P \u T

\BbbR m\times n
\leq r

(X)( - \nabla f(X)) and

all \alpha \in [0, \=\alpha ],

(9) f(X + \alpha G)\leq f(X) + \| G\| 2\alpha 
\biggl( 
 - 1 + Lip\scrB (\nabla f)

2
\alpha 

\biggr) 
.

Proof. The example B[X, \=\alpha s(X;f,\BbbR m\times n
\leq r )] is correct by the first inequality of (5).

The inequality (9) is based on (8) and (6):

f(X + \alpha G) - f(X)\leq \langle \nabla f(X), (X + \alpha G) - X\rangle + Lip\scrB (\nabla f)
2

\| (X + \alpha G) - X\| 2

= - \alpha \| G\| 2 + Lip\scrB (\nabla f)
2

\alpha 2\| G\| 2.

Let us make two remarks concerning the preceding proposition. First, the ex-
istence of a ball \scrB crucially relies on the upper bound \=\alpha required by Algorithm 1.
Second, in contrast with [7, equation (8)], the upper bound (9) does not depend on
the curvature of a fixed-rank manifold. In particular, (9) does not involve any sin-
gular value. This fundamental difference is the reason why RFDR is apocalypse-free
while requiring at most one rank reduction attempt per iteration, whereas P2GDR
can require up to r attempts.

Observe that the 1
2 factor in the sufficient decrease condition of the following

result does not appear in the Armijo condition given in [7, Corollary 3.2].

Corollary 4.2. Every \~X \in RFD(X;f, r,\alpha , \=\alpha ,\beta , c) satisfies the sufficient de-
crease condition

(10) f( \~X)\leq f(X) - 1

2
c\alpha s(X;f,\BbbR m\times n

\leq r )2
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for some \alpha \in 
\bigl[ 
min\{ \alpha ,2\beta 1 - c

Lip\scrB (\nabla f)\} , \=\alpha 
\bigr] 
, where \scrB is any closed ball as in Proposi-

tion 4.1. Moreover, the number of iterations in the while loop is at most

(11) max

\biggl\{ 
0,

\biggl\lceil 
ln

\biggl( 
2(1 - c)

\alpha 0 Lip\scrB (\nabla f)

\biggr) 
/ ln\beta 

\biggr\rceil \biggr\} 
,

where \alpha 0 is the initial step size chosen in line 1.

Proof. For all \alpha \in (0,\infty ),

f(X) + \| G\| 2\alpha 
\biggl( 
 - 1 + Lip\scrB (\nabla f)

2
\alpha 

\biggr) 
\leq f(X) - c\| G\| 2\alpha iff \alpha \leq 2

1 - c

Lip\scrB (\nabla f)
.

Since the left-hand side of the first inequality is an upper bound on f(X + \alpha G)
for all \alpha \in (0, \=\alpha ], the condition for the while loop to stop is necessarily satisfied
if \alpha \in (0,min\{ \=\alpha ,2 1 - c

Lip\scrB (\nabla f)\} ]. Therefore, either the initial step size chosen in [\alpha , \=\alpha ]

satisfies that condition or the while loop ends with \alpha such that \alpha 
\beta > 2 1 - c

Lip\scrB (\nabla f) . The

sufficient decrease condition (10) then follows from the second inequality of (5). The
upper bound (11) follows from the same observation.

5. The proposed algorithm. We now introduce a first-order optimization al-
gorithm on \BbbR m\times n

\leq r called RFDR. The iteration map of this algorithm, called the RFDR

map, is defined as Algorithm 2. Given X \in \BbbR m\times n
\leq r as input, the RFDR map proceeds

as follows: (i) it applies the RFD map (Algorithm 1) to X, thereby producing a point
\~X, (ii) if \sigma r(X) is positive but smaller than some threshold \Delta \in (0,\infty ), it applies the
RFD map to a projection \^X of X onto \BbbR m\times n

r - 1 , then producing a point \~XR, and (iii)

it outputs a point among \~X and \~XR that maximally decreases f .

Algorithm 2. RFDR map.

Require: (f, r,\alpha , \=\alpha ,\beta , c,\Delta ) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, 0<\alpha \leq \=\alpha <\infty ,
\beta , c\in (0,1), and \Delta \in (0,\infty ).

Input: X \in \BbbR m\times n
\leq r such that s(X;f,\BbbR m\times n

\leq r )> 0.

Output: a point in RFDR(X;f, r,\alpha , \=\alpha ,\beta , c,\Delta ).

1: Choose \~X \in RFD(X;f, r,\alpha , \=\alpha ,\beta , c);
2: if \sigma r(X)\in (0,\Delta ] then

3: Choose \^X \in P\BbbR m\times n
r - 1

(X);

4: Choose \~XR \in RFD( \^X;f, r,\alpha , \=\alpha ,\beta , c);
5: Return Y \in argmin\{ \~X, \~X\mathrm{R}\} f .

6: else

7: Return \~X.
8: end if

The RFDR algorithm is defined as Algorithm 3. It produces a sequence along
which f is strictly decreasing. As announced in the second remark following Proposi-
tion 4.1, it turns out that the mere monitoring of the rth singular value of the iterates
is enough to make the algorithm apocalypse-free, which we prove in the next section.

6. Convergence analysis. The purpose of this section is to prove Theorem 6.2.
To this end, we use the abstract framework proposed in [9, section 1.3]. Indeed, the
problem considered in this paper can be formulated as follows: find X \in \BbbR m\times n

\leq r such
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Algorithm 3. RFDR.

Require: (X0, f, r,\alpha , \=\alpha ,\beta , c,\Delta ) where X0 \in \BbbR m\times n
\leq r , f :\BbbR m\times n\rightarrow \BbbR is differentiable

with \nabla f locally Lipschitz continuous, r <min\{ m,n\} is a positive integer, 0<
\alpha \leq \=\alpha <\infty , \beta , c\in (0,1), and \Delta \in (0,\infty ).

1: i\leftarrow 0;
2: while s(Xi;f,\BbbR m\times n

\leq r )> 0 do

3: Choose Xi+1 \in RFDR(Xi;f, r,\alpha , \=\alpha ,\beta , c,\Delta );
4: i\leftarrow i+ 1;
5: end while

that s(X;f,\BbbR m\times n
\leq r ) = 0. It is thus a particular instance of [9, Abstract Problem 1]

where the Banach space is \BbbR m\times n, its closed subset is \BbbR m\times n
\leq r , and ``desirable"" means

stationary. Moreover, RFDR (Algorithm 3) is a particular instance of [9, Algorithm
Model 9], where the ``stop rule"" is f and the ``search function"" is the RFDR map
(Algorithm 2).

Thus, to prove Theorem 6.2, it suffices to verify that RFDR satisfies the two
assumptions of [9, Theorem 10], which we do below.

The first assumption is that the objective function f is continuous at each nonde-
sirable point or bounded from below on \BbbR m\times n

\leq r . It is thus satisfied since f is continuous.
The following proposition states that the second assumption is satisfied.

Proposition 6.1. For every X \in \BbbR m\times n
\leq r such that s(X;f,\BbbR m\times n

\leq r ) > 0, there

exist \varepsilon (X), \delta (X) \in (0,\infty ) such that, for all X \in B[X,\varepsilon (X)] \cap \BbbR m\times n
\leq r and all

Y \in RFDR(X;f, r,\alpha , \=\alpha ,\beta , c,\Delta ),

(12) f(Y ) - f(X)\leq  - \delta (X).

Proof. Let X \in \BbbR m\times n
\leq r be such that s(X;f,\BbbR m\times n

\leq r ) > 0. This proof constructs
\varepsilon (X) and \delta (X) based on the sufficient decrease condition (10) given in Corollary 4.2.
This requires deriving local lower and upper bounds on s(\cdot ;f,\BbbR m\times n

\leq r ) around X. It
first considers the case where rankX = r, in which the construction essentially relies
on the continuity of s(\cdot ;f,\BbbR m\times n

\leq r ) on B(X,\sigma r(X)) \cap \BbbR m\times n
\leq r . Then, it focuses on the

case where rankX < r, in which the bounds on s(\cdot ;f,\BbbR m\times n
\leq r ) follow from the bounds

(14) on \nabla f thanks to (7). If rankX < r, then the second inequality of (7) readily gives
a lower bound on s(X;f,\BbbR m\times n

\leq r ). This is not the case if rankX = r, however. This is

where the rank reduction mechanism comes into play. It considers a projection \^X of
X onto \BbbR m\times n

r - 1 , and the second inequality of (7) gives a lower bound on s( \^X;f,\BbbR m\times n
\leq r ).

The inequality (12) is then obtained from (15) which follows from the continuity of f
at X.

Let us first consider the case where rankX = r. On B(X,\sigma r(X)) \cap \BbbR m\times n
\leq r =

B(X,\sigma r(X)) \cap \BbbR m\times n
r , s(\cdot ;f,\BbbR m\times n

\leq r ) coincides with the norm of the Riemannian gra-
dient of the restriction of f to the smooth manifold \BbbR m\times n

r , which is continuous. In
particular, there exists \rho (X)\in (0, \sigma r(X)) such that s(B[X,\rho (X)]\cap \BbbR m\times n

r ;f,\BbbR m\times n
\leq r )\subseteq 

[ 12 s(X;f,\BbbR m\times n
\leq r ), 32 s(X;f,\BbbR m\times n

\leq r )]. Let \=\rho (X) := \rho (X) + 3
2 \=\alpha s(X;f,\BbbR m\times n

\leq r ), \varepsilon (X) :=
\rho (X), and

\delta (X) :=
1

8
c s(X;f,\BbbR m\times n

\leq r )2min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 
.
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Let X \in B[X,\varepsilon (X)] \cap \BbbR m\times n
\leq r . Then, B[X, \=\alpha s(X;f,\BbbR m\times n

\leq r )]\subseteq B[X, \=\rho (X)]. Indeed, for

all Z \in B[X, \=\alpha s(X;f,\BbbR m\times n
\leq r )],

\| Z  - X\| \leq \| Z  - X\| + \| X  - X\| \leq \=\alpha s(X;f,\BbbR m\times n
\leq r ) + \rho (X)\leq \=\rho (X).

Therefore, Corollary 4.2 applies and, by (10), for all \~X \in RFD(X;f, r,\alpha , \=\alpha ,\beta , c),

f( \~X)\leq f(X) - 1

2
c s(X;f,\BbbR m\times n

\leq r )2min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 
\leq f(X) - \delta (X),

and thus, for all Y \in RFDR(X;f, r,\alpha , \=\alpha ,\beta , c,\Delta ),

f(Y )\leq f( \~X)\leq f(X) - \delta (X).

This completes the proof for the case where rankX = r.
Let us now consider the case where rankX < r. By the first inequality of (7),

\| \nabla f(X)\| \geq s(X;f,\BbbR m\times n
\leq r ). Let \=\rho (X) :=\Delta + 3

2 \=\alpha \| \nabla f(X)\| and

(13) \delta (X) :=
1

24
c

\| \nabla f(X)\| 2

min\{ m,n\}  - r+ 1
min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 
.

Since f is continuous at X, there exists \rho f (X) \in (0,\infty ) such that f(B[X,\rho f (X)]) \subseteq 
[f(X) - \delta (X), f(X) + \delta (X)]. Let \varepsilon (X) := 1

2 min\{ \Delta , \rho f (X), \| \nabla f(X)\| 
2 LipB[X,\Delta ](\nabla f)\} . Then, for

all Z \in B[X,2\varepsilon (X)], since

| \| \nabla f(Z)\|  - \| \nabla f(X)\| | \leq \| \nabla f(Z) - \nabla f(X)\| 
\leq Lip

B[X,\Delta ]

(\nabla f)\| Z  - X\| 

\leq Lip
B[X,\Delta ]

(\nabla f)2\varepsilon (X)

\leq \| \nabla f(X)\| 
2

,

it holds that

(14)
1

2
\| \nabla f(X)\| \leq \| \nabla f(Z)\| \leq 3

2
\| \nabla f(X)\| .

Let X \in B[X,\varepsilon (X)]\cap \BbbR m\times n
\leq r . Let us first consider the case where rankX = r. Then,

0<\sigma r(X) = \sigma r(X) - \sigma r(X)\leq \| X  - X\| \leq \varepsilon (X)\leq \Delta .

Thus, given X as input, the RFDR map considers \^X \in P\BbbR m\times n
r - 1

(X) \subseteq B[X,2\varepsilon (X)] \cap 
\BbbR m\times n

r - 1 and \~XR \in RFD( \^X;f, r,\alpha , \=\alpha ,\beta , c), where the inclusion holds because

\| \^X  - X\| \leq \| \^X  - X\| + \| X  - X\| \leq \sigma r(X) + \varepsilon (X)\leq 2\varepsilon (X).

As X, \^X \in B[X,\rho f (X)], we have

(15) f( \^X)\leq f(X) + 2\delta (X).

Since B[ \^X, \=\alpha s( \^X;f,\BbbR m\times n
\leq r )]\subseteq B[X, \=\rho (X)], Corollary 4.2 applies to \~XR with the ball

B[X, \=\rho (X)]. The inclusion holds because, for all Z \in B[ \^X, \=\alpha s( \^X;f,\BbbR m\times n
\leq r )],

\| Z  - X\| \leq \| Z  - \^X\| + \| \^X  - X\| \leq \=\alpha s( \^X;f,\BbbR m\times n
\leq r )+ 2\varepsilon (X)\leq \=\alpha \| \nabla f( \^X)\| +\Delta \leq \=\rho (X),
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the last inequality following from (14). Thus, for all Y \in RFDR(X;f, r,\alpha , \=\alpha ,\beta , c,\Delta ),

f(Y )\leq f( \~XR)

\leq f( \^X) - 1

2
c s( \^X;f,\BbbR m\times n

\leq r )2min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 

\leq f( \^X) - 1

2
c

\| \nabla f( \^X)\| 2

min\{ m,n\}  - r+ 1
min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 
\leq f( \^X) - 3\delta (X)

\leq f(X) - \delta (X),

where the second inequality follows from (10), the third from the second inequality of
(7), the fourth from (14) and (13), and the fifth from (15). Let us now consider the case
where rankX < r. Let \~X \in RFD(X;f, r,\alpha , \=\alpha ,\beta , c). Since B[X, \=\alpha s(X;f,\BbbR m\times n

\leq r )] \subseteq 
B[X, \=\rho (X)], Corollary 4.2 applies to \~X with B[X, \=\rho (X)]. The inclusion holds because,
for all Z \in B[X, \=\alpha s(X;f,\BbbR m\times n

\leq r )],

\| Z  - X\| \leq \| Z  - X\| + \| X  - X\| \leq \=\alpha s(X;f,\BbbR m\times n
\leq r ) + \varepsilon (X)< \=\alpha \| \nabla f(X)\| +\Delta \leq \=\rho (X),

the last inequality following from (14). Thus, for all Y \in RFDR(X;f, r,\alpha , \=\alpha ,\beta , c,\Delta ),

f(Y )\leq f( \~X)

\leq f(X) - 1

2
c s(X;f,\BbbR m\times n

\leq r )2min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 

\leq f(X) - 1

2
c

\| \nabla f(X)\| 2

min\{ m,n\}  - r+ 1
min

\Biggl\{ 
\alpha ,2\beta 

1 - c

LipB[X,\=\rho (X)](\nabla f)

\Biggr\} 
\leq f(X) - 3\delta (X)

\leq f(X) - \delta (X),

where the second inequality follows from (10), the third from the second inequality of
(7), and the fourth from (14) and (13).

We have thus proven the following.

Theorem 6.2. Consider a sequence constructed by RFDR (Algorithm 3). If this
sequence is finite, then its last element is stationary, i.e., is a zero of the stationarity
measure s(\cdot ;f,\BbbR m\times n

\leq r ) defined in (3). If it is infinite, then each of its accumulation
points is stationary.

Corollary 6.3. Let (Xi)i\in \BbbN be a sequence produced by RFDR (Algorithm 3).
The sequence has at least one accumulation point if and only if lim infi\rightarrow \infty \| Xi\| <\infty .
For every convergent subsequence (Xik)k\in \BbbN , limk\rightarrow \infty s(Xik ;f,\BbbR 

m\times n
\leq r ) = 0. If (Xi)i\in \BbbN 

is bounded, which is the case notably if the sublevel set \{ X \in \BbbR m\times n
\leq r | f(X)\leq f(X0)\} is

bounded, then limi\rightarrow \infty s(Xi;f,\BbbR m\times n
\leq r ) = 0, and all accumulation points have the same

image by f .

Proof. The ``if and only if"" statement is a classic result. The two limits follow
from [7, Proposition 2.12]. The final claim follows from the argument given in the
proof of [9, Theorem 65].
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7. Practical implementation and computational cost. In this section, we
compare the computational cost of the P2GDR map [7, Algorithm 3] with the one
of the RFDR map (Algorithm 2). The comparison, summarized in Table 7.1, is con-
ducted based on detailed implementations of these algorithms involving only evalua-
tions of f and \nabla f and some operations from linear algebra:

1. matrix multiplication;
2. thin QR factorization with column pivoting (see, e.g., [2, Algorithm 5.4.1]);
3. small scale (truncated) SVD, i.e., the smallest dimension of the matrix to

decompose is at most 2r;
4. large scale truncated SVD, i.e., truncated SVD that is not small scale.

Let us recall that, in this list, only the (truncated) SVD cannot be executed within a
finite number of arithmetic operations.

Detailed implementations of the P2GDR and RFDR maps are provided as Algo-
rithms 6 and 8, respectively. They both use Algorithm 4, which is a detailed imple-
mentation of the P2GD, P2GDR, RFD, and RFDR maps in the case where their input
is 0m\times n, as a subroutine. They also rely on Algorithms 5 and 7, which are detailed
implementations of the P2GD and RFD maps, respectively. All those algorithms work
with low-rank representations of the involved matrices as much as possible. In the rest
of the section, we analyze the computational cost of the five algorithms mentioned in
this paragraph.

Algorithm 4 involves one evaluation of \nabla f (in line 1), at most

(16) 1 +max

\Biggl\{ 
0,

\Biggl\lceil 
ln

\biggl( 
2(1 - c)

\alpha LipB[0m\times n,\alpha s(0m\times n;f,\BbbR m\times n
\leq r

)](\nabla f)

\biggr) 
/ ln\beta 

\Biggr\rceil \Biggr\} 
evaluations of f (in the while loop), and one large scale truncated SVD (in line 1).
The upper bound (16) follows from (11).

Algorithm 4. Detailed P2GD, P2GDR, RFD, and RFDR maps given zero as input.

Require: (f, r,\alpha ,\beta , c) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, \alpha \in (0,\infty ), \beta , c\in (0,1),
and s(0m\times n;f,\BbbR m\times n

\leq r )> 0.

Output: ( \~U, \~\Sigma , \~V ) where \~U \~\Sigma \~V \top \in \BbbR m\times n
\~r is an SVD, \~r \in \{ 1, . . . , r\} , and

\~U \~\Sigma \~V \top \in P2GD(0m\times n;f, r,\alpha ,\alpha ,\beta , c) =RFD(0m\times n;f, r,\alpha ,\alpha ,\beta , c) =
P2GDR(0m\times n;f, r,\alpha ,\alpha ,\beta , c,\Delta )=RFDR(0m\times n;f, r,\alpha ,\alpha ,\beta , c,\Delta ).

1: Compute a truncated SVD \~U\Sigma \~V \top \in \BbbR m\times n
\leq r of  - \nabla f(0m\times n);

2: s\leftarrow \| \Sigma \| 2;
3: while f(\alpha \~U\Sigma \~V \top )> f(0m\times n) - c\alpha s do
4: \alpha \leftarrow \alpha \beta ;
5: end while

6: \~\Sigma \leftarrow \alpha \Sigma ;

Algorithm 5 involves one evaluation of \nabla f (in line 1), at most

(17) 1 +max

\Biggl\{ 
0,

\Biggl\lceil 
ln

\biggl( 
1 - c

\alpha \kappa B[X,(1+ 1\surd 
2
)\alpha s(X;f,\BbbR m\times n

\leq r
)](X;f,\alpha )

\biggr) 
/ ln\beta 

\Biggr\rceil \Biggr\} 
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Algorithm 5. Detailed P2GD map (based on [11, Algorithms 2 and 3]).

Require: (f, r,\alpha ,\beta , c) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, \alpha \in (0,\infty ), and
\beta , c\in (0,1).

Input: (U,\Sigma , V ) where U\Sigma V \top \in \BbbR m\times n
r is an SVD, r \in \{ 1, . . . , r\} , and

s(U\Sigma V \top ;f,\BbbR m\times n
\leq r )> 0.

Output: ( \~U, \~\Sigma , \~V ) where \~U \~\Sigma \~V \top \in \BbbR m\times n
\~r is an SVD, \~r \in \{ 1, . . . , r\} , and \~U \~\Sigma \~V \top \in 

P2GD(U\Sigma V \top ;f, r,\alpha ,\alpha ,\beta , c).

1: \=G\leftarrow  - \nabla f(U\Sigma V \top ); \^G1\leftarrow U\top \=G; \^G2\leftarrow \=GV ; \^G\leftarrow \^G1V ;
\^\^G1\leftarrow U \^G;

\^\^G2\leftarrow \^GV \top ;

2: Compute QR factorizations with column pivoting \^G2  - \^\^G1 =U\bot R1 and \^G\top 
1  - 

\^\^G\top 
2 = V\bot R2 where U\bot \in St(r1,m), V\bot \in St(r2, n), R1 \in \BbbR r1\times r

\ast , and R2 \in \BbbR r2\times r
\ast ;

3: s\leftarrow \| \^G\| 2 + \| R1\| 2 + \| R2\| 2;
4: if r= r then

5: Compute a truncated SVD \^U \^\Sigma \^V \top \in \BbbR r+r1\times r+r2
\leq r of

\biggl[ 
\Sigma + \alpha \^G \alpha R\top 

2

\alpha R1 0r1\times r2

\biggr] 
;

6: while f([U U\bot ] \^U \^\Sigma \^V \top [V V\bot ]
\top )> f(U\Sigma V \top ) - c\alpha s do

7: \alpha \leftarrow \alpha \beta ;

8: Compute a truncated SVD \^U \^\Sigma \^V \top \in \BbbR r+r1\times r+r2
\leq r of

\biggl[ 
\Sigma + \alpha \^G \alpha R\top 

2

\alpha R1 0r1\times r2

\biggr] 
;

9: end while

10: \~\Sigma \leftarrow \^\Sigma ; \~U \leftarrow [U U\bot ] \^U ; \~V \leftarrow [V V\bot ] \^V ;
11: else

12: \~G\leftarrow \=G - U \^G1 + (
\^\^G1  - \^G2)V

\top ;

13: if \~G= 0m\times n then
14: Repeat lines 5 to 10;
15: else

16: Compute a truncated SVD U\bot \Sigma V
\top 
\bot \in \BbbR 

m\times n
\leq r - r of \~G\in \BbbR m\times n

\leq min\{ m,n\}  - r;

17: s\leftarrow s+ \| \Sigma \| 2; r0\leftarrow rank\Sigma ;
18: Compute QR factorizations with column pivoting [U\bot U\bot ] =

[U\bot \=U\bot ]

\biggl[ 
Ir1 R1,1

0r3\times r1 R1,2

\biggr] 
and [V\bot V \bot ] = [V\bot \=V\bot ]

\biggl[ 
Ir2 R2,1

0r4\times r2 R2,2

\biggr] 
where \=U\bot \in 

St(r3,m), \=V\bot \in St(r4, n), R1,1 \in \BbbR r1\times r0 , R1,2 \in \BbbR r3\times r0
\ast , R2,1 \in \BbbR r2\times r0 , and

R2,2 \in \BbbR r4\times r0
\ast ;

19: Compute a truncated SVD \^U \^\Sigma \^V \top \in \BbbR r+r1+r3\times r+r2+r4
\leq r of\left[  \Sigma + \alpha \^G \alpha R\top 

2 0r\times r4

\alpha R1 \alpha R1,1\Sigma R
\top 
2,1 \alpha R1,1\Sigma R

\top 
2,2

0r3\times r \alpha R1,2\Sigma R
\top 
2,1 \alpha R1,2\Sigma R

\top 
2,2

\right]  ;
20: while f([U U\bot \=U\bot ] \^U \^\Sigma \^V \top [V V\bot \=V\bot ]

\top )> f(U\Sigma V \top ) - c\alpha s do
21: \alpha \leftarrow \alpha \beta ;

22: Compute a truncated SVD \^U \^\Sigma \^V \top \in \BbbR r+r1+r3\times r+r2+r4
\leq r of\left[  \Sigma + \alpha \^G \alpha R\top 

2 0r\times r4

\alpha R1 \alpha R1,1\Sigma R
\top 
2,1 \alpha R1,1\Sigma R

\top 
2,2

0r3\times r \alpha R1,2\Sigma R
\top 
2,1 \alpha R1,2\Sigma R

\top 
2,2

\right]  ;
23: end while

24: \~\Sigma \leftarrow \^\Sigma ; \~U \leftarrow [U U\bot \=U\bot ] \^U ; \~V \leftarrow [V V\bot \=V\bot ] \^V ;
25: end if
26: end if
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evaluations of f and small scale truncated SVDs (in the while loop that is executed),
several matrix multiplications, at most four QR factorizations with column pivoting
(in lines 2 and 18), and at most one large scale truncated SVD (in line 16). The
upper bound (17) follows from [7, Corollary 3.2]. Let us point out that if \^G1 =
\^\^G2 or \^G2 =

\^\^G1 in line 2, then r1 or r2 is zero and empty matrices appear in the
algorithm.

Based on the analysis of Algorithms 4 and 5, we analyze Algorithm 6. As men-
tioned in section 1, in the worst case, i.e., if the input has rank r and its largest
singular value is smaller than or equal to \Delta , then Algorithm 6 calls Algorithm 5 r
times and Algorithm 4 once. Besides matrix multiplications, this requires r+ 1 eval-
uations of \nabla f , at most (16) plus r times (17) evaluations of f , at most 4r  - 2 QR
factorizations with column pivoting, at most r times (17) small scale truncated SVDs,
and r large scale truncated SVDs.

Algorithm 6. Detailed P2GDR map.

Require: (f, r,\alpha ,\beta , c,\Delta ) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, \alpha \in (0,\infty ), \beta , c\in (0,1),
and \Delta \in (0,\infty ).

Input: (U,\Sigma , V ) where U\Sigma V \top \in \BbbR m\times n
r is an SVD, r \in \{ 1, . . . , r\} , and s(U\Sigma V \top ;

f,\BbbR m\times n
\leq r )> 0.

Output: ( \~U, \~\Sigma , \~V ) where \~U \~\Sigma \~V \top \in \BbbR m\times n
\~r is an SVD, \~r \in \{ 1, . . . , r\} , and \~U \~\Sigma \~V \top \in 

P2GDR(U\Sigma V \top ;f, r,\alpha ,\alpha ,\beta , c,\Delta ).

1: ( \~U, \~\Sigma , \~V )\leftarrow Algorithm 5(\Sigma ,U,V ;f, r,\alpha ,\beta , c);
2: r\Delta \leftarrow | \{ j \in \{ 1, . . . , r\} | \Sigma (j, j)>\Delta \} | ;
3: for j \in \{ 1, . . . , r - r\Delta \} do
4: if j < r then

5: ( \~UR, \~\Sigma R, \~V R)\leftarrow Algorithm 5(U(:,1 : r - j),\Sigma (1 : r - j,1 : r - j), V (:,1 :
r - j);f, r,\alpha ,\beta , c);

6: else

7: ( \~UR, \~\Sigma R, \~V R)\leftarrow Algorithm 4(f, r,\alpha ,\beta , c);
8: end if

9: if f( \~UR \~\Sigma R( \~V R)\top )< f( \~U \~\Sigma \~V \top ) then

10: ( \~U, \~\Sigma , \~V )\leftarrow ( \~UR, \~\Sigma R, \~V R);
11: end if
12: end for

Algorithm 7 involves one evaluation of \nabla f (in line 1), at most

(18) 1 +max

\Biggl\{ 
0,

\Biggl\lceil 
ln

\biggl( 
2(1 - c)

\alpha LipB[X,\alpha s(X;f,\BbbR m\times n
\leq r

)](\nabla f)

\biggr) 
/ ln\beta 

\Biggr\rceil \Biggr\} 

evaluations of f (in the while loop that is executed), several matrix multiplications,
one small scale SVD (in line 8 or 20), and at most one large scale truncated SVD (in
line 15). The upper bound (18) follows from (11).

Let us mention that if one is only interested in the RFD map, then the SVD
computed in line 8 or 20 is not necessary; it can be replaced, e.g., by a QR factorization
with column pivoting. However, Algorithm 7 uses an SVD because it is a subroutine
of Algorithm 8 which requires an SVD as input.
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Algorithm 7. Detailed RFD map via SVDs (based on [11, Algorithms 2 and 4]).

Require: (f, r,\alpha ,\beta , c) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, \alpha \in (0,\infty ), and
\beta , c\in (0,1).

Input: (U,\Sigma , V ) where U\Sigma V \top \in \BbbR m\times n
r is an SVD, r \in \{ 1, . . . , r\} , and s(U\Sigma V \top ;

f,\BbbR m\times n
\leq r )> 0.

Output: ( \~U, \~\Sigma , \~V ) where \~U \~\Sigma \~V \top \in \BbbR m\times n
\~r is an SVD, \~r \in \{ 1, . . . , r\} , and \~U \~\Sigma \~V \top \in 

RFD(U\Sigma V \top ;f, r,\alpha ,\alpha ,\beta , c).

1: \=G\leftarrow  - \nabla f(U\Sigma V \top ); \^G1\leftarrow U\top \=G; \^G2\leftarrow \=GV ; s1\leftarrow \| \^G1\| 2; s2\leftarrow \| \^G2\| 2;
2: if s1 \geq s2 then

3: \^X2\leftarrow \Sigma V \top ;
4: if r= r then

5: while f(U( \^X2 + \alpha \^G1))> f(U\Sigma V \top ) - c\alpha s1 do
6: \alpha \leftarrow \alpha \beta ;
7: end while

8: Compute an SVD \^U \~\Sigma \~V \top \in \BbbR r\times n
\~r of \^X2 + \alpha \^G1;

9: \~U \leftarrow U \^U ;
10: else

11: \~G\leftarrow \=G - U \^G1 + (U( \^G1V ) - \^G2)V
\top ;

12: if \~G= 0m\times n then
13: Repeat lines 5 to 9;
14: else

15: Compute a truncated SVD U\bot \Sigma V
\top 
\bot \in \BbbR 

m\times n
\leq r - r of \~G\in \BbbR m\times n

\leq min\{ m,n\}  - r;

16: s1\leftarrow s1 + \| \Sigma \| 2; r0\leftarrow rank\Sigma ;

17: while f([U U\bot ]

\biggl[ 
\^X2 + \alpha \^G1

\alpha \Sigma V \top 
\bot 

\biggr] 
)> f(USV \top ) - c\alpha s1 do

18: \alpha \leftarrow \alpha \beta ;
19: end while

20: Compute an SVD \^U \~\Sigma \~V \top \in \BbbR r+r0\times n
\~r of

\biggl[ 
\^X2 + \alpha \^G1

\alpha \Sigma V \top 
\bot 

\biggr] 
;

21: \~U \leftarrow [U U\bot ] \^U ;
22: end if
23: end if
24: else
25: Repeat mutatis mutandis lines 3 to 23 with s1 replaced by s2;
26: end if

In the worst case, i.e., if the input has rank r and its smallest singular value is
smaller than or equal to \Delta , then, assuming that r > 1, Algorithm 8 calls Algorithm 7
twice. Besides matrix multiplications, this requires two evaluations of \nabla f , at most
two times (18) evaluations of f , two small scale SVDs, and one large scale truncated
SVD.

Table 7.1 summarizes the operations required by Algorithms 6 and 8 in the case
where r > 1, the input has rank r, and its largest singular value is smaller than or
equal to \Delta . We observe that Algorithm 6 requires more of each operation, except
perhaps the evaluation of f , than Algorithm 8.
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Algorithm 8. Detailed RFDR map.

Require: (f, r,\alpha ,\beta , c,\Delta ) where f :\BbbR m\times n\rightarrow \BbbR is differentiable with \nabla f locally
Lipschitz continuous, r <min\{ m,n\} is a positive integer, \alpha \in (0,\infty ), \beta , c\in (0,1),
and \Delta \in (0,\infty ).

Input: (U,\Sigma , V ) where U\Sigma V \top \in \BbbR m\times n
r is an SVD, r \in \{ 1, . . . , r\} , and s(U\Sigma V \top ;

f,\BbbR m\times n
\leq r )> 0.

Output: ( \~U, \~\Sigma , \~V ) where \~U \~\Sigma \~V \top \in \BbbR m\times n
\~r is an SVD, \~r \in \{ 1, . . . , r\} , and \~U \~\Sigma \~V \top \in 

RFDR(U\Sigma V \top ;f, r,\alpha ,\alpha ,\beta , c,\Delta ).

1: ( \~U, \~\Sigma , \~V )\leftarrow Algorithm 7(U,\Sigma , V ;f, r,\alpha ,\beta , c);
2: if r= r and \Sigma (r, r)\leq \Delta then
3: if r > 1 then

4: ( \~UR, \~\Sigma R, \~V R)\leftarrow Algorithm 7(U(:,1 : r - 1),\Sigma (1 : r - 1,1 : r - 1), V (:,1 :
r - 1);f, r,\alpha ,\beta , c);

5: else

6: ( \~UR, \~\Sigma R, \~V R)\leftarrow Algorithm 4(f, r,\alpha ,\beta , c);
7: end if

8: if f( \~UR \~\Sigma R( \~V R)\top )< f( \~U \~\Sigma \~V \top ) then

9: ( \~U, \~\Sigma , \~V )\leftarrow ( \~UR, \~\Sigma R, \~V R);
10: end if
11: end if

Table 7.1
Operations required by Algorithms 6 and 8 in the case where r > 1, the input has rank r, and

its largest singular value is smaller than or equal to \Delta . c. p. is column pivoting.

Operation Algorithm 6 (P2GDR) Algorithm 8 (RFDR)

evaluation of f up to (16) + r \cdot (17) up to 2 \cdot (18)
evaluation of \nabla f r+ 1 2

QR factorization with c. p. up to 4r - 2 0

small scale (truncated) SVD r \cdot (17) 2

large scale truncated SVD r 1

8. Conclusion. We close this work with three concluding remarks.
1. As in [5] and [7], everything said in this paper remains true if f is only defined

on an open subset of \BbbR m\times n containing \BbbR m\times n
\leq r .

2. We stated in section 1 that RFD can follow apocalypses. It can indeed be
verified that RFD follows the apocalypses described in [5, section 2.2] and
[8, section 3.2]. In fact, for these two instances of (1), RFD and RFDR
respectively produce the same sequences of iterates as P2GD and P2GDR.
The main reason is that, for each of the two instances, if (Xi)i\in \BbbN denotes the
sequence produced by P2GD or P2GDR, then, for all i\in \BbbN ,

(19) P \u T
\BbbR m\times n
\leq r

(Xi)
( - \nabla f(Xi)) = PT

\BbbR m\times n
\leq r

(Xi)( - \nabla f(Xi)).

3. As RFD, RFDR requires the computation of at most one large scale truncated
SVD per iteration. An open question is whether it is possible to design a
first-order optimization algorithm on \BbbR m\times n

\leq r offering the same convergence
properties as RFDR without involving any large scale truncated SVD.
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