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Abstract

Tangent and normal cones play an important role in constrained optimization to describe ad-
missible search directions and, in particular, to formulate optimality conditions. They notably
appear in various recent algorithms for both smooth and nonsmooth low-rank optimization where
the feasible set is the set R "™ of all m x n real matrices of rank at most r. In this paper, motivated
by the convergence analysis of such algorithms, we study, by computing inner and outer limits, the
continuity of the correspondence that maps each X € RZ " to the tangent cone to RZ ™ at X. We
also deduce results about the continuity of the corresponding normal cone correspondence. Finally,
we show that our results include as a particular case the a-regularity of the Whitney stratification
of RZ ™ following from the fact that this set is a real algebraic variety, called the real determinantal
variety.
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1 Introduction

In constrained optimization, the feasible set plays a role as important as the objective function: before
looking for a descent direction, it is first necessary to know which search directions are admissible.
It is now well established that the admissible search directions at a feasible point are described by
the so-called tangent and normal cones to the feasible set at that point [RW98, Chapter 6]. Those
cones therefore play a crucial role in constrained optimization to design algorithms and to formulate
optimality conditions. As a matter of fact, they have recently appeared in various algorithms [SUL5,
ZHG ™16, [HUT9] and optimality conditions [HLUT9, LSXT9, [HLFB20] for both smooth and nonsmooth
low-rank optimization, where the feasible set is

RIS™ = (X € R™™ [tk X < r} 1)

for some positive integers m, n and r such that » < min{m,n}.

In this paper, we mainly focus on the correspondence that maps each X € R”" to the tangent
cone to Rgﬂxn at X. After preliminaries in Section [2) we prove in Sectio fundamental linear algebra
propositions that we use in Section [dto prove our main result, Theorem [£.1], in which we compute inner
and outer limits of this correspondence and draw conclusions concerning its continuity. Such continuity
results are required in order to try to strengthen the convergence analysis of the Riemannian rank-
adaptive method proposed in [ZHG™16]. Then, we deduce in Section [5| results about the continuity of
other tangent and normal cones to R;”TX" Finally, we show in Section @ that Theorem includes as

a particular case the a-regularity of the Whitney stratification of Rg‘rx” following from the fact that

grxn is a real algebraic variety, called the real determinantal variety [Har92].
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2 Preliminaries

In this section, after introducing in Section basic notation concerning the Euclidean vector space of
real matrices and some of its submanifolds, we recall in Section [2.2] the concepts of relative inner and
outer semicontinuity of correspondences, then we review in Section [2.3]five sorts of tangent and normal
cones, and finally we list in Section the available formulas enabling to evaluate these tangent and
normal cones to the real determinantal variety.

2.1 The Euclidean vector space of real matrices and some of its submanifolds

In this paper, m and n are positive integers, R™*" is endowed with the Frobenius inner product (-, -),

|| - || is the Frobenius norm and, for every X € R™*™ and every real number p > 0, B(X, p) :={Y €
R™™ | |X = Y| < p} and B[X,p] :={Y € R™" | | X — Y| < p} are respectively the open and
closed balls of center X and radius p in R™*™. A nonempty subset S of R™*™ is said to be locally
closed at X € S if SN B[X, 4] is closed for some real number § > 0. A nonempty subset C of R"*"
is said to be a cone if, for every X € C and every real number A > 0, AX € C. For every nonempty
subset S of R™*™ and every X € R™*" d(X,S) := infycs || X — Y| is the distance from X to S. For
every nonempty subset S of R™*" S := {X € R™*" | d(X,S) = 0} is a closed set called the closure
of Sand ST :={Y e R™" | (Y, X) <0VX € S} is a closed convex cone called the (negative) polar
of S. If S is a linear subspace of R™*" then S~ is equal to the orthogonal complement St of S. If
0 # 81 C S CR™™ then S§ 2 S, . Finally, according to [RW9S8, Corollary 6.21], for every cone
C C R™*™ C~~ is the closed convex hull of C and, in particular, the polar mapping is an involution
on the set of all closed convex cones in R"*™,

For every positive integer » < min{m,n},

R™WM™:={X e R™" |tk X =r} (2)

is the smooth manifold of m x n rank-r real matrices [HS95, Proposition 4.1], St(r,n) := {U € R"*" |
UTU = I,} is the Stiefel manifold [AMSO0S8, §3.3.2] and O,, := St(n, n) is the orthogonal group. The
set {P RV | P2 =P =P"'}={UU" |U € St(r,n)} of orthogonal projections in R?*" can be
identified with the Grassmann manifold Gr(r,n) [BZA20, (2.1)] and is therefore compact. If X € R"™*"
and X = ULV is a thin SVD, then the Moore-Penrose generalized inverse of X is XT = VE~1UT,
and XXT = UUT and XTX = VVT are respectively orthogonal projections onto im X = im U and
imXT = imV. Also, (X = (X")T = XTT and the function R™*" — RP*™ . X s X1 is
continuous. We close this section by proving the following basic proposition concerning the point-set
topology of R"*™ that will be frequently used in the paper, often implicitly; some results it contains
are mentioned in [AMSO08|, §3.1.5] and [SUL5, (1.3) and Theorem 3.1]. Before that, we extend the
definitions of RZ " in and of RI™*"™ in to every r € N with, of course, RZ " = R™*" if
r > min{m,n}, R™"" = @ if r > min{m,n} and R{**" = RZ;"™ = {Omxn}. We also let RI"*" :=

;”li?m n} denote the set of m x n real matrices that have full rank. Finally, for every r € N, we write

RZX™ = ]R;”TX" \ Rmxn RTX™ .= RMX™\ ]R;”TX” and R’;TX" = R™*\ RZX™.
Proposition 2.1. For every positive integer v < min{m,n}, R"*" has the following properties:
1. it is open if r = min{m, n} while its interior is empty otherwise;

. . mxn .,
2. its closure is RZ™";

3. it is dense and relatively open in ]quxn;

4. it is locally closed at each of its points.

Proof. For every positive integer k < min{m,n} and every X € R}**" the singular values of which
are o1 > --- > o > 0, by the Eckart—Young theorem [EY36] and because arbitrarily small singular
values can be added to X if k¥ < min{m,n},

2 2 .
d(X,R™") = { O\/ Yimrp10; k> (3)

otherwise.



It follows that RZ ™ C R™" and that, for every X € R™", d(X,RZ") = d(X,R™"). Thus,
for every X € R™™ and every ¢ € (0,d(X,R7")), B(X,e) C RZX" with, if r < min{m,n},
B(X,e) NRZX™ = (). This establishes the first point of the proposition. This also implies that Ran

is open and thus that RZTX" is closed. As a result, R;"*"™ C R;”TX”, which establishes the second point
of the proposition, and R"*" = RZ*" N RY " is relatively open in RZ) ™. The third point of the
proposition follows since a set is obviously dense in its closure. The fourth point follows from the fact

that R7"*™ N B[X, 1d(X,RZX™)] is closed for every X € RI"™*™, O

2.2 Inner and outer limits, continuity of correspondences

This section is mostly based on [RW9S8, Chapters 4 and 5]. For every sequence (5;);en of sets in a
metric space (X, dx), the two sets

Lim S; :={z € X | hm dx(z,S;) =0}, Lim S; := {z € X | liminfdx(z, S;) = 0}
i—00 1—00 1—00
are closed and respectively called the inner and outer limits of (S;);en [RW9S8|, Definition 4.1, Exer-
cise 4.2(a) and Proposition 4.4]. If S; # 0 for every ¢ € N, then Lim; , . S; and Lim;_,~, S; are respec-
tively the sets of all possible limits and of all possible cluster points of sequences (z;);en such that
x; € S; for every i € N. It is always true that Lim, . S; C Lim; . S;; if the inclusion is an equality,
then (.S;);en is said to converge in the sense of Painlevé and Lim; o S; := Lim; S; = Limj_ye0 S;
is called the limit of (.S;)ien.

A correspondence, or a set-valued mapping, is a triple F' := (A, B,G) where A and B are sets
respectively called the set of departure and the set of destination of F', and G is a subset of A x B
called the graph of F. If F := (A, B,G) is a correspondence, written F' : A — B, then the image of
r€Aby Fis F(z) :={y € B| (z,y) € G} and the domain of F is dom F := {z € A | F(z) # 0}.

We now review a notion of continuity for correspondences F': X — Y where (X,dx) and (Y, dy)
are two metric spaces. Let S be a nonempty subset of dom F' and z be in the closure S of S. The two
sets

=H222— 00

Lim F(z):= ﬂ Lim F(z;)) = {y €Y | hm dy(y, (2)) =0}, (4)
Soz—x Sax-—ml—mo

Lim F(z):= Lim F(x;) = Y 1 fdy (y, =0 )
JLim F(z) SB%J%HHH z:) ={y € Y | liminf dy (y, F(2)) = 0} (5)

are closed and respectively called the inner and outer limits of F' relative to S at = [RW98| 5(1)].
Clearly, Limg-, ,, F(z) C Limgs,,, F(2); if the inclusion is an equality, then Limgs, , F(z) :=
Limgs, ,, F'(2) = Limgs,, F(2) is called the limit of F relative to S at z. According to [RW9S,
Definition 5.4], F is said to be inner semicontinuous relative to S at x € SNdom F if Limgs,_,, F|(2) 2
F(x), outer semicontinuous relative to S at z if Limgs, s, F(2) C F(xz) and continuous relative to
S at x if F' is both inner and outer semicontinuous relative to S at z, i.e., Limgs,_,, F'(2) = F(x).
If S = dom F', then we omit the “relative to S” for brevity. Let us mention two facts that will be
frequently used in the paper. First, if S’ C S and = € S, then

Lim F(z) C Lim F(z) C Lim F(z) C Lim F(z) (6)

S3z—x S'5z—x 5'5z—x S3z—w

and, in particular, the inner (or outer) semicontinuity of F' relative to S at x implies the inner (or
outer) semicontinuity of F relative to S’ at x. Secondly, if z € S, then and clearly imply that

Lim F(z) C F(z) C Lim F(z). (7)

Soz—x S3z—x

As aresult, in that case, F' is inner semicontinuous relative to S at z € S if and only if Limg, ,, F/(2) =
F(z) and outer semicontinuous relative to S at z if and only if Limgs,, F(z) = F(z).




2.3 Tangent and normal cones

In this section, mostly based on [RW98, Chapter 6], we review, for the convenience of the reader,
especially because various terminologies and notations can be found in the literature, the two tangent
cones and the three normal cones that are considered in this paper. For every nonempty subset
S of R™*™ the tangent and normal cones to S are correspondences with sets of departure and of
destination both equal to R™*™ and domain equal to S. In the rest of this section, X is a point of a
subset S of R™*™,

The set
—— S-X
Ts(X):= Li 8
5(X) = Lim — (8)
X+t
= {V € R™*™ | lim jnf AV S) o} (9)
t—0t

B X (ti)ien in (0,00) converging to 0 . .

= {V €R | 3 (Vi)ient in R7%7 converging to V X+tV;eSVieN (10)

is a closed cone called the (Bouligand) tangent cone [RW9S8|, Definition 6.1 and Proposition 6.2] or
the contingent cone [Mor06, Definition 1.8(i)] to S at X. The equality between and readily
follows from the first equality in while the equality between and @D follows from the second
equality in and the identity

X - X
d(X +tV,S) S ) (11)
t t
holding for every real number ¢t > 0 and every V' € R™*". The closedness of T's(X) follows from the

fact that it is an outer limit. The fact that T5(X) is a cone is clear from @ Finally, let us observe
that, if S € &' C R™*™, then Tg(X) C T (X).

- d(V,

The set
S—-Z7
TS(X) := Lim — (12)
t—0t
REVASD.¢

t—0T t (13)
EEVASY¢

Z
_ {VGRW - Wzo}
(ti)ien in (0, 00) converging to 0
= VeR™"| ~ (X;)ien in S converging to X (14)

3 (Vi)ien in R™*™ converging to V : X; +t;V; e SVi € N

is a closed convex cone called the regular tangent cone [RW98, Definition 6.25] or the Clarke tangent
cone [Mor06, Definition 1.8(iii)] to S at X. The equality between and readily follows from
the first equality in while the equality between and follows from the second equality in
and (TI)). The closedness of 7' (X) follows from the fact that it is an inner limit. The fact that
TS(X) is a cone is clear from (I3)); the convexity of T (X) is then readily verified using (T4). Those
two tangent cones are related by [RW98, Theorem 6.26]: if S is locally closed at X, then T SC (X) is
the inner limit of T4(-) at X, i.e.,

Lim T5(Z) = T (X). (15)
Z—X

The set R
Ns(X) == (Ts(X))~ (16)

is called the regular normal cone [RW98|, Definition 6.3 and Proposition 6.5] or the prenormal cone
[Mor06, Definition 1.1(i) and Corollary 1.11] to S at X.
The set

Ns(X) = Lim Ns(2) (17)



is a closed cone called the normal cone to S at X [RW9S8, Definition 6.3 and Proposition 6.5]. It is
closed as an outer limit and it is a cone because of [RW98, Exercise 4.14]. By [RW98, Proposition 6.6],
Ng(-) is outer semicontinuous:

L Ns(Z) = Ng(X). (18)
If S is locally closed at X, then T (X) = (Ng(X))~ [RW98, Theorem 6.28(b)] and, by [Mor(6, Theo-
rem 1.6}, Ng(X) corresponds to the (basic) normal cone to S at X defined in [Mor06, Definition 1.1(ii)]
also called the Mordukhovich normal cone in [HLU19].

The set
N§(X) = (T§ (X))~ (19)

is called the Clarke normal cone to S at X [Mor06, p. 17]. Since the polar mapping is an involution
on the set of all closed convex cones in R™*" TS (X) = (NS(X))~. If S is locally closed at X,
then (Ng(X))™~ = (TS(X))™ = N§(X), i.e., NS(X) is the closed convex hull of Ng(X). For this
reason, NS (X) is sometimes called the converified normal cone to S at X; see [RW98, 6(19)-6(20)
and Exercise 6.38(a)].

If S is locally closed at X, then those three normal cones are nested as follows:

Ns(X) € Ns(X) € N§(X), (20)

where the first inclusion follows from @ and holds even if S is not locally closed at X.

The five tangent or normal cones that have been introduced in this section are represented in
the diagram of Figure [1| based on [RW98, Figure 6.17]. They generalize the concepts of tangent and
normal subspaces from differential geometry. More precisely, according to [RW98, Example 6.8], if S
is a smooth manifold in R™*" around X, then T4(X) = 7§ (X), Ng(X) = NS(X) = N§(X), and
Ts(X) and Ng(X) are linear subspaces of R™*™ that are the orthogonal complements of each other.

inner limit

Ts(-) TS ()
polar
polar polar
~ outer limit closed convex hull
Ns(1) Ns(+) N§(-)

Figure 1: Five tangent or normal cones to a locally closed subset S of R™*™,

2.4 Tangent and normal cones to the real determinantal variety
In this section, we build on the material reviewed in Section and focus on the case where § = RZX"
for positive integers 7 < min{m,n}. More precisely, we gather in Theorem [2.1] - the explicit formulas

available to evaluate the correspondences Tpnxn (+), Tﬂgmxn( ), Ngmsxn (), NRan( ) and NRan( ), the
RZZ <r <7

semicontinuity of which we will investigate in Sections @ and [5}

Theorem 2.1. Let r and T be positive integers such that r <7 < min{m,n}, and X € RI"*". Then,

Nigmxa (X) = Negnea (X) = (im X)* @ (im X 1), (21)
Tﬂg,m(X) T (X) = (Nmn (X)), (22)
Ty sn (X) = T (X) @ Ny (X) NREZ,, (23)
Ny (X) = Nygoen (X) NREE 1y (24)

If r < T, then R
R (X) = (O, (25)



More explicitly, if U € R, U, € R "V € RI*" and V) € RI*™" are such that imU = im X,
imU, = (imX)Y, imV =im X" and imV, = (im X "), then n € Tymxn(X) if and only if there
<r

exrist A€ R™", Be R™"" C e R™ ™" and D € RZ"*"™" such that B

n=[UU.] [ﬁ f;] vt (26)

in which case A=UnViT, B = UTnVIT, C = UinVJf—r and D = UIanT.

Proof. The tangent space T, x, (X) is given in [HS95, Proposition 4.1] and the normal space Npmxn (X)
is equal to (TRan(X))L. See [HLU19, Corollary 3.2] for (21]), [LSX19, Theorem 3.1] for (22)), [SU15,

Theorem 3.2] for (23), [HLULY, Theorem 3.1] for and [HLUT9, Corollary 2.3] for (25)). Let us
provide a shorter proof of than in [LSX19: TC,..(X) = (NS (X)) = (N (X)) =

R RIZX" RTX™
(NRmxn(X))J- = Tpmxn(X). The last two equalities hold because, as Ri"*" is a smooth manifold,
Npmxn(X) is a linear space the orthogonal complement of which is 70, (X). O

3 On the rank of 2 x 2 block matrices

In this section, A € R¥*F B e R¥*4 C € RP*F and D € RP*Y for positive integers k, p and ¢, s € N
1

with s < min{p, ¢} and, for every £ € N, J, := [5i7g+1,j]f7j:1 = is the reversal matrix.

1
The following is a basic linear algebra result, but we could not find it in the literature, and it will
play an instrumental role in the proof of Proposition

Proposition 3.1. Ifrk D < s, then the following upper bound holds and is tight:
rk [ B] < k+min{k +s,p,q}.

Proof. If k + s > min{p, ¢}, then the bound holds because [4 B] € RFFPX*4_ If k + s < min{p, ¢},
then the bound holds because rk [4 B] <1k [é oﬁq} +rk [0’“ D} < 2k + s. In both cases, the bound

is reached for [é g} = diag(Jk—i—min{k,min{p,q}—s}7 Is, 0p—min{k+s,p,q}Xq—min{k—i—s,p,q})‘ [

The next result is a sort of converse of the preceding one and will be invoked in the proof of
Proposition [£.5]

Proposition 3.2. Iftk [A B] < 2k + s, then there exist U € Opyy and V € Opyq such that [4 B] =
U [g; gi] VT with A’ € R¥¥k B’ ¢ RF¥4, ' € RP*F D' € RPX9 and

rk D' < min{s, max{min{p, q} — k,0}}.
Proof. Let [ B] =[U U] {E Okﬂ)_mkﬂ_r] [V Vi]T be an SVD, where 7 :=1k [4 B] < k +min{k +

s,p,q}. Then, it suffices to take {éﬁ g;} = [J’"E Okﬂ_rmﬂ_r}, U:=[UJ,U]and V:=[VV] O

4 Main result

In this section, for positive integers r, r and 7 such that r < r <7 < min{m,n}, we compute inner
and outer limits relative to R7"*™ and RZ" at X € R]™™ of the correspondence

Rg?

Tgrmxn () : RT —o R 2 X T en (X)), dom Tmon (1) = REX™, (27)

and draw conclusions on its relative (semi)continuity. More precisely, we prove the following result.



Theorem 4.1. For every sequence (X;)ien in RTS”TX" converging to X € R**",

(X)) € Tyen (X). (28)

<r+r—r

mxn - i mxn i) C i mxn
TRS?—H@(X) o g?o TRS? (i) € 1L—1>g<l> TRS?
Moreover, if r <1, then, for every X € RI"™", there exists a sequence (X;)ien in R™*™ converging to
X such that

T (X) = Lim Tyn (Xi) € T Ty (Xi) = Tomnn (X). (29)

<F—r4r 1—00 <r 1—00 <r <Ftr—r

Thus, for every X € RI™",

Lim TR,ZX”(Z) = Lim TR’}X”(Z) = TR?,X" (X), (30)
R’S”j"az—m <r RMX"37 53X =7 STortr

mXI;im TRm}n(Z) = mXI;im TRm}n(Z) = TRmf” (X). (31)
RY)"5Z—X T<F RT™MX"37 X <F <Ftr—r

In particular, the correspondence TRan(') is:
{

e continuous relative to RZ™ at every X € RI™*";

e neither inner nor outer semicontinuous relative to R™"*™ at every X € RZX".

4.1 Proof of Theorem 4.1

By , and @, and readily follow from and . Propositions and
respectively state the first inclusion of , the first equality of , the last inclusion of and
the last equality of . Proposition specifically focuses on the case where r = r.

In a nutshell, those five propositions concern inner and outer limits of (TRZL,X" (XZ))z N for sequences

(Xi)ien in RZX™ converging to X € R ™. More precisely, Propositions and H respectively pro-
vide a lower bound on the inner limits and an upper bound on the outer limits while Propositions [4.2]
and show that these two bounds can be reached for a particular sequence (X;);en. This is sum-
marized in Table [Il

Inner limit Outer limit
Bound Proposition [4.1| | Proposition |4.4
Reachability of the bound Proposition 4.2| | Proposition |4.5

Table 1: Inner and outer limits of (T ..n(Xi)),y for sequences (X;)ien in RZ™ converging to
<r -

X e R;nx” with r < r.

In view of the explicit formula for Tomxn (+), proving those five propositions requires to study
<7

the convergence of matrix representatives of im X; and im Xi—r and of their respective orthogonal
complements. We focus on that task in three lemmas on which our five propositions are based.
Lemma [4.1] deals with the simple case where r = r and serves as a basis for Propositions [.1] and [£.3|
while Lemmas [4.2] and [4.3] both consider the case where r < r. Lemma [£.2] plays a prominent role in
the proof of Proposition whereas Lemma provides the particular sequence mentioned in .

Lemma 4.1. Let (X;)ien be a sequence in R"™™ converging to X € R"*™ and

X =[U U] [E . ][V vt

m—rXn—r
be an SVD. Then, there exist sequences (U;)ien in R, (Uil )ien in RI*™7 0 (V;)ien in RI*" and
(Vil)ien in RIX™™T respectively converging to U, U, V and V|, and such that, for every i € N,
imU; =im X;, imU;; = (im X;)*, imV; = im X;' and imV;; = (im X" )*.



Proof. We define the required sequences using orthogonal projections. For example, for every i € N
large enough, U; will be defined as the orthogonal projection of U onto im X;, that is (XiXZT)U.
Indeed, by continuity, every sequence defined that way converges to (XXT)U = U. Furthermore,
im(Xng U) C im X; for every ¢ € N and this inclusion actually becomes an equality when i is large
enough since rk(X; X ZT U) then becomes equal to r. Indeed, since U € St(r,m), all its singular values are
equal to 1 and therefore d(U, R7X") = 1, which implies in particular that B(U,1) C R7"*". However,
since (XiXiTU)z‘eN converges to U, there exists i, € N such that XiXZ-TU € B(U,1) for every integer
i > i4. In conclusion, we define U; := XiXZ-TU for every integer ¢ > i, and choose U; € R®*" such that
imU; = im X; for every i € {0,...,i,}. The same process can be used to define the other required
sequences: for every i € N large enough, we define U;; := (I, — Xin)UJ_’ Vi = (XJXZ»)V and
Vie =, — Xl-T X;)V1, and complete the definition for the other indices in order to meet the desired
conditions. O

Lemma 4.2. Letr < 7, (X;)ien be a sequence in R™™ converging to X € R™™ and X = ULV be a
thin SVD. Then, there exist U, € St(r—r,m), U, € St(m—r,m), V| € St(r—r,n), Vi € St(n—r,n), a
strictly increasing sequence (ig)ren in N, and sequences (Uy)ien i RY ™, (Ui)ien in RYF, (Uil )ien
in R (Vi)ien in RYT, (Vi)ien in RY™" and (Vil)ien in R satisfying the following
properties:

1. imU =im X, im[U, U;] = (im X)*, imV =im X" and im[V| V] = (im X ")*;
2. foralli € N, im[U; U;] = im X;, imU;; = (im X;)*, im[V; V] = im X[ and imV;; = (im X;")*;
3 limU;=U, lim U;, =U,, lim U;,, =U,, lim V; =V, lim V;, =V, lim V;,; =V,.

1—00 k—oo k—oo 1—00 k—oo k—o0

Proof. For every i € N, let X; € argmin | X; — X| and X; := X; — X; € R™%". Observe that:
KERZ»”XH -

° )7(,~—>Xand£j—>XTasi—>oo;
° Xi—>0mxnasi—>oo;
° XIX} =0, and im X; @ im X; = im X; for every i € N.

Since (XiXZU)ieN and (XgXiV)ieN respectively converge to U € St(r,m) and V € St(r,n), there
exists i € N such that XZ-XZU € B(U,1) and XIXZ-V € B(V,1) for every integer i > i,. For every
i€ {0,...,i}, we choose U; € RY" such that im U; = im X; and V; € R} " such that im V; = im&?.
For every integer i > i,, we define U; := XiXIU e R and V= KIXJ/ c RIE,

As (XZX'ZT )ien is a sequence of orthogonal projections in Ry"”™, it contains a subsequence (X, )N(Jk) keEN
converging to an orthogonal projection that can be written as ULUI with U, € St(r —r,m). It holds
that im U, C (im X)* since UIX = 0p—yxn as XZXJXZ = Oxn for every ¢ € N. In the same way,
()N(}kf(jk)keN is a sequence of orthogonal projections in Rf_xg and therefore contains a subsequence
(X;rkXik)keN converging to an orthogonal projection that can be written as V|, V| with V| € St(r—r,n)
and im V) C (im X ")+

Since (XikXJkUJ_)kGN and (XJkXikVJ_)keN respectively converge to U; € St(r —r,m) and V| €
St(r —r,n), there exists k. € N such that XikXJkUJ_ € B(U.,1) and Xjkf(ikf@_ € B(V_,1) for every
integer k > k. For every integer k > k., we define Uik = Xikf(;rk U, e Ry and ‘7% = XJkX,-kVL €
RY™" ", We complete those definitions to obtain sequences (U;);ey and (V;);en satisfying the required
properties: for every i € N\ {iy | k € N, k > k,}, we choose U; € RY"*" ™" such that im U; = im X;
and V; € RY"7F such that im V; = im XZT

Let U, € St(m —r,m) and V| € St(n — r,n) be such that imU, = (im[U U,])* and im V| =
(im[V V. ])*. For every k € N large enough, we define Uil == Im— XikK;rk — XikXJk)UL e Rmxm=r
and V;, | == (I, — K;-rk X, — ng Xik)VL € RI*™= " and complete these definitions to obtain sequences
(U;1)ien and (Vi1 )en satisfying the required properties. O



Lemma 4.3. For every X € R"", ifr <r, X = U diag(oy,... ,O'I)VT is a thin SVD, U, = {(7 €
St(m — r,m) | imU = (imU)+} and V| ::_{17 € St(n —r,n) | imV = (imV)*}, then there exist
sequences (X;)ien in R and (([U; U], [Vi Vil]))ien in Uy X V) such that:

1. (X;)ien converges to X ;
2. for alli €N, im[U U;] = im X;, imU; | = (im X;)*, im[V V;] = im X, and imV;, = (im X;")*;
3. the set of cluster points of (([U; UiL], [Vi Vii]))ien is UL x V1.

Proof. In view of [Will3, Definition 1.2.17 and Proposition 1.2.18], the set ¢, x V), is separable and
therefore contains a sequence (([U; U;1], [Vi Vii]))ien the set of cluster points of which is exactly
U, x V. Then, defining X; := X + l.c_rfl U;V;" for every i € N yields a sequence (X;);en satisfying the
required properties. O

Proposition 4.1. For every sequence (X;)ien in RZX™ converging to X € RI"™",

@TRan(Xi) 2 TRan (X)

1—00 <r <r—r+r

Proof. Let (X;)ien be a sequence in R;”TX" converging to X € R"*™. For a given n € Tgmxn (X),

<r—r+r
let us construct a sequence (7;);en converging to n and such that 7; € TRan(Xi) for every ¢ € N, and
<r

the proof will be complete. By , there exists i, € N such that, for every integer i > i,, rk X; > r.
For every i € {0,... 4.}, let us choose n; € TRan(Xi)- Let us now complete the definition of (7;);en.
<r

Let X = [U U] diag(2, 0pm—rxn—s)[V V1]T be an SVD. By (26), there exist A € R™¥T, B € RT"T,

C eR™™C and D € R;ng_frxnft such that n = [U U ][4 B][V V.]". For every integer i > iy, let

X € argminy pmxn || X; — X]|| as in the proof of Lemma Let us apply Lemmato (X)ieN, i>i.»

the r in Lemma being r here, and define, for every integer i > i,, n; := [U; U;.] [é g] Vi VU_]T.

Then, (n;);en converges to n and it remains to prove that 7; € TRan(Xz’) for every integer 7 > i,.
<r

Let i € N, 4 > 4, and r; := rk X;. The case where r; = r is trivial since it implies X; = X;. Let
us therefore consider the case where r; > r. Let P; € O,,—, be such that the r; — r first columns
of U/, := U, P; together with U; span im X;. Likewise, let Q; € O,_, be such that the r; — r first
columns of V!, := V;; @; together with V; span im X, . Then, n; = [U; U/, ] [P?C Pﬁg&l v v/ |7

and, since the rank of the submatrix of PiTDQZ- containing its last m — r; rows and n — r; columns is
upper bounded by rk P, DQ; =tk D <7 —r < T —1;, 1; € TRan(XZ-) according to ([26)). O
<r

Proposition 4.2. For every X € R, if r < r and (X;)ien is the sequence in R]"*™ obtained by
applying Lemma[f.3 to X, then

Lim TRmxn(Xi) = TRWXTL (X)

i—00 <r <r—r+r

Proof. 1t suffices to prove the inclusion C thanks to Proposition Let (n;)ien be a sequence
converging to 1 such that n; € TRan(Xi) for every i € N. Choose [U; U,| € U; and [V V] €V,
<F

with the same block sizes as [U; U] and [V; V], respectively, and write

) A Bl
n=UU. U]|D E F|[VV. V]
G H K
By (26), it suffices to show that rk [ £ F] <7 —r. Also by (26)), for every i € N,
B A; B G -
ni=[UU; UL] |D;i Ei Fi|[VV;V], K; =Uj\niViL € RZTXT
Gi H;, K,



In view of Lemma for every P € Op,—r and Q € Oy, ([(7]_ U] [21 22} , [V V] [8;1 8;;})
is a cluster point of (([U; U;1], [Vi Vi1]))ien, hence

(o eaii]) o v fe])- o] i 2] 2

is a cluster point of (K;);cny and has therefore a rank not larger than 7 — r. Thus, each m —r xn —r
submatrix of [ £ £] has a rank not larger than 7 — r, which implies that rk [£ E] <7 —r. O

Proposition 4.3. For every sequence (X;)ien in ]Rmxn converging to X € R"*",

Lim TRan(X@) = TRmxn(X)-
17— 00 <r

Proof. By , every sequence in Rgr " converging to a point in R™*™ contains at most a finite

number of elements in R”"™. Thus, it suffices to consider a sequence (X;);en in R”*™ converging to

X € R™*™ In view of Proposition we only need to prove that
Lim TRan (X;) C TR’Z;X” (X).

Z—}OO
Let n; € TRan(Xi) for every i € N and (n;);en have n € R™*™ as cluster point. We need to prove that
<r
N ET mun(X). Let X = [U U] diag(3, 0m—rxn—r)[V V1]" be an SVD and let us use the notation of
m

Lemma Then, by (26), for every i € N, i = [U; Upi] | & Pt ] [Vi Vi ] with 4; = Uln,Vi T € R,
By =Uln VT e R ¢ = Ul VT € Rm=7 and D; = Ul iV € R Let (n, Jren be
a subsequence of (7;);en converging to n. Then, for every k € N, n;, = [U;, U;, 1] {éﬁ: IBJZIZ} Vi, ‘/ikJ_]T
and, since the subsequences (A4;, Jken, (Bi, )ken, (Ci,)ken and (D, )ken respectively converge to A :=
U'nV, B:=UgV,, C := U/nV and D := U/ nV, with 1k D < 7 — r as RZX"T s closed,
n=[UU][AB][V V.]", which shows that n € TR?;H(X) according to (26)). O

Proposition 4.4. For every sequence (X;)ien in Rmxn converging to X € R™*",

Lim TRmxn(Xz) C Tpmxn  (X).

1—00 <rtr—r
Proof. The case where r = r has been considered in Proposition [f.3] We focus here on the case
where 7 < r. The result is trivial if 7 4+ r — 7 > min{m, n} since Tp,...(X) = R™*". We therefore
assume that 7 + 7 —r < min{m,n}. Let (X;);en be a sequence in RT” " converging to X € RI"*".
Then, for every ¢ € N large enough, r < rk X; < r. We have to pr_ove the following inclusion: if
ni € TR;”,X"(Xi) for every i € N and (7;)ien has n € R™*™ as cluster point, then n € Tpnx,  (X).

< <r+r T
Let (n;, )ken be a subsequence of (1;);en converging to n such that rk X;, =7 € {r,...,r} for every
k € N. We are going to prove that n € Tpnxn (X); the result will then follow from the inclusion

<7‘+T T

TRan (X) C TRan (X). If 7 = r, the result follows from Proposition We therefore assume

<r4i—r <r+r—r

that # > r and use the notation of Lemma applied to (X}, )ken, the r in Lemma 4.2 E being 7 here.
By (26} ., for every k € N, as n;, € TR?;H(X,,C),

B A, B, Cy, B
G, H, K
with
Ay, = Ul m, ViIT e R, = Ul m, ViT e RETT, Cip = Ul m, VI e RT"T,
— UT nzvaT Rfquj — UT ,rhvaT Rffvjxf'ffa — UT Thk VL]—_ c R?*[anfj
Gy, = Ul im, Vi € Rm‘”f, = U Vi, € R’"‘”’:‘% Kik = Ul m Vi) e RGO,
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and respective limits

A=UTnV e R, B:=U"nV, e RE¥™ 1 C:=U"nV, e REX" T
D= UIUV c Rf—rxr’ E = ﬁIUVJ_ c Rf—rxf—z’ F = UIUVJ_ c Rf—zxn—f
G:=U[nV e R™ ™, H:=U[nV, e R, K:=U[nV, eRZ ",

Thus, taking the limit as & — oo on both sides yields
A B C

’I’]:[UUJ_UJ_} D FE F [VVJ_VJ_]Ta
G H K
with, by Propositionapplied withk:=7F—r,p:=m—7,¢g:=n—7Fand s:=7—7, tk[E L] <
F—r+min{F —r,m—rfn—7y=F—r+7—r, h1chshowsthatnEmen (X). 0

<7‘+'r T

Proposition 4.5. For every X € R, if r < r and (X;)ien is the sequence in R]"*™ obtained by
applying Lemma [[.3 to X, then
le TRan(XZ) == TRan (X).

1—00 <r4r—r

Proof. 1t suffices to prove the inclusion O thanks to Proposition For a given n € T RmXn (X),

<r+r T
let us construct a sequence (7;);en having 7 as cluster point and such that n; € TRan( ;) for every
<r

i € N, and the proof will be complete. Let [U; U ] €U, and [V, V] € V). By ,

i A B C .
n=[{UU. U]|D E F|[VV. V]
G H K

with A € RTXC, B € RIX™—T (O ¢ RIXn—r D ¢ RI—X
Rmer[’ H € Rmer’l”*[’ K € RmTmXn—r and rk[IE-IIF(
By Proposition [3.2] applied with k :== r — 71, p := m —

{U1,1 ULQ] € Op_y and {VM Vl,z} € O, such that [E F] _ [U1,1 U1,2} [E’ F’} [V1,1 Vl,g}T with E' €

IE € RIVIXIF € RI-IXn7 G €
| <rF—r+r—r=20r—-r)+F—r).
r,q:=mn—rand s := 7 — r, there exist

Us,1 Uz2 Va1 Voo Uz 1 Usz2 H K’ Vo1 Voo
Rr—rxr—r p’ e RIODXnTT O fN e RMTTXTT and K€ R?T T I (O U] =00 Uy [g; g;z},
1 - Vii Vi, Dol Via Vi, Dl . [UiUi2]T
[vivi] =[] [ V;;}, (5 c] = (sl [yt 2] and [ 2] = [[hpi2] (8], then
B A B -
n=[UU U |D E F|[VViV]
G H K
Thus, for every ¢ € N,
B A B
i ‘= [U U@' UiL] D E F [V V VZJ_] Ran(Xi).
G H K
By construction, 7 is a cluster point of (7;);cny and therefore belongs to Lim;_; oo TRan (Xi). ]
<r

5 Complementary results

In this section, r, r and 7 are still positive integers such that r < r <7 < min{m,n} and we compute
inner and outer limits relative to R and RZX" at X € Rg‘x”, now of the correspondences Tﬂgmxn( ),

NRan( ), NR’"X”( ) and ngmxn( ) reviewed in Sectionsand More precisely, Sectionfocuses
<r
on TRmxn () while the three others concern the normal cones. Section H considers the simple case

Where r = r whereas the two others deal with the general case where r < r, inner and outer limits
being respectively studied in Sections and

11



5.1 Inner and outer limits of 7)l...(-) relative to R"*" and RZ"
<r -

As mentioned after the proof of [RW98, Theorem 6.26], 7 (-) is not inner semicontinuous for an
arbitrary nonempty subset S of R™*™, The following result shows that it is however the case if
S =R2".

Corollary 5.1. For every sequence (X;)ien in Rg‘rx” converging to X € R™",

TR?ZL;,L(X) = Ty (X) € Lim Txn (Xi) € Lim Tﬂggn(x@-) C Tmxn (X). (32)

i—oo T <T =00 <2r—r

Moreover, for every X € R"*", if r < r and (X;)ien is the sequence in R™™ obtained by applying
Lemmalf.5 to X, then

Tomn (X) = Lim TS n (X3) € Lim TS un (Xi) = Tomxn (X). (33)
Ry oo R<7 T ioo REE Reorsy
Thus, for every X € R"*",
. C . C C
Lim TR?}H(Z) = Lim TRQEX"(Z) = TR;an(X) = TR’;EX”(X>’
R’S"Tx"az—m =r RM*"375X =T - =r
S C S C
 Lim Tgmxn(Z) = Lim T (Z) = Tmxn (X).
Rgr EVASD.¢ <r RY EVASD.¢ <r <2r—r

In particular, the correspondence T]R?mm(-) is:
<r

e inner semicontinuous;

e non-outer-semicontinuous relative to R™*™ at every X € RZX";

e continuous relative to RZ™ at every X € RI"*™,

Proof. The first inclusion of follows, mutatis mutandis, from the argument used in the proof of
Proposition In view of , the first equality of , the last inclusion of and the last

equality of respectively follow from Propositions and O

5.2 Continuity of the normal cones to RT" relative to RZ" on R

Proposition 5.1. The correspondences NRan('), NRan(') and Nﬂgmxn(-) are continuous relative to
7 <r <7
RZ™ at every X € R™™.

Proof. The proof is based on Lemma in a similar way as the proof of Proposition O

5.3 Inner limits of the normal cones to RZ" relative to R"*" at points of R "

We begin with a basic result based on [RW98, Exercise 4.14, Proposition 4.15 and Corollary 11.35(b)]
and describing how the inner and outer limits interact with the polar for closed convex cones.

Proposition 5.2. For every sequence (S;);en of closed convex cones in R™*"™,

Lim §; = (Lim ;) ", Lim & C (Lim §;) .
1—00 1— 00

Proof. By [RW98, Exercise 4.14 and Proposition 4.15], Lim S; is a closed convex cone and Lim S;

1—00 1—=00

is a closed cone not necessarily convex. Thus, the inclusion Lim S, C (Lim ;) follows from the
100 1—00
implication == in the third equivalence of [RW98| Corollary 11.35(b)]. Replacing S; by S; in that
inclusion and taking the polar yields Lim S;” C (Lim S;) . Furthermore, by the implication = in
; 1— 00

1—00

the second equivalence of [RW98, Corollary 11.35(b)], LimS;” 2 (LimS;)” = (LimS;) . O
i—o00 i—00 i—00
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We deduce the inner limit of the normal cones to R7™ relative to RI"*™ at every point of RZX".

Corollary 5.2. For every X € R™", if r < r and (Xi)ien is the sequence in RI"*™ obtained by
applying Lemma[{.3 to X, then

Lim N, grxn (Xi) = Lim Npmxn (X;) = Lim N an( i) = {O0mxn}-

1—00 <r 1—00 <r 1—00 <'r
In particular, for every X € RZX™,
. 5 . . C
Lim  Npmxn(Z)= Lim  Npwxa(Z)= Lim  Ngwxa(Z2) = {Omxn}-
RM™"5Z—-X =T RM™"5Z—-X =T RM™"5Z—-X =T

Proof. Observe that

leN m><n(X) C leN m><n(Xz)

1—00 <T 1—00 <T
C Lim NRmfn (Xi)
1—00 <r
(ggT 7rL><n(X'L))
= T mXn X
(T (X))
- N mXxn X
R§2r7r< )
= {Omxn}

The two inclusions follow from . The first equality follows from Proposition The second
equality follows from . The last equality is clear if 2r — r > min{m,n} and follows from
otherwise since r < 2r —r. O

5.4 Outer limits of the normal cones to RZ;" relative to R"*" at points of R”"

As a direct consequence of (25]), for every X € R7",

m N]Rmxn( ) — {Oan}
RZ;%Z—»( <r

Otherwise, we have the following result concerning the regular normal cone.

Proposition 5.3. For every X € R™"*"™,

Li Nomun(Z) = Lim NanZ:NWX.
R?anargax RSF() 7o% RZ (2) RZZ (X)

Proof. The second equality is simply (17)). In the first equality, the inclusion C follows from @ Let
us prove the converse inclusion. Let (Xz)leN be a sequence in }Rmxn converging to X € R"*" such that

Lim; 00 ]\AmeXn(X') # {Omxn}; such a sequence necessarily exists since NRan(X) # {Omxn}. Let
<r

(Xi, JkeN be the subsequence containing all elements of (X;);en that have rank 7; such a subsequence
necessarily exists since Lim;_,oo NRZ‘,X"( i) # {Omxn}. Let us establish that Limg NRm}n(Xik) D

Lim;_ oo ]\Amexn(Xi) and the proof will be complete. Let 1 € Lim; s NRan(Xi) \ {Omxn}. Then, 7
<7 <7
is a cluster point of a sequence (7;)iey such that 7; € Npmxn(X;) for every i € N. Let (1, )ken be a
<r

subsequence converging to 7. Then, since 17 # Opyxn, (X jk_ )ken necessarily contains a subsequence of
(Xi, )ken and therefore 1 € Limy_ o0 NRan(sz) O
<7

We already know from ([18]) that the normal cone correspondence is outer semicontinuous. The
following proposition gives a result a bit more precise.
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Proposition 5.4. For every X € R?X”,

Lim  Npuxo(Z)= Lim Npuxa(Z) = Lim Nguxa(Z) = Nymca (X).

RIXMSZX  <r RIXMSZ5X s Zz-x BRg <r
Proof. Let X € RI"™ ™. The last equality is simply . Thus, in view of @, it suffices to prove that

NRan(X) C Lim NRan(Z).
<r RM*"3Z X <r

In view of Proposition [5.1], we only consider the case where r < r. Let us appl;z Lemma to X and
prove that NRan(X) C Lim;_ oo N, (X;). Let n € NRmxn(X). There are U €e U, V| € V| and
<7 <r

Ry
Ac R?r;fn?:;f}_i such that n = ULAVI. There are U € St(m —r,m — 1), V € St(n — r,n — r) and

A e Rm_””_r}_? such that A = UA'VT. Thus, n = U AV with U, := U,U € St(m —r,m) and

<min{m,n
Vi =V, V €St(n —r,n). Since imU,; C (imU)* and im V|, C (imV)*, (U, V) is a cluster point
of (Uir,Vi1))ien. Thus, for every i € N, n; := UU_A’VZI € NRan(Xi) and 7 is a cluster point of
<7

(1i)ien- n

The following proposition shows that the outer limit of the correspondence Nﬂgmxn(-) at points of
<r

R7ZX™ is different when it is considered relative to R"*™ and to RZ ™.

Proposition 5.5. For every X € R™*",

CLim Ngwsn(Z) = Npmxn(X) € Tim N (Z) = Nigmsn (X).
RMX"57 X <7 <r RZX"5Z—X <7 <7

Proof. Let X € R"™*". The first equality follows from and Proposition

CLim  Ngwa(Z)=  Lim  Npmxa(Z) = Ngma (X).
Ry 3Z—X <r Ry 37X <r <r

Let us prove the other equality. On the one hand, by ,

Lim  Niwun(Z) 2 Ngmun(X) = N (X)-

RZ"5Z—X  T<F <7
On the other hand, by (32)), for every sequence (X;);en in ]R;”TX” converging to X,

Tgmxn(X) € Lim Trmn (X)

1—00 <r

and therefore, by Proposition [5.2

Lim Nggn(Xi) C (Lim TS (X3)) ™ C (Tigmoen (X)) ™ = Nyguon (X) = N]gg;n(X).

=00 i—oo o <F
Thus, Lingm9 gy Nﬂgg;n (Z) C NR?M (X). O

6 Connection with the a-regularity of the Whitney stratification

In this section, r, r and 7 are positive integers such that r < r < 7 < min{m,n}. As mentioned in
[HUT9, §4.1], being a real algebraic variety, R7" admits a Whitney stratification and, in particular,
satisfies the so-called a-regularity condition introduced in [Whi65l, §19]: for every sequence (X;);en in
Ry"*™ converging to X € R"*™, if (TR:"X"(Xi))ieN converges to 7 in Gr(dim R mn), then

Tyen (X) C T (34)
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We should make two remarks here. First, R™*™ has been identified with R™" and each tangent space
to R7"*™ is thus seen as a linear subspace of R™", i.e., as an element of Gr(dim R]**"™ mn). Secondly,
the distance defined in [Whi65, (2.14)] is the gap distance according to [FGP94, (I-2-1) and (I-2-3)(1)]
and [Whi65l, (2.2)], a distance known to induce the usual topology of the Grassmann manifold [FGP94,
(I-2-6)].

In this section, we show that the first inclusion of reduces to when » = 7. This will
follow from Proposition that states that, in the Grassmann manifold, the convergence for the gap
distance implies the convergence in the sense of Painlevé. Before introducing that result, we review
the definition of the gap distance for the convenience of the reader.

First, let us recall from [BZA20, (2.1)] that, given a positive integer p < n, Gr(p,n) is the smooth
manifold of all p-dimensional linear subspaces of R™ and that every G € Gr(p, n) can be identified with
a unique orthogonal projection G' € R}*™ called the orthogonal projection onto G. The gap distance
between G; and Go in Gr(p,n) is defined as ||G1 — G2||2 where G is the orthogonal projection onto G;
for every i € {1,2} and ||-||2 is the spectral norm on R”*" [FGP94] (I-2-1)]. Let us mention that other
topologically equivalent distances on the Grassmann manifold are given in [YLI16] (1) and Table 2].

Proposition 6.1. If (S;);en converges to S in Gr(p,n) endowed with the gap distance, then (S;)ien
converges to S in the sense of Painlevé.

Proof. For every ¢ € N, let P, and P denote the orthogonal projections onto S; and S, respectively.
By hypothesis, lim; ;o ||P; — P|l2 = 0. Let us prove that

LimS; C S C Lim S;.

=00 i—00

The first inclusion follows from the fact that, for every sequence (v;);en such that v; € S; for every
i € N, since Pjv; = v; for every i € N, each cluster point v of (v;);en satisfies Pv = v, i.e., belongs to
S. The second inclusion follows from the fact that, for every v € S, if v; := P;v for every ¢ € N, then
v; € S; for every i € N and (v;);en converges to v. O

Let us now prove that follows from . Let (X;)ien be a sequence in R7"*"™ converging to
X € R such that (Tgmxn(X;)),o converges to 7 in Gr(dim R7™", mn) endowed with the gap

distance. Then, by Proposition T = Lim; s TRan(Xi). Thus, the first inclusion of with
r = T reduces to , as announced.
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