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Abstract

Low-rank matrix completion is the problem of recovering the missing entries of a data
matrix by using the assumption that the true matrix admits a good low-rank approxi-
mation. Much attention has been given recently to exploiting correlations between the
column/row entities to improve the matrix completion quality. In this paper, we propose
preconditioned gradient descent algorithms for solving the low-rank matrix completion
problem with graph Laplacian-based regularizers. Experiments on synthetic data show
that our approach achieves significant speedup compared to an existing method based
on alternating minimization. Experimental results on real world data also show that our
methods provide low-rank solutions of similar quality in comparable or less time than
the state-of-the-art method.
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1 Introduction

Low-rank matrix completion arises in applications such as recommender systems, forecasting
and imputation of data; see [38] for a recent survey. Given a data matrix with missing entries,
the objective of matrix completion can be formulated as the minimization of an error function
of a matrix variable with respect to the data matrix restricted to its revealed entries. In
various applications, the data matrix either has a rank much lower than its dimensions or can
be approximated by a low-rank matrix. As a consequence, restricting the rank of the matrix
variable in the matrix completion objective not only corresponds to a reasonable assumption
for successful recovery of the data matrix but also reduces the model complexity.

In certain situations, besides the low-rank constraint, it is useful to add a regularization
term to the error function, in order to favor other properties related to the true data matrix.
This regularization term can often be built from side information, that is, any information
associated with row and column indices of the data matrix. Recent efforts in exploiting side
information for matrix completion include inductive low-rank matrix completion [53, 23, 58]
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and graph-regularized matrix completion [61, 26, 59, 42, 55]. In particular, graph-regularized
matrix completion involves designing the regularization term using graph Laplacian matrices
that encode pairwise similarities between the row and/or column entities (see Section 6.3.1
and Appendix B). Depending on the application, the graph information is available through
the connections between the data entities or can be inferred from the data itself.

Rao et al. [42] addressed the task of graph-regularized matrix completion by a low-rank
factorization problem of the following form,

minimize
(G,H)∈Rm×k×Rn×k

1

2

∑
(i,j)∈Ω

(
(GHT )ij −M

?
ij

)2
+ λrTr

(
GTΘrG

)
+ λcTr

(
HTΘcH

)
, (1)

where M? ∈ Rm×n is the data matrix to be completed, k is the maximal rank of the low-rank
model, Ω is the set of revealed entries and λr ≥ 0 and λc ≥ 0 are parameters. The matrices
Θr := Im + Lr and Θc := In + Lc with given graph Laplacian matrices Lr ∈ Rm×m and
Lc ∈ Rn×n. The graph Laplacian matrices Lr and Lc incorporate the pairwise correlations
or similarities between the columns or rows of the data matrix M?. Indeed, observe that the
graph Laplacian-based penalty terms in (1) in the form of Tr

(
F TLF

)
can be written as

Tr
(
F TLF

)
=
∑
i,j

Wij‖Fi,: − Fj,:‖22, (2)

where W is the graph adjacency matrix such that L = Diag(W1)−W . The right hand-side
term above suggests that the graph Laplacian-based penalty term promotes low-rank solu-
tions that show pairwise similarities according to the given graph. Rao et al. [42] related
the graph-based regularization term in (1) to a generalized nuclear norm (a weighted atomic
norm [8]) and then found a close connection between the matrix factorization model (1) and
a convex optimization formulation involving the generalized nuclear norm of the matrix vari-
able X = GHT ∈ Rm×n. Moreover, they [42, §5] derived an error bound for the generalized
nuclear-norm minimization problem, which can be smaller than that of the standard nuclear
norm minimization problem if the graph Laplacian matrices are sufficiently informative with
respect to the pairwise similarities between the columns/rows of M?. In this previous work,
an instance (GRALS) of the alternating minimization method is developed for solving the
problem (1).

In this paper, we propose to solve the graph-regularized matrix factorization problem (1)
by using Riemannian gradient descent and conjugate gradient methods. Our proposed algo-
rithms are motivated by the following consideration. Optimization methods on the matrix
product space Rm×k×Rn×k for matrix factorization models have been observed to efficiently
provide good quality solutions to matrix completion problems, in spite of the nonconvexity
of the cost function. Theoretical support for this observation can be found in [49, 16, 29].
Unlike alternating minimization (e.g. GRALS [42]), both Euclidean gradient descent and
our proposed algorithms update the two matrix factors simultaneously, and do not require
setting stopping criteria for subproblem solvers as in alternating minimization methods. Fur-
thermore, by exploiting non-Euclidean geometries of the set of low-rank matrices in relation
to the matrix product space Rm×k × Rn×k, our algorithms use descent directions based on
what can be seen as scaled gradients [33, 37] in the matrix product space. Moreover, as
in [33], the particular structure of the objective function makes it possible to resort to exact
line minimization along the descent direction. We show that the resulting gradient descent
algorithms have an iteration complexity bound akin to the Euclidean gradient method (see
Theorem 5.5), and that faster convergence behaviors are observed with these proposed algo-
rithms, compared to their counterparts that use the Euclidean geometry (see Section 6).

We test the graph-regularized matrix completion model for matrix recovery tasks on
both synthetic and real datasets. We compare our proposed algorithms with a state-of-
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the-art method (GRALS [42]), a baseline alternating minimization (AltMin) method and
Euclidean gradient descent and conjugate gradient methods. We observe that the proposed
algorithms enjoy faster or similar convergence behaviors compared to the state-of-the-art
method and faster convergence behavior than the rest of the baseline methods tested. More-
over, the convergence behavior of the proposed algorithms is observed to be more robust
against balancing issues that may arise with the asymmetric factorization model in (1),
compared to their counterparts that use the Euclidean geometry. For completeness, we
also compare empirically the graph-regularized matrix completion model with two low-rank
matrix completion models: the matrix factorization model without regularization and the
maximum-margin matrix factorization [48, 44] in terms of recovery error. On both synthetic
and real datasets, when the graph Laplacian matrices are properly constructed from features
of the data matrix (with missing entries), the graph-regularized matrix completion model is
found to yield solutions with superior recovery qualities compared to the other two models.

A precursor of this work can be found in the short conference paper [14].

2 Related Work and Discussions

Matrix completion models. The graph-regularized matrix completion problem (1) is a
generalization of the Maximum-Margin Matrix Factorization (MMMF) problem [48, 44],

minimize
(G,H)∈Rm×k×Rn×k

1

2

∑
(i,j)∈Ω

(
(GHT )ij −M

?
ij

)2
+
λ

2

(
‖G‖2F + ‖H‖2F

)
. (3)

The MMMF problem (3) is related to the nuclear norm-based [5, 43, 7] convex program for
low-rank matrix completion [31]

min
X∈Rm×n

1

2

∑
(i,j)∈Ω

(
Xij −M?

ij

)2
+ λ‖X‖∗ (4)

via the relation

‖X‖∗ = min
G,H:GHT =X

1

2

(
‖G‖2F + ‖H‖2F

)
.

As shown by Hastie et al. [20], any solution to (3) is also solution to the convex program (4),
provided that k ≥ rank(M?). Since the MMMF problem searches for a pair of matrix
factors of rank smaller than or equal to k, which is usually much smaller than the matrix
dimensions (m and n), its computational cost and memory requirements are significantly
reduced compared to the nuclear norm-based convex program (4).

Optimization methods in related work. To the best of our knowledge, the state-
of-the-art method for graph-regularized matrix completion is the AltMin-type algorithm
GRALS [42]. For an alternating minimization method (e.g. [42]), one must deal with
Sylvester-type equations for solving the subproblem with respect to the low-rank factor G (re-
spectivelyH) when a graph-based regularization term Tr

(
GTΘrG

)
(respectively Tr

(
HTΘcH

)
)

appears in the objective function. Take the fully observed case in [42] for example, the sub-
problem of (1) with respect to the factor H corresponds to the following Sylvester equation

HGTG+ λcΘ
cH = M?G. (5)

In the matrix completion scenario, so solving the subproblem of (1) with respect to the
factor H corresponds to solving an equation similar to (5), where the constant matrices
involved in the equation depend on the positions of the revealed entries in Ω. Equivalently,
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the subproblem can be rewritten as a linear least-squares problem (in the form of (75) in
Appendix A.8) with respect to the vectorization of the factor HT of dimension nk. The
Hessian operator of this least-squares problem is not block diagonal due to the fact that
the original subproblem corresponds to a Sylvester-type equation. Hence the least-squares
problem of each alternating minimization step for (1) cannot be decomposed into m or n
separate linear systems in dimension k. GRALS [42] approximately solves each of the two
least-squares problems by using a linear conjugate gradient (CG) solver.

AltMin-type algorithms have proven to be very efficient in solving bi-convex problems,
such as matrix factorization, nonnegative matrix factorization [52, 54], dictionary learn-
ing [39, 30], low-rank matrix completion, and in particular have also been proven to converge
linearly for the low-rank matrix completion problem (without regularization) [24, 18]. On
the other hand, there are heuristic considerations with AltMin-like algorithms in practice.
The parameters that control the stopping criteria of the solver for each alternating least
squares problem determines the trade-off between the accuracy of the solution and the time
efficiency of the AltMin method, but there is no apparent way to set them to achieve the
best trade-off once and for all kinds of data. This can be seen in one of our experiments (see
Figure 3). GRALS [42], as an instance of the AltMin method with well-tuned parameters
and additional stopping criteria in its subproblem solvers, may suffer a significant drop in
efficiency when certain properties of the data matrix change: a change of the “scale” of
the data matrix, which can be measured by ‖M?‖F for example, changes significantly the
performance of GRALS with a fixed set of stopping-criteria parameters.

3 Notation, definitions and problem statement

For m ∈ N∗, we denote the set of integers {1, . . . ,m} by [[m]]. An undirected graph G, which
is determined by a set of nodes, V, a set of (undirected) edges E ⊂ V × V and edge weights
W ∈ R|V|×|V|, is denoted as G = (V, E ,W ). The graph adjacency matrix W is symmetric
because G is undirected. In addition, we consider adjacency matrices with nonnegative
coefficients:

Wi1,i2 = Wi2,i1

{
> 0 if (i1, i2) ∈ E
= 0 otherwise.

(6)

Throughout this paper, the graph Laplacian matrix of a graph G, denoted by L, is defined
as

L = diag(W1)−W. (7)

Thus we denote the graph as G = (V, E ,W ) or G = (V, E , L). The graph Laplacian matrix de-
fined by (6)–(7) is positive semi-definite (e.g. [11, 47]). We denote by Λ = Diag

(
λ1, . . . , λ|V|

)
the diagonal matrix containing the eigenvalues of L in increasing order: 0 = λ1 ≤, . . . ,≤ λ|V|.
For a matrix M ∈ Rm×n, we model the row index set of M by a graph Gr = (Vr, Er, Lr),
where Vr = [[m]]. The superscript r of Gr signifies that the graph encodes row-wise corre-
lations. Similarly, the graph that models the column-wise correlations of M is denoted as
Gc = (Vc, Ec, Lc). For a real-valued symmetric matrix Θ, the symbols λmax(Θ) and λmin(Θ)
denote the largest and smallest eigenvalues. The notation Θ � 0 (respectively Θ � 0) signi-
fies that Θ is positive semi-definite (respectively positive definite). The largest and smallest
singular values of a matrix X are denoted by σmax(X) and σmin(X) respectively. The Eu-
clidean inner product and norm for the product space Rm×k × Rn×k, denoted as 〈·, ·〉 and
‖ · ‖ respectively, are defined as

〈x, y〉 = Tr
(
GTxGy

)
+ Tr

(
HT
x Hy

)
, (8a)

‖x‖ =
√
〈x, x〉, (8b)

for any pair of points x = (Gx, Hx), y = (Gy, Hy) ∈ Rm×k × Rn×k.
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Problem statement. The purpose of this paper is to solve (1), which we reformulate as

minimize
(G,H)∈Rm×k×Rn×k

1

2
‖PΩ(GHT −M?)‖2F +

α

2

(
Tr
(
GTΘrG

)
+ Tr

(
HTΘcH

))
, (9)

where PΩ is the projection onto the subspace of sparse matrices with nonzeros restricted to
the index set Ω. The first term in (9) is an equivalent expression of the first term of (1). The
second term corresponds to the other terms of (1) with a parameterization that we find more
convenient: we set λr and λc of (1) by one scalar α, and Θr = Im+γrL

r and Θc = In+γcL
c.

This allows for more flexible settings of the weight of the Laplacian-based terms over the
Frobenius norms. Setting γr = 0 and γc = 0 turns off the graph regularization, leaving us
with the MMMF model (3). Setting α = 0 turns off all regularization terms, leading to an
unregularized matrix factorization problem

min
(G,H)∈Rm×k×Rn×k

fΩ(G,H) :=
1

2
‖PΩ(GHT −M?)‖2F . (10)

The choice of the rank parameter k is a priori unknown for low-rank matrix approximation
problems such as (9). Common approaches include model selection via cross-validation and
rank adaptive methods [34, 60]. In this paper, we focus on the setting where k is smaller than
or equal to the optimal rank.1 Observe that (9) is guaranteed to have a solution whenever
α > 0 since the objective function is continuous and coercive.

4 Optimization on the product space Rm×k × Rn×k

In this section, we introduce Riemannian gradient descent and conjugate gradient algorithms
for problem (9). Since the search space Rm×k×Rn×k is just a vector space, these methods can
be interpreted as preconditioned gradient methods. However, we call them “Riemannian”
because the preconditioners are inspired from known Riemannian metrics on the set of rank-k
m-by-n matrices, as we now explain.

In the main problem model (9), the product GHT is an m × n matrix of rank smaller
than or equal to k, and such matrices form the following nonlinear matrix space

M≤k :=
{
X ∈ Rm×n : rank(X) ≤ k

}
.

In particular, when the regularization parameter α in (9) reduces to 0, the model (9) can be
directly identified with the following optimization problem on M≤k via the matrix factor-
ization model Rm×k × Rn×k 7→ M≤k : (G,H) 7→ X = GHT ,

min
X∈M≤k

1

2
‖PΩ(X −M?)‖2F . (11)

We refer to the model (11) and (10) as the unregularized matrix completion model, in contrast
to the graph-regularized model (9). A recent survey [50] provides advances on optimization
methods on the low-rank matrix space M≤k.

In contrast, when the regularization parameter α in (9) is nonzero, the model (9) does
not induce an optimization problem on the Riemannian quotient manifoldMk of fixed-rank
matrices. This is because the equivalence class of pairs (G,H) that represent the same X is
{(GF T , HF−1) : F ∈ GL(k)} and it is readily seen that the graph regularization term (9) is
not constant on the equivalence classes. This does not prevent us from drawing inspiration
from known Riemannian metrics on the set of rank-k metrices; see next.

1In real-world applications, it usually suffices to set up a rank value that is orders of magnitude smaller
than m and n in order to work with an “underestimated” rank, that is, smaller than or equal to the optimal
rank.
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Geometric elements on Rm×k × Rn×k. The tangent space at a point x ∈ Rm×k ×
Rn×k is the Cartesian product of the tangent spaces of the two element matrix spaces:
Tx
(
Rm×k × Rn×k

)
' Rm×k × Rn×k.

Given two tangent vectors ξ, η ∈ Tx
(
Rm×k × Rn×k

)
at x, we consider the following two

Riemannian metrics on Rm×k × Rn×k,

• The right-invariant metric:

gx(ξ, η) = Tr
(
ξTGηG

(
GTG+ δIk

)−1
)

+ Tr
(
ξTHηH

(
HTH + δIk

)−1
)

; (12)

• The preconditioned metric:

gx(ξ, η) = Tr
(
ξTGηG

(
HTH + δIk

))
+ Tr

(
ξTHηH

(
GTG+ δIk

))
, (13)

where δ > 0 is a constant parameter. Both (12) and (13), gx are well-defined inner products.
The condition δ > 0 is required for (12) and (13) to remain well defined and positive definite
when G or H does not have full column rank. Note that, if we set δ = 0 and restrict the
search space to the product space of full column-rank matrices Rm×k∗ × Rn×k∗ , then (12)
and (13) reduce to known metrics that induce metrics on the Riemannian quotient manifold
Mk. Specifically, (12) reduces to the right-invariant metric proposed in [32, 35], and (13)
reduces to a metric proposed by Mishra et al. [33], which is specially adapted to the matrix
factorization loss function (10). To see this, it suffices to note that the diagonal blocks of the
Hessian (see Appendix A.9) of fΩ in (10) correspond to the following linear transformation

(ξG, ξH) 7→
(
PΩ(ξGH

T )H,PΩ(GξTH)
T
G
)
. (14)

Definition 4.1. For a point x ∈ Rm×k × Rn×k, the gradient of f at x is the unique vector
in Tx

(
Rm×k × Rn×k

)
, denoted as gradf (x), such that

gx(ξ, gradf (x)) = Df(x)[ξ], ∀ξ ∈ Tx
(
Rm×k × Rn×k

)
. (15)

Based on the metric (12) and Definition 4.1, the gradient gradf (x), denoted as Qright-
inv, is

gradf (G,H) =
(
∂Gf (G,H) (GTG+ δIk), ∂Hf (G,H) (HTH + δIk)

)
. (16)

Based on the metric (13) and Definition (4.1), the gradient of gradf (x), denoted as Qpre-
con, is

gradf (x) =
(
∂Gf (G,H) (HTH + δIk)

−1
, ∂Hf (G,H) (GTG+ δIk)

−1
)
. (17)

4.1 Algorithms

In this subsection, we introduce our algorithms and their elements such as computation of
the gradient of the objective function of (9) and stepsize selection. We consider two basic
algorithms (Algorithms 4.1 and 4.2) for optimization on Rm×k×Rn×k. Computational details
of these algorithms are given in Appendices A.1–A.6.

Initialization. A widely used initialization method is the so-called spectral initialization
(e.g. [27, 28, 49]) to construct the initial low-rank variable x0. This consists of computing
(U0, S0, V0) by the k-SVD of the matrix with all the unknown entries set to zero and then
defining the initial point x0 := (G0, H0) as follows,

(G0, H0) = (U0S
1/2
0 , V0S

1/2
0 ). (18)
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Algorithm 4.1 Riemannian Gradient Descent (RGD)

Input: Function f : Rm×k × Rn×k 7→ R, an initial point x0 ∈ Rm×k × Rn×k, and tolerance
parameter ε > 0.

Output: xt.
1: t← 0.
2: Compute gradient: gradf

(
xt
)
. # See Qrightinv (16) or Qprecon (17)

3: while ‖gradf
(
xt
)
‖ > ε do

4: For ηt = −gradf
(
xt
)
, find stepsize st such that (st, η

t) satisfy (22) or (23)
# See Algorithm A.4 for (22)

5: Update: xt+1 = xt + stη
t.

6: t← t+ 1.
7: Compute gradient: gradf

(
xt
)
.

8: end while

Algorithm 4.2 Riemannian Conjugate Gradient (RCG)

Input: Function f : Rm×k × Rn×k 7→ R, an initial point x0 ∈ Rm×k × Rn×k and ε > 0.
Output: xt.

1: t← 0.
2: Compute gradient: gradf

(
xt
)
, ηt = −gradf

(
xt
)
. # See Qrightinv (16) or

Qprecon (17)
3: while ‖gradf

(
xt
)
‖ > ε do

4: Compute the conjuage descent direction ηt by (20). # See Algorithm A.3
5: Find step size st such that

(
st, η

t
)

satisfy (22) or (23). # See Algorithm A.4 for (22)
6: Update: xt+1 = xt + stη

t.
7: t← t+ 1.
8: end while

Gradient and descent directions. The Euclidean gradient of the objective function
of (9) at x := (G,H) ∈ Rm×k × Rn×k is computed as follows. We have

Df(x)[ξ] = Tr
(
ξTGSH + ξTHS

TG
)

+ α
(
Tr
(
ξTGΘrG

)
+ Tr

(
ξTHΘcH

))
,

where S = PΩ(GHT −M?). From the identity

Df(x)[ξ] = Tr
(
ξTG∂Gf (x)

)
+ Tr

(
ξTH∂Hf (x)

)
,

we deduce that the components of the Euclidean gradient ∇f(x) are

∂Gf (x) = SH + αΘr G, (19a)

∂Hf (x) = STG+ αΘc H. (19b)

Subsequently, the computation of the Riemannian gradient with respect to the metric (12)
(respectively (13)) is based on (16) (respectively (17)) and (19). Algorithms 4.1–4.2 are later
referred to as Qrightinv RGD/RCG and Qprecon RGD/RCG respectively. Detailed steps for
these computations are given in Algorithm A.1.

In Algorithm 4.1, the descent direction at iteration t is the negative gradient: ηt =
−gradf

(
xt
)
. In Algorithm 4.2, the conjugate descent direction is defined as

ηt = −gradf
(
xt
)

+ βtη
t−1 (20)

for t ≥ 1, where βt is determined by a nonlinear CG rule, such as the Fletcher-Reeves rule

βt =
gxt
(
gradf

(
xt
)
, gradf

(
xt
))

gxt−1 (gradf (xt−1) , gradf (xt−1))
, (21)
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depending on the local geometry of Rm×k × Rn×k. A full description of the computation of
the RCG descent directions is given in Appendix A.1; see Algorithm A.3.

Stepsize selection. In Algorithms 4.1–4.2, a stepsize st must be selected at each iteration
for the update step along a descent direction ηt ∈ Txt

(
Rm×k × Rn×k

)
. For this purpose, a

common approach is to carry out a line search procedure by using backtracking with respect
to the Armijo condition,

f(xt)− f
(
xt + sηt

)
≥ σsgxt

(
−gradf

(
xt
)
, ηt
)
. (22)

Alternatively, one can estimate the stepsize st via line minimization (e.g. [33, 51]): At a
point x ∈ Rm×k × Rn×k, we compute the stepsize defined as follows,

s∗t = argmin
s≥0

f(G+ sηG, H + sηH), (23)

for a given descent direction η ∈ Tx
(
Rm×k × Rn×k

)
. We use the stepsize (23) for the

numerical experiments in this paper. The solution s∗t to (23) is obtained by selecting the
minimizer from the real positive roots of the derivative of the quartic function of (23),
which is a polynomial of degree 3 and can be computed easily. The computational cost of
this procedure is of the same order as the computation of the Riemannian gradient (16)
or (17). Computational details of (23) are given in Appendix A.4. In Section 5, we will show
convergence properties of Algorithm 4.1 using the stepsize (23).

4.2 The regularization parameters

In this section, we discuss how to choose suitable values for the parameters of problem (9).
Note that the model (9) with α > 0 and at least one strictly positive value for γr and γc

is referred to as a graph-regularized matrix completion (GRMC) model. When α > 0 and
(γr, γc) = 0, model (9) reduces to a MMMF model (3). When (α, γr, γc) = 0, model (9)
reduces to the unregularized matrix completion model (10), which is referred to as the MC
model. Depending on the properties of the data (synthetic and real datasets), and for given
graph Laplacian matrices Lr, Lc, we have two types of regularization schemes: (i) fixed
parameter values and (ii) two-phase regularization scheme.

In the fixed-parameter scheme, we choose the parameter values following a standard
cross validation procedure (see, e.g., [25, §5.1.3]). We first generate a collection of parameter
settings with random samples drawn from a range of values in Iα × Iγr × Iγc ⊂ R3

+ with the
uniform distribution in log scale, and then we select the parameter setting that has the best
mean validation score (in terms of the RMSE (47) on the validation set). This regularization
scheme is used later in Sections 6.2.2 and 6.3.

Algorithm 4.3 Two-phase matrix completion using graph-based regularization (2-phase
GRMC)

Input: Parameter α > 0; γr > 0 and/or γc > 0. Iteration budget T, S > 0 for the two
phases. An initial point x0 ∈ Rm×k × Rn×k. A tolerance parameter (for Phase 2) ε > 0.

Output: x∗ ∈ Rm×k × Rn×k.
1: Initialize with x0 ∈ Rm×k × Rn×k using (18).
2: Phase 1: x∗α = GRMC Solver(fα, x

0,∞) for at most T iterations. # See Algorithm 4.1
or 4.2.

3: Phase 2: start from x∗α and find x∗ = GRMC solver(fΩ, x
∗
α, ε) for at most S iterations.
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In the two-phase regularization scheme, shown in Algorithm 4.3, we set α and at least one
parameter in (γr, γc) to strictly positive values for Phase 1; for Phase 2, all the regularization
parameters are set to zero. In lines 2–3, the GRMC Solver is chosen from one of our proposed
algorithms, such as Qprecon RGD (Algorithm 4.1 using the gradient (17)). In Phase 1, fα
denotes the objective function of (9) with the parameter value α. In Phase 2, the objective
function reduces to fΩ in (10). The parameters (for Phase 1) in Algorithm 4.3 are chosen
in the same way as in the fixed-parameter scheme. This two-phase regularization scheme
is designed for sample-efficient exact recovery of low-rank matrices and is used later in
Section 6.2.1.

5 Convergence analysis

In this section, we analyze the convergence properties of Algorithm 4.1 with step sizes se-
lected by line minimization (23). We conduct the analysis as follows: First, we show that
the objective function of (9) is Lipschitz continuously differentiable in the search space
Rm×k × Rn×k with respect to the Euclidean geometry. Second, we show that the specially
designed non-Euclidean gradient descent directions, defined as Qrightinv (16) and Qpre-
con (17), ensure sufficient decrease in the function value provided the step sizes are chosen
properly depending on the local geometry at each iterate. We show that the line minimiza-
tion approach (23) finds such step sizes. Based on these results, we show the convergence
behavior of the proposed RGD algorithm based on a generic convergence result given by
Boumal et al. [3]. We assume throughout this section that α > 0 in (9). Recall that the
inner product 〈·, ·〉 and the norm ‖ · ‖ throughout this paper are defined in (8) with respect
to the Euclidean geometry on Rm×k × Rn×k.

In the presence of the regularization term, we show that the Euclidean gradient ∇f in
the sublevel set (with respect to a point x0 ∈ Rm×k × Rn×k):

S0 =
{
x ∈ Rm×k × Rn×k : f(x) ≤ f(x0)

}
(24)

is Lipschitz-continuous.

Lemma 5.1 (Lipschitz-continuous gradient). For a given point x0 ∈ Rm×k × Rn×k, there
exists a Lipschitz constant L0 > 0 such that the Euclidean gradient ∇f is L0-Lipschitz
continuous in S0 (24): for any x, y ∈ S0,

f(y)− f(x) ≤ 〈∇f(x), y − x〉+
L0

2
‖y − x‖2. (25)

Proof. The objective function of (9) is coercive since α > 0. Hence S0 is bounded. Let B
be a closed ball that contains S0. Since f is C∞, it follows that it is Lipschitz continuously
differentiable in B. The result follows by a classical argument (see for example [36, Lemma
1.2.3]).

Based on Lemma 5.1, we get the following sufficient decrease property.

Lemma 5.2. At any iterate xt = (Gt, Ht) produced by Algorithm 4.1 before termination,
the following sufficient decrease property holds, provided that the step size s satisfies 0 < s <
2Σt/L0, for a strictly positive value Σt > 0,

f(xt+1)− f(xt) ≤ −Ct(s)‖gradf
(
xt
)
‖2, (26)

where Ct(s) = s(Σt − L0s
2 ) > 0. Under the gradient setting Qrightinv (16),

Σt = min

(
1

δ + σ2
max(Gt)

,
1

δ + σ2
max(Ht)

)
, (27)
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and under the gradient setting Qprecon (17),

Σt = δ + min
(
σ2

min(Gt), σ2
min(Ht)

)
. (28)

Proof. At the t-th iteration in Algorithm 4.1, the descent direction is ηt = −gradf
(
xt
)
. Let

s > 0 denote the step size for producing the next iterate: xt+1 = xt + sηt. In the gradient
setting Qprecon where gradf (x) is defined by (17), the partial differentials are

∂Gf(x) = ηG(HTH + δIk) and ∂Hf(x) = ηH(GTG+ δIk). (29)

From Lemma 5.1, we have

f(xt+1)− f(xt) ≤ 〈∇f(xt), xt+1 − xt〉+
L0

2
‖xt+1 − xt‖2, (30)

≤ −s‖ηt‖2
(
δ + min

(
σ2

min(Gt), σ2
min(Ht)

))
+
L0s

2

2
‖ηt‖2, (31)

= −Ct(s)‖gradf
(
xt
)
‖2, (32)

where Ct(s) = s(Σt − L0s
2 ) and Σt = δ + min

(
σ2

min(Gt), σ2
min(Ht)

)
. The inequality (31) is

obtained by using (29) as follows,

〈∇f(xt), xt+1 − xt〉 = −s 〈∇f(xt), gradf
(
xt
)
〉 (33)

= −s
(
Tr
(
ηTGηG(HTH + δIk)

)
+ Tr

(
ηTHηH(GTG+ δIk)

))
(34)

≤ −s
(
δ‖ηt‖2 + σ2

min(H)‖ηG‖2F + σ2
min(G)‖ηH‖2F

)
, (35)

where the superscript of the element matrices (G,H) = xt and (ηG, ηH) = ηt are omitted for
brevity. Similarly, the same result applies to the gradient setting Qprecon (16), with the
quantity Σt determined by (27).

Next, we prove that Algorithm 4.1 with step sizes selected by line minimization (23)
ensures sufficient decrease at each iteration.

Lemma 5.3. The iterates produced by Algorithm 4.1, with step sizes selected by line mini-
mization (23), satisfy the following sufficient decrease property,

f(xt+1)− f(xt) ≤ −
(
Σ2
t /2L0

)
‖gradf

(
xt
)
‖2. (36)

Proof. In Algorithm 4.1, let η = −gradf
(
xt
)

denote the Riemannian gradient descent direc-
tion at iteration xt ∈ Rm×k × Rn×k. From Lemma 5.1 and Lemma 5.2, we have

f(xt + sη) ≤ f(xt)− Ct(s)‖gradf
(
xt
)
‖2,

for s ∈ [0, 2Σt/L0], with Σt defined in (28) and (27). One the other hand, let s̄ be the stepsize
determined by (23), then by definition, the next iterate xt+1 = xt + s̄η is the minimum of f
along the direction η: f(xt+1) ≤ f(xt + sη), for all s ≥ 0. Hence

f(xt+1) ≤ min
s∈[0,2Σt/L0]

f(xt + sη) (37)

≤ min
s∈[0,2Σt/L0]

f(xt)− Ct(s)‖gradf
(
xt
)
‖2 (38)

= f(xt)−
(
Σ2
t /2L0

)
‖gradf

(
xt
)
‖2. (39)

10



In both Lemma 5.2 and Lemma 5.3, the sufficient decrease quantity depends on the
local information Σt. The quantity Σt is useful only when it is a strictly positive number.
We address this point in Proposition 5.4 for two gradient settings Qrightinv (16) and
Qprecon (17).

Proposition 5.4. Under the same settings as in Lemma 5.2 and 5.3, there exist positive
numerical constants Σ∗ > 0 such that the quantities Σt (27) and (28) are lower-bounded,

inf
t≥0

Σt ≥ Σ∗. (40)

Proof. In the case of gradient setting Qrightinv (16),

Σt = min

(
1

δ + σ2
max(Gt)

,
1

δ + σ2
max(Ht)

)
.

First, we prove that there exists D0 > 0 such that the norm of the iterate in Rm×k × Rn×k
is bounded:

‖xt‖ ≤ D0 (41)

for all t ≥ 0. It suffices to note that the whole sequence (xt)t≥0 belongs to the sublevel set
S0 (24) and that f is coercive. Second, for any x = (G,H) ∈ Rm×k × Rn×k, the maximal
singular values σmax(G) and σmax(Ht) are bounded by the norm as follows,

‖xt‖2 = Tr
(
GTG

)
+ Tr

(
HTH

)
≥ σ2

max(G) + σ2
max(H). (42)

The result (40) can be deduced by taking the numerical constant Σ∗ := 1/(δ + D2
0) and

combining (41) and (42).
In the case of gradient setting Qprecon (17),

Σt = δ + min
(
σ2

min(Gt), σ2
min(Ht)

)
≥ δ > 0,

and the result (40) can be ensured by Σ∗ := δ.

We are now ready to conclude in a manner similar to that in [3, Theorem 2.5]. A minor
difference, however, is that the norm in [3] is the Riemannian norm, whereas our search space
is a vector space and we use the Euclidean norm (8b). It is possible to use the Riemannian
norms induced by (12) and (13) if the iterates stay on a fixed-rank manifold, but in all cases
it suffices to use the Euclidean norm in the development of our results.

Theorem 5.5. Under the problem statement (9), for a given initial point x0 and the gradient
settings Qrightinv (16) and Qprecon (17), the sequence generated by Algorithm 4.1 with
the stepsize (23) converges and the decay of the gradient norm satisfies

‖gradf
(
xN
)
‖ ≤

√
2L0(f(x0)− f?)

Σ∗N
(43)

after N iterations, where L0 > 0 is the Lipschitz constant mentioned in Lemma 5.1, the
numerical constant Σ∗ > 0 is given in Proposition 5.4 and f? is a lower bound2 of the
function value of (9).

2One can take f? := 0 since the objective function of (9) is nonnegative.
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Proof. The convergence of the sequence (xt)t≥0 is a direct result of the sufficient decrease
property (26) in Lemma 5.2 and the boundedness of the sequence of function values (f(xt))t≥0.
See Theorem 2.5 of [3].

Let N ≥ 1 denote the number of iterations needed for getting to an iterate xN such that
‖gradf

(
xN
)
‖ ≤ ε, for a tolerance parameter ε > 0.

Since our algorithm (Algorithm 4.1) does not terminate at t ≤ N − 1, the gradient
norms ‖gradf

(
xt
)
‖ > ε, for all t ≤ N − 1. By summing the right hand sides of (36) for

t = 0, . . . , N − 1, we have

f(xN )− f(x0) ≤ −
N−1∑
t=0

(Σ2
t /2L0)‖gradf

(
xt
)
‖2 (44)

≤ −(ε2/2L0)
N−1∑
t=0

Σ2
t (45)

= − (Σ∗/2L0) ε2N (46)

Hence the number of iterations

N ≤ 2L0(f(x0)− f(xN ))

Σ∗ε2
≤ 2L0(f(x0)− f?)

Σ∗ε2
.

In other words, the iterate produced by the algorithm after N iterations satisfies

‖gradf
(
xN
)
‖ ≤

√
2L0(f(x0)− f?)

Σ∗N
.

6 Numerical Experiments

In this section, we evaluate the performance of the proposed algorithms for solving the
graph-regularized matrix completion problem (9). The experimental tests are based on
both synthetic and real-world datasets. The synthetic data are generated using a low-rank
matrix model with graph information, and the graph Laplacian matrices underlying this
graph-related data model are then used in the regularization term of (9). This synthetic
experimental setting corresponds to an ideal situation where the graph Laplacian matrices
in the regularization term are perfectly conform with the pairwise similarities between the
matrix entries. In the tests on real-world data, a graph Laplacian matrix is constructed using
basic graph proximity models based on pairwise distances between the rows (or columns) of
an initial estimation of the data matrix.

6.1 Preliminaries

On both synthetic and real-world data, we compare the time efficiency of our proposed
methods with several baseline methods: Euclidean gradient descent on the product space
Rm×k ×Rn×k, alternating minimization and a state-of-the-art method GRALS [42] (also an
alternating minimization method). Note that by time efficiency, we mean the amount of time
that an iterative method takes to arrive at an iterate of a certain recovery accuracy, and this
mainly depends on the convergence behavior and the computational cost per-iteration of the
method. We also compare the graph-regularized (GRMC) model (9) with two other matrix
completion models in terms of matrix recovery errors: (i) unregularized matrix completion
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(MC) via the factorization model (10) and (ii) the maximum-margin matrix factorization
(MMMF) model (3). The following list gives detailed description of the methods involved in
the experiments.

• Qprecon RGD and Qprecon RCG correspond to the Riemannian gradient (Algorithm 4.1)
and conjugate gradient descent (Algorithm 4.2) using the gradient Qprecon (17).
Similarly, Qrightinv RGD and Qrightinv RCG correspond to Algorithm 4.1 and Algo-
rithm 4.2 using the gradient Qrightinv (16). By default, the step sizes in all these
algorithms are selected via line minimization (23), with a label (linemin). Since we
focus on the application of (9) in the low rank setting, we set the rank parameter k
by an underestimated value, that is, smaller or equal to the rank of the true hidden
matrix, in all experiments. In such case, we set the parameter δ in the definition of
Qprecon (17) and Qrightinv (16) to zero without any numerical issue (e.g. having
rank deficient factor matrices). We show in Figure 10 (Appendix A.5) that the con-
vergence behavior of the so-tested algorithms is almost the same as their counterparts
in the theoretical setting (with a presumably δ > 0) analyzed in Section 5.

For consistency, Euclidean GD and Euclidean CG (see Appendix A.7) stand for the
gradient descent and nonlinear conjugate gradient descent algorithms respectively, in
which the descent directions (such as the Euclidean gradient) are computed with respect
to the Euclidean geometry on Rm×k ×Rn×k. The step sizes in all these algorithms are
selected via line minimization (23).

• AltMin: An alternating minimization algorithm ((74a)–(74b)), where each of the two
graph-regularized least-squares subproblems is solved by the linear CG routine Algo-
rithm A.6. AltMin1 is an instance of AltMin that has accuracy parameter ε = 10−14

and nmax
CG = 500. AltMin2 has accuracy parameter ε = 10−6 and nmax

CG = 500. Note
that the parameter nmax

CG can also be set to even larger values: Since each of the
two subproblems in the alternating minimization are initialized with the latest iterate
(warm-started), the number of iterations required for each subproblem solver to obtain
a solution with an accuracy ε usually does not exceed nmax

CG preset here. Hence, the
active parameter for controlling the stopping behavior of the subproblem solvers in the
experiments is ε.

• GRALS: An alternating minimization algorithm implemented by Rao et al. [42] that is
available on line3. GRALS1 denotes the GRALS algorithm with the accuracy parameter
ε = 10−10 and nmax

CG = 500. GRALS differs from AltMin in that the linear CG solver
for the subproblems (74a)–(74b) has an additional stopping criterion4 compared to
AltMin, which could trigger early termination and hence provide inexact solutions to
the subproblems (74a)–(74b) under certain circumstances.5

To assess the approximation performance for the matrix completion task, we use the root
mean-squared-error (RMSE). Given M? ∈ Rm×n and an index set Ω ⊂ [[m]]× [[n]], the RMSE
of X ∈ Rm×n on Ω is defined as

RMSE (X; Ω) =

√ ∑
(i,j)∈Ω

(Xij −M?
ij)

2/|Ω|. (47)

3Link: https://github.com/rofuyu/exp-grmf-nips15.
4A stopping criterion that restricts the subproblem update to a region of radius depending on the norm

of the partial gradients of f .
5This feature is one of reasons that make the convergence behavior of GRALS different from that of

AltMin, and in several applications, faster than the latter.
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All numerical experiments are performed on a workstation with 8-core Intel Core i7-4790
CPUs and 32GB of memory running Ubuntu 16.04 and MATLAB R2015a. The source code
is available on https://gitlab.com/shuyudong.x11/grmc.

6.2 Synthetic Data

We generate synthetic data with the following low-rank matrix model, which is a general-
ization of the model in [42, §5.1]. Let Gr := (Vr, Er, Lr) and Gc := (Vc, Ec, Lc) be the graphs
modeling the row-wise and column-wise similarities of M? and let (U r,Λr) (respectively
(U c,Λc)) denote the pair of matrices containing the eigenvectors and associated eigenvalues
of Lr (respectively Lc). A low-rank data matrix X? is generated as follows,

Z? = F ?Q?T , (48a)

X? = ArZ?(Ac)T , (48b)

where (F ?, Q?) ∈ Rm×r? × Rn×r? are composed of columns that are i.i.d. Gaussian vectors
and the matrices Ar ∈ Rm×m and Ac ∈ Rn×n are defined below with respect to a function
g : R 7→ R acting element-wisely on a diagonal matrix:

Ar = U rg(Λr), Ac = U cg(Λc). (49)

More precisely, g(Λ) = Diag (g(λ1), · · · , g(λm)) for any diagonal matrix Λ. The function g
in (49) enables one to control the way in which the graph information in Lr and Lc transforms
the low-rank random Gaussian matrix Z?. In the literature of graph signal processing [45],
the function g is referred to as a graph spectral filter, which is a graph analogue of filters in
signal processing. In our experiments, the function g is

g(λ) =

{
λ−p if λ > 0,
0 λ = 0,

(50)

for p ≥ 1. The spectral model (50) is a typical example of functions that are monotonically
non-increasing over R∗+ and that have the effect of low-pass filters [45] in the graph spectral
domain [46]. Other examples include (i) the Tikhonov filter (e.g. [1]) gγ(λ) = 1/

√
1 + γλ,

and (ii) the diffusion operator [12, 13, 56] gτ (λ) = e−τλ.

Remark 6.1. In order for model (48) to cover the graph-agnostic setting as a special case,
we define by convention that Ar = Im when Lr = 0 and Ac = Im when Lc = 0.

The model (48) is of particular interest for experiments on synthetic data because it mod-
els a wide range of real data matrices whose entries present pairwise similarities: Due to the
non-increasing nature of the function g on (0,∞) in (49), the transformations in (48b) with
the matrices Ar and Ac return a data matrix X? such that the graph-based regularization
terms of (9) are reduced compared to that before the transformation (see Appendix B for
details). This translates to the observation that the entries of X? present pairwise similar-
ities that agree with the graph (Vr, Lr) and/or (Vc, Lc), unlike the structureless entries in
Z? (48a). Figure 1 shows the difference between Z? and X? := ArZ? regarding this property.

6.2.1 Matrix completion from noiseless observations

In this subsection, the ground-truth data matrix M? is generated by (48) for r? � min(m,n)
and is partially observed without any noise. The index of the revealed entries are i.i.d.
sampled according to the Bernoulli model

(i, j) ∈ Ω with probability ρ, for any (i, j) ∈ [[m]]× [[n]]. (51)
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Figure 1: A data matrix Z from the Gaussian random model (48a) and X = ArZ from the
graph-based model (48b). The Laplacian matrix Lr involved in (48b) is generated with the
prototypical graph model Community using GSPbox [40]. Comparison in the data entries
and in the graph spectral domain. Top: A randomly chosen column (a): y = Z(j) and (b):

y = X(j). Bottom: Average amplitude of graph Fourier coefficients (c): Ẽ|Ẑ(j)(λl)| and (d):

Ẽ|X̂(j)(λl)| from low (small eigenvalue λl(L
r)) to high graph vertex frequencies.

For simplicity, we let Lc = 0 such that Ac = In (see Remark 6.1). Hence the graph informa-
tion is incorporated in M? row-wisely by Ar with respect to (49). For this purpose, a graph
Laplacian matrix Lr is generated with the prototypical graph model Community using the
GSPbox [40]. The function g in this model is (50) with p = 2.

For the matrix completion model (9), we set the rank parameter by k := rank(M?). Note
that in this case, M? belongs to M≤k, and any point (G∗, H∗) ∈ Rm×k × Rn×k such that
G∗H∗T = M? exactly recovers the hidden matrix M?. We refer to the search for such a
point (G∗, H∗) as exact recovery of the data matrix. In the literature of matrix completion,
exact recovery of a low-rank matrix M? by a factorization model such as (10) is possible
under conditions on the extent of incoherence [6] of the singular subspaces of M? and the
observation model Ω. Specifically, several sample complexity lower-bounds for ρ ≈ |Ω|/mn
are proved with both regularized ([49, 16]) and unregularized (implicitly regularized [29])
matrix factorization models.

In the experiments of this subsection, we carry out tests for recovering the hidden matrix
M? with our proposed two-phase (2-phase GRMC) regularization scheme (Algorithm 4.3).
Note that this 2-phase regularization scheme is specially adapted to the exact recovery of
the hidden matrix M? since it disables the regularization terms in its last phase (avoiding
any bias in the solution). The unregularized matrix completion (MC) model (10), which
corresponds to the special setting of (9) for (α, γr, γc) = 0, is also tested. The label “MC
(GRALS)” in Figure 2(a) corresponds to the result of unregularized matrix completion using
GRALS, which reduces to a simple “ALS” algorithm since all regularization parameters are
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set to zero for the (unregularized) MC model.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f 

s
u

c
c
e

s
s
fu

l 
re

c
o

v
e

ri
e

s

MC (GRALS)

MC (Qprecon RCG)

GRMC (Qprecon RCG (2-phase))

(a)

0 2 4 6 8 10

Time (Sec.)

10 -15

10 -10

10 -5

10 0

R
M

S
E

Euclidean GD (2-phase)

Euclidean CG (2-phase)

Qprecon RGD (2-phase)

Qprecon RCG (2-phase)

(b)

Figure 2: Matrix completion from noiseless observations. M? is generated with non-trivial
graph information with the model (50) and is partially observed without any noise. The rank
parameter k := rank(M?). (a): Percentage of successful recoveries under various sampling
rates. The solutions are given by the two different matrix completion models (MC and
GRMC). Matrix size m = 500, n = 600, rank r? = 12. (b): Results per iteration by 2-phase
GRMC (Algorithm 4.3) at sampling rate |Ω|/mn = 10.0%: matrix size m = 800, n = 900,
rank r? = 12.

First, we compare empirically the sample complexities of (i) the unregularized matrix
completion model (MC) and (ii) the graph-regularized matrix completion model (9) through
the 2-phase GRMC scheme described above. Under the experimental settings described in
the beginning of this Section, for m = 500, n = 600 and r? = 12, we carry out repeated
tests at various sampling rates |Ω|/mn ranging from 5% to 28%. At each sampling rate,
we compute the percentage of successful recoveries among Ntests = 20 repeated tests. Each
test is counted as successful if the RMSE (47) on test entries is smaller than 10−12.6 In
particular, at each sampling rate, the parameters (α, γr) in the GRMC model (9) (for Phase
1 of Algorithm 4.3) are selected with respect to the test RMSE of the final solution, among
NCONFIGS = 5 randomly generated parameter configurations (see the paragraph of the fixed-
parameter scheme of Section 4.2 for details). Here the configurations for (α, γr) are generated
with the uniform distribution (in the log scale) in the 2-dimensional box [10−4, 1]× [10−2, 5].7

As shown in the 2-phase GRMC scheme (Algorithm 4.3), the whole algorithm is stopped
by either the accuracy parameter ε (see Algorithms 4.1, 4.2), when the iterate becomes an
ε-stationary point or by the iteration budget parameter S, which is tuned to a sufficiently
large value for both successful and unsuccessful recovery scenarios. Experimental results are
shown in Figure 2(a): These results show empirically that the 2-phase GRMC method has
a lower sample complexity than unregularized matrix factorization.

Second, we compare the time efficiency of the proposed algorithms with their counterparts
under the Euclidean geometry. Figure 2(b) shows results per iteration under a sampling rate
that is sufficiently large for 2-phase GRMC.

In particular, when the sampling rate ρ is sufficiently large, it is possible to exactly
recover the hidden matrix M? without any regularization (see Figure 2(a) at sampling rates

6This is an attainable accuracy level in the exact recovery scenario, based on preliminary tests.
7In the exact recovery scenario, the Phase 1 of our 2-phase algorithms does not need very fine-tuned

parameters and the 2-dimensional box was also already narrowed after preliminary tests. A selection from 5
parameter configurations was enough to get the improvements shown in Fig.2(a).
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larger than 15%). Therefore, we test our algorithms for this special case, with the problem
parameter α set to zero in (9). In this special regime, we compare the time efficiency of
our proposed algorithms with the several other methods in two different settings for the
initialization point x0 ∈ Rm×k ×Rn×k: In the first test, each method is initialized at a point
x0 = (G0, H0) given by (18). In this case, the two factors G0 and H0 are balanced, in the
sense that their matrix norms are equal. In the second test, we test the same methods with
an unbalanced initial point

y0 = (λG0, H0/λ), (52)

for λ = 5. The comparative results are given in Figure 3.
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Figure 3: Results per iteration. Experimental settings: m = 1000, n = 900, r = r? =
10, |Ω|/mn = 20.0%. M? is generated with the model (50) and is partially observed without
any noise. (a): Each method is initialized at x0 by (18). (b): Each method is initialized at
y0 by (52).

From the results in Figure 2 and Figure 3, we have the following observations:

• Our algorithms (Qprecon RGD, RCG) are faster than their Euclidean geometry-based
counterparts (Euclidean GD, CG) in every experimental setting.

• Our algorithms are faster than the baseline alternating minimization methods AltMin1,
AltMin2.

• Qprecon RCG is faster than GRALS1 and this comparison becomes much more evident
when the initialization point is unbalanced than when it is balanced. Similarly, Qprecon
RGD is as fast as GRALS1 in the balanced initialization setting and much faster than the
latter in the unbalanced case.

• In relation to the remark above, the baseline methods Euclidean GD, Euclidean CG

and GRALS1 are significantly slower when the initialization point is unbalanced.

6.2.2 Matrix completion from noisy observations

In this subsection, we assume that the partially observed data matrix M? is composed of
noisy observations from a low-rank matrix X?,

M? = X? + E, (53)
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where Eij
i.i.d.∼ N (0, σ2

N ) for all (i, j) ∈ [[m]] × [[n]] and X? ∈ Rm×n is generated using the
model (48) with rank r? � min(m,n). For simplicity, we let Lc = 0 and only incorporate
row-wise similarities in X? through Lr ∈ Rm×m with respect to (49). For this purpose, a
graph Laplacian matrix Lr is generated with the prototypical graph model Community using
the GSPbox [40]. The function g in this model is (50) with p = 2. Figure 4 shows the
singular values of M? generated with (53), where the true low-rank matrix X? is generated
with (48), and the noise level of E is determined by a signal-to-ratio parameter SNR = 20.
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Figure 4: Singular values of M? generated with (48) and (53), where the noise level is set by
a signal-to-ratio parameter SNR = 20.

For the matrix completion problem (9), the rank parameter k is set to be smaller than
rank(X?) and its values will be specified later. We test our algorithms, the baseline algo-
rithms and the state-of-the-art algorithm GRALS [42] for solving the problem (9) with fixed
parameter values α ≥ 0 and γr ≥ 0.

First, we compare the recovery quality of the solutions to the three types of matrix com-
pletion models, that is, the unregularized matrix completion (MC), the graph-regularized ma-
trix completion (GRMC) model (9) and the maximum-margin matrix completion (MMMF)
in (3). For the unregularized problem model (MC), the parameter setting is α = 0. For the
MMMF model (α > 0 and γr = 0), the parameter setting is selected among a collection of
NHP randomly generated values in a reasonable range, (αi)i=1,...,NHP

. For the GRMC model
(α > 0 and γr > 0), the parameter setting is selected among a collection of NCONFIGS = 10
uniformly distributed (in log-scale) values in a 2-dimensional box [10−4, 1] × [10−2, 5]. The
criterion for the parameter selection is the test RMSE (47). At each sampling rate and once
the parameters are selected for MMMF and GRMC, the recovery score of each of the three
matrix completion models, using a given algorithm (ours as well as the baseline methods)
corresponds to the average score after Ntests training instances based on (M?,Ωs)s=1,...,Ntests ,
where the observation sets Ωs are generated according to (51) with the given (fixed) sam-
pling rate. All methods tested are stopped by either the accuracy parameter ε (see Algo-
rithms 4.1, 4.2), when the iterate becomes an ε-stationary point or by an iteration budget
parameter, which is set to a sufficiently large value for all methods. Figure 5 shows the
recovery scores of each of the three problem models under different sampling rates. From
Figure 5, we can see that at various sampling rates, the GRMC model (9) provide solu-
tions with superior recovery qualities than the other two graph-agnostic models. Naturally
enough, the improvement on recovery qualities via GRMC is significant at small sampling
rates.

Second, we compare the time efficiency of the proposed algorithms with the baseline
methods. The methods are tested in two slightly different experimental settings. Based on
the data generation method described in the beginning of this subsection, the data matrix
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Figure 5: Average test RMSE of the three matrix completion models from noisy observations.
M? is generated with non-trivial graph information with the model (50) and is partially
observed with additive noise (SNR = 20). The rank parameter k = 10. Recovery score of
solutions to MC, MMMF and GRMC at various sampling rates. Matrix size: m = 500,
n = 600, rank r? = 12. The sampling rate |Ω|/mn ranges from 1.0% to 18.0%.

in each of these two experiments is rescaled with respect to a given constant value: We set

the constant scalar such that E
[
|M?

ij |
]

= 1 in the first setting and E
[
|M?

ij |
]

= 10−3 in the

second one. Figure 6 shows the time efficiency of the tested methods in these two experiments
in terms of the RMSE score per iteration. Note that the tests for producing Figure 5 are

conducted under the data setting E
[
|M?

ij |
]

= 1, without loss of generality. In particular, for

the second data setting, with E
[
|M?

ij |
]

= 10−3, we show in Figure 7 the recovery qualities of

the iterates under the unregularized (MC) and the graph-regularized (GRMC) models, for a
relatively low sampling rate. Given the graph Lr underlying the synthetic data model (48),
the GRMC model corresponds to one randomly generated set of parameters (α > 0, γr > 0),
where α is randomly generated in the range (10−6, 10−3) and γr randomly generated in the
range (10−2, 5). We can see that for all the tested methods, the recovery qualities of the
iterates under the GRMC model outperforms those of the unregularized matrix completion
model.

From the results in Figure 6 and Figure 7, we have the following observations:

• Our algorithms (Qprecon RGD, RCG) are faster than their counterparts under the Eu-
clidean geometry (Euclidean GD, CG).

• Our algorithms are faster than the baseline alternating minimization methods AltMin1,
AltMin2.

• Qprecon RCG is either faster than GRALS1 or as fast as the latter in various settings.

• In relation to the previous remark. The time efficiency of GRALS changes significantly
when there is a simple change in the scale of the data matrix, as shown in Figure 6, since
it has an additional stopping criterion that restricts the search of the solution to the
least-squares subproblem (74a) (resp. (74b)) to a region of radius ‖∂Gf(Gt−1, Ht−1)‖
(respectively ‖∂Hf(Gt, Ht)‖). This restricted-region criterion depends however, both
on properties of the data matrix (such as the scale of the data) and the iterate.

• As illustrated in Figure 5, the recovery performances of all tested methods for GRMC
are better and more stable than those for (unregularized) MC, when the sampling rate
|Ω|/mn is insufficient; see Figure 7(a)–(b).
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Figure 6: Test RMSE per-iteration on sythetic data. The data matrix M? is generated
via (48) and (53). Matrix size: m = 1000,n = 900, rank r? = 12. The rank parameter k = 8.

Subplots (a-b): The data matrix M? is rescaled by a scalar constant such that E
[
|M?

ij |
]

= 1;

(a): the sampling rate |Ω|/mn = 11.5%, (b): |Ω|/mn = 18.0%. Subplots (c-d): The data

matrix M? is rescaled by a scalar constant such that E
[
|M?

ij |
]

= 10−3; (c): the sampling

rate |Ω|/mn = 11.5%, (d): |Ω|/mn = 18.0%.
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Figure 7: Test RMSE per iteration on synthetic data. The data matrix M? is rescaled

by a scalar constant such that E
[
|M?

ij |
]

= 10−3. Matrix size: m = 1000, n = 900, rank

r? = 12. The rank parameter k = 8. (a)–(c): the sampling rate |Ω|/mn is 3.5%, 5% and
10% respectively. The dashed lines with a label “(MC)” corresponds to methods for solving
the (unregularized) MC problem.
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6.3 Real Data

In this subsection, we conduct experiments on real-world datasets. An essential difference
between these experiments and experiments on synthetic data is that there is no reference
graph associated with the data matrices in a real-world application. Since the data matrix in
a real-world application often present pairwise similarities between its entries, we build the
graphs Lr and Lc based on the given data before the graph-regularized matrix completion
task. Subsequently, we conduct tests with the graph-regularized and graph-agnostic matrix
completion models using all the methods involved, and compare their time efficiency. The
real-world data used for these tests are from the PeMS Traffic occupancy and MovieLens
datasets.

6.3.1 Methodology for graph construction

In the existing work on matrix completion using graph-based regularization, there are two
main approaches to constructing the graph Laplacian matrices: (i) build the graph Laplacian
matrix from the data M? ∈ Rm×n itself by using a certain graph node proximity model,
e.g., [26], and (ii) build a similarity graph Lr (and/or Lc) from side information [42, 55], that
is, information related to the entities of the row (and/or column) indices of M?.

In our experiments, we adopt the first approach. Note that in [26], the computation
of the graph proximity parameters is based on pairwise distances using only the revealed
entries in M?. In contrast, we compute the graph proximity parameters based on a low-rank
approximation of the partially revealed matrix. More precisely, we propose to use a rank-r
approximation of M0 as the features for constructing the graph. Let (U0, S0, V0) denote the

r-SVD of the zero-filled matrix M0 := PΩ(M?) ∈ Rm×n and let M̃0 := U0S0V
T

0 . Next, the

computation of the graph edge weight parameters based on the given matrix M := M̃0 can
be realized by using various node proximity methods such as K-Nearest Neighbors (K-NN)
and ε-graph models [9, 2, 21, 10], which boils down to computing a certain distance matrix
between the rows (respectively columns) of M . Let Zr(M) ∈ Rm×m denote the row-wise
distance matrix of M defined as follows,

Zij(M) = d (Mi,:,Mj,:) , for i, j ∈ [[m]], (54)

where d : Rn × Rn 7→ R+ is a distance on the n-dimensional vector space. Subsequently, we
build a Gaussian ε-graph by computing the node proximity weights as follows

[Wε(M)]ij = exp
(
−Zij(M)/ε2

)
, for i, j ∈ [[m]], (55)

where ε ∈ R is a hyperparameter of the graph model. Furthermore, a sparse graph adjacency
matrix is more preferable than a dense in a computational point of view, as the per-iteration
cost for computing the gradient (as well as the function value) in (19) depends partly on
nnz(Lr) and nnz(Lc), hence the sparsity of the row-wise (resp. column-wise) graphs. For sim-
plicity, we sparsify the graph adjacency matrix defined in (55) by the following thresholding
operation

[Wε,σ(M)]ij = 1≥σ
(
exp

(
−Zij(M)/ε2

))
, for i, j ∈ [[m]], (56)

where 1≥σ is the hard threshold function 1≥σ(z) =

{
z if z ≥ σ
0 otherwise.

In the graph model (56), the parameter ε is tuned according to the variance of (Zij)i,j=1,...,m. In
the following experiments, we set ε := Var((Zij)ij)/5 and find that this setting gives sat-
isfactory improvements on the final recovery performances. The parameter σ is chosen
according to a preset sparsity level s � 1 for the edge set associated with Wε,σ such that
|E(Wε,σ)|/m2 ≤ s. We set s := 8% and find that it is an appropriate trade-off between the
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amount of similarity graph edges and the additional computational cost required by matrix
multiplications with the graph Laplacian.

6.3.2 The Traffic Data

The PeMS Traffic occupancy data8 is a matrix with dimensions 963 × 10 560 containing
traffic occupancy rates (between 0 and 1) recorded across time by m = 963 sensors placed
along different car lanes of the San Francisco Bay area freeways. The recordings are sampled
every 10 minutes covering a period of 15 months. The column index set corresponds to the
time domain and the row index set corresponds to geographical points (sensors), which are
referred to as the spatial domain. Unlike the case with data from social networks or any other
kind with useful meta-data, there is no straightforward way to find any side information for
the Traffic dataset that may help constructing a spatial-domain graph. Hence we construct
a sparse row-wise similarity graph with the Gaussian ε-graph model (56).

Based on the same methodology for parameter selection using K-fold cross validation
(with K = 5) as described in Section 6.2.2, we compare the matrix recovery qualities of
GRMC and the other two graph-agnostic matrix completion models. The results are shown
in Table 1.

SR=1% SR=5% SR=20%
Method MC MMMF GRMC MC MMMF GRMC MC MMMF GRMC

GRALS1 0.0453 0.0351 0.0343 0.0778 0.0291 0.0272 0.0371 0.0246 0.0232
AltMin1 0.1218 0.0356 0.0344 0.0455 0.0332 0.0280 0.0317 0.0249 0.0244
AltMin2 0.1217 0.0352 0.0343 0.0455 0.0308 0.0275 0.0317 0.0247 0.0238
Euclidean GD 0.0455 0.0352 0.0343 0.0399 0.0299 0.0276 0.0261 0.0253 0.0241
Euclidean CG 0.0472 0.0350 0.0343 0.1443 0.0289 0.0272 0.0360 0.0246 0.0232
Qprecon RGD 0.0553 0.0351 0.0344 0.0477 0.0293 0.0273 0.0297 0.0246 0.0232
Qprecon RCG 0.0514 0.0350 0.0343 0.1875 0.0291 0.0271 0.0570 0.0246 0.0232
Qrightinv RGD 0.0454 0.0452 0.0349 0.0329 0.0326 0.0326 0.0300 0.0299 0.0300
Qrightinv RCG 0.0454 0.0452 0.0343 0.0812 0.0295 0.0273 0.0261 0.0254 0.0241

Table 1: Recovery scores (test RMSE) of the three matrix completion models under various
sampling rates (SR): the unregularized matrix completion (MC), maximum-margin matrix
factorization (MMMF) and graph-regularized matrix completion (GRMC).

Figure 8 shows the time efficiency of the methods tested in terms of the RMSE score per
iteration.

6.3.3 MovieLens dataset

The MovieLens 100K 9 dataset [19] consists of 10 000 ratings (1 to 5) from 943 users on
1 682 movies. Each user has rated at least 20 movies. The data was collected through the
MovieLens web site (movielens.umn.edu) during the seven-month period from September
19th, 1997 through April 22nd, 1998. This data has been cleaned up—users who had less
than 20 ratings or did not have complete demographic information were removed from this
data set. For the graph-regularized matrix completion model, we construct a sparse row-wise
similarity graph (on the set of users) with the Gaussian ε-graph model (56).

Based on the same methodology for parameter selection using K-fold cross validation
(with K = 5) as described in Section 6.2.2, we compare the matrix recovery qualities of

8https://archive.ics.uci.edu/ml/datasets/PEMS-SF
9https://grouplens.org/datasets/movielens/100k/
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Figure 8: Test RMSE per iteration on the Traffic dataset (m = 963, n = 10560). The
rank chosen is for the model (9) is k = 18. (a): the sampling rate |Ω|/mn = 1.0%, (b):
|Ω|/mn = 5.0%, (c): |Ω|/mn = 20.0%. In particular, the label (ls) of the dashed line refers
to the method using backtracking-Armijo line search (Algorithm A.4).

GRMC and the other two graph-agnostic matrix completion models. The results are shown
in Table 2. The RMSE scores of the GRMC model, returned by the methods tested using the
selected parameter setting, are around 0.957, which is close to the RMSE score of 0.945 given
by the graph-regularized method in [42] and is better than the scores of all other methods
reported in [42]. Note that (i) the rank value chosen in the present experiment is the same
as that in [42] and (ii) the graph Laplacian matrix used by Rao et al. [42] comes from side
information, while the graph Laplacian matrix in the present experiment is constructed with
the sparse ε-graph model (56), and (iii) in our experiment, the training set is 80% of the
data entries in the ML100k dataset, while Rao et al. [42] used 90% of the available data.
To achieve even better recovery scores under the GRMC framework, one needs to refine the
construction of the graph Laplacian matrix either with models that are more adapted to the
features of the data matrix or using more sensible user/movie-related information.

Methods MC MMMF GRMC

GRALS1 2.076 0.984 0.957
GRALS2 1.203 0.983 0.957
Euclidean CG 1.411 0.986 0.957
AltMin1 4.069 0.984 0.956
AltMin2 4.018 0.984 0.956
Qprecon RGD 1.083 0.986 0.957
Qprecon RCG 1.917 0.984 0.959

Table 2: Matrix completion score (RMSE on test entries) of solutions to the three types of
problem models: unregularized matrix completion (MC), Maximum-margin matrix factor-
ization and Graph-regularized matrix completion (GRMC).

We also compare the time efficiency of the methods tested in terms of the RMSE score
per iteration. Results are shown in Figure 9.
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Figure 9: RMSE per iteration on the MovieLens100k dataset (m = 943, n = 1682). Rank
parameter k = 10. The number of revealed entries is 80% of the 100k available ratings and
the effective sampling rate |Ω|/mn ≈ 5.05%. In particular, the label (ls) of the green line
refers to the method using backtracking-Armijo line search (Algorithm A.4).

6.3.4 Discussion of real-data experiments

From both Table 1 and Table 2, we observe that the matrix recovery quality of solutions to
the GRMC model (9) is superior to those of the other two graph-agnostic matrix completion
models. From Figure 8 and Figure 9, we have the following observations:

• Our algorithms (Qprecon RGD, RCG) are faster than Euclidean GD and the baseline
alternating minimization methods AltMin1, AltMin2.

• The time efficiency of Qprecon RCG and the state-of-the-art method GRALS1 are similar
on the two real datasets tested. Observe that both Qprecon RCG and GRALS1 are con-
siderably faster than the two AltMin methods, though GRALS1 and AltMin are based on
the same alternating minimization strategy. This can be due to the programming lan-
guage (C++ for GRALS1 and MATLAB for AltMin) and to GRALS’s above-mentioned
additional stopping criterion for the subproblem solver.

• The stepsize by line minimization (23) yields faster convergence behavior than back-
tracking line search (with respect to the Armijo rule, starting from an arbitrary guess
s0 = 1 for the initial stepsize).

7 Conclusion

In this paper, we focused on a graph-regularized matrix factorization problem for matrix
completion. We proposed efficient algorithms for the underlying optimization problem on the
product space Rm×k×Rn×k. Our proposed gradient descent and conjugate gradient methods
are based on specially designed Riemannian metrics on Rm×k ×Rn×k that are inspired from
metrics on the Riemannian quotient manifold of fixed-rank matrices. Moreover, we focused
on a stepsize selection method by exact line minimization, which results in a superior time
efficiency compared to the approach using back-tracking line search. We provided rigorous
theoretical analysis of the convergence property of the proposed Riemannian gradient descent
algorithm.

We have investigated the matrix recovery qualities of various matrix completion models
under various sampling rates: we found that the graph-based regularization does provide
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improvement for the matrix recovery quality compared to graph-agnostic matrix completion
models, especially for relatively low sampling rates.

We have also conducted extensive experiments on synthetic data: we observed that our
approach achieves significant speedup compared to several baseline methods, including a
state-of-the-art method (GRALS) using alternating minimization, on various experimental
settings. Moreover, we have shown via several tests that the proposed algorithms are much
less influenced by changes in the initialization point or the scale of the data matrix. In our
experiments on real-world data, we found that our methods produce solutions to the graph-
regularized matrix completion model in comparable or less time than the baseline and the
state-of-the-art methods.

Appendix A Algorithms

A.1 Computation details of Algorithms 4.1–4.2 with line minimization

Algorithm A.1 Computation of the Riemannian gradient

Input: x = (G,H) ∈ Rm×k × Rn×k, PΩ (M?) ∈ Rm×n,Ω,Θr ∈ Rm×m,Θc ∈ Rn×n, and the
parameter α.

Output: Riemannian gradient ξ = (ξG, ξH) ∈ Tx
(
Rm×k × Rn×k

)
.

1: Compute the residual S = PΩ

(
GHT −M?

)
. # (2k + 1)|Ω| flops

2: Compute
∂Gf(x) = SH + αΘrG, ∂Hf(x) = STG+ αΘcH.

# 4(|Ω|+ nnz (Θr) + nnz (Θc))k flops
3: Compute

ξ =
(
∂Gf(x)(GTG+ δIk), ∂Hf(x)(HTH + δIk)

)
w.r.t. (16)

# 4(m+ n)k2 flops
or

ξ =
(
∂Gf(x)(HTH + δIk)

−1, ∂Hf(x)(GTG+ δIk)
−1
)

w.r.t. (17)

# 4(m+ n)k2 + 2Ccholk
3 flops, see (57)

Computing the Riemannian gradient. Detailed steps and their respective computa-
tional costs for computing the Riemannian gradient are given in Algorithm A.1. In the case
of computing Qprecon (17): For the matrix inversion-related computations in the form of
AB−1, with A := ∂Gf(x) ∈ Rm×k and B := (GTG + δIk) ∈ Rk×k, a typical approach is to
first take (once) a Cholesky decomposition of B, whose cost is Ccholk

3, and then compute the
forward-and-backward substitution to get each of the m rows of AB−1, which costs 2mk2.
In brief, the flop counts of this line consists of

• Computing (GTG+ δIk) and (HTH + δIk): 2(m+ n)k2 flops,

• Computing the Cholesky decomposition of (GTG + δIk) and (HTH + δIk) : 2Ccholk
3,

where Cchol = 1/3.

• Forward-and-backward substitutions: 2(m+ n)k2,

which sum to
4(m+ n)k2 + 2Ccholk

3. (57)

The dominant term in (57) is 4(m+n)k2 when k � min(m,n), which is the case for low-rank
matrix approximation problems with a small rank parameter k and large data matrices.
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The total number of flops needed for Algorithm A.1 is either of the following

(6k + 1)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2, (58a)

(6k + 1)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2Ccholk
3, (58b)

where (58a) is for computing Qrightinv (16) and (58b) is for computing Qprecon (17).
The dominant cost in Algorithm A.1 is for the computations in lines 1 and 2, which is

O ((|Ω|+ nnz (Θ))k) ,

where we use the term nnz (Θ) := nnz (Θr) + nnz (Θc) to denote the sum on the right-hand
side, for simplicity. Indeed, when k � min(m,n) and the sampling rate ρ is of the order of
10%, the terms (m+ n)k ≤ (m+ n)k2 � |Ω|k = ρmnk.

Computing the cost function. For the algorithms with the line search procedure (Al-
gorithm A.4), the evaluation of the cost function is needed.

Algorithm A.2 Computation of the cost function (9)

Input: x = (G,H) ∈ Rm×k × Rn×k, PΩ (M?) ∈ Rm×n,Ω,Θr ∈ Rm×m,Θc ∈ Rn×n, and the
parameter α.

Output: Function value f(x) in (9).
1: Compute the residual S = PΩ

(
GHT −M?

)
. # (2k + 1)|Ω| flops

2: Compute fΩ(x) := 1
2‖S‖

2
F , # 2|Ω| flops

3: Compute Reg(x) := Tr
(
GTΘrG

)
+ Tr

(
HTΘcH

)
,

# 2nnz (Θ) k + 2(m+ n)k flops
4: Return f(x) = fΩ(x) + α

2 Reg(x).

Hence, the cost for evaluating once the objective function (9) is

FLOPSfobj = (2k + 3)|Ω|+ 2nnz (Θ) k + 2(m+ n)k. (59)

To see the order of magnitude of the total cost: the dominant costs of Algorithm A.2 are
O ((|Ω|+ nnz (Θ))k). The total cost of Algorithm A.2 is O ((|Ω|+ nnz (Θ))k) .

Computing the conjugate gradient direction. The following schemes for computing
the CG step parameter βt in the Riemannian optimization setting (20) are adapted from
nonlinear conjugate gradient schemes in the classical Euclidean setting, such as

Polak-Ribiere [41] (PR) β = max

(
0,
gxt
(
ξt − ξt−1, ξt

)
gxt (ξt−1, ξt−1)

)
, (60a)

Hestenes-Stiefel [22] (HS+) β = max

(
0,

gxt
(
ξt − ξt−1, ξt

)
gxt (ξt − ξt−1, ηt−1)

)
, (60b)

Fletcher-Reeves [15] (FR) β =
gxt
(
ξt, ξt

)
gxt (ξt−1, ξt−1)

. (60c)

A survey on nonlinear conjugate gradient can be found in [17]. Implementation of these
schemes (60) can be found in the Riemannian optimization toolbox Manopt [4]. In our
experiments, we choose the modified Hestenes-Stiefel (HS+) rule. The flop counts for the
HS+ rule is 5(m+ n)k.

From Algorithm A.3, the total flop counts for computing once the Riemannian CG di-
rection, given two consecutive Riemannian gradients, is

13(m+ n)k. (61)
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Algorithm A.3 Computation of the conjugate gradient direction

Input: iterates xt−1, xt ∈ Rm×k × Rn×k, gradients ξt ∈ Tx
(
Rm×k × Rn×k

)
, ξt−1 ∈

Txt−1

(
Rm×k × Rn×k

)
, previous CG direction ηt−1 ∈ Txt−1

(
Rm×k × Rn×k

)
.

Output: CG direction ηt ∈ Tx
(
Rm×k × Rn×k

)
.

1: Compute: CG step parameter βt with one of the schemes in (60) and then
ηt = −ξt + βtη

t−1. # 7(m+ n)k flops
2: Compute the angle between the CG direction and the gradient:
θ = 〈ηt, ξt〉 /‖ηt‖‖ξt‖. # 6(m+ n)k flops

3: Reset to gradient if desired: ηt = ξt if θ < 0.1.

Computational cost of the line minimization (23). This corresponds to the compu-
tations for c1, .., c4 in (66a)–(66d), which sums to (6k + 11)|Ω| + 2nnz (Θ) k + 4(m + n)k.
Details are in Appendix A.4.

A.2 Computational cost of Qprecon/Qrightinv RGD (linemin)

Each iteration of RGD (linemin) consists of (i) computing the stepsize by line minimiza-
tion (23), the cost of which is in (67), (ii) conducting the descent step, the cost of which
is (m + n)k flops, (iii) computing the new gradient, the cost of which is in (58), and (iv)
computing the norm of the gradient, the cost of which is 2(m + n)k flops. Note that since
the step size st is obtained by (23), which guarantees a sufficient decrease, there is no need
for any additional line search steps. Therefore, the total flop counts for one iteration of
Algorithm 4.1 is

12(k + 1)|Ω|+ 6nnz (Θ) k + (m+ n)(4k2 + 7k). (62)

A.3 Computational cost of Qprecon/Qrightinv RCG (linemin)

RCG (linemin) needs to compute the nonlinear CG direction via Algorithm A.3, and its flop
counts is larger than that of RGD (linemin) (62) by exactly that in (61). The total cost is

12(k + 1)|Ω|+ 6nnz (Θ) k + 4(m+ n)(k2 + 5k). (63)

A.4 Stepsize computation via line minimization

Computing the stepsize (23) requires minimizing

f(G+ sηG, H + sηH)− f(G,H)

for s ≥ 0.
We have f(G+ sηG, H + sηH)− f(G,H) = A+B, where

A =
1

2
‖PΩ

(
s(GηTH + ηGH

T ) + s2ηGη
T
H

)
‖2F+〈

PΩ(GHT −M), PΩ(s(GηTH + ηGH
T ) + s2ηGη

T
H)
〉

(64)

and

B =
1

2
Tr
[ (
sGTLrηG + sηTGLrG+ s2ηTGLrηG

)
+(
sHTLcηH + sηTHLcH + s2ηTHLcηH

) ]
. (65)
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These two equations lead to the following quartic polynomial form A + B =
∑4

j=1 cjs
j ,

where

c1 =
〈
PΩ(GHT −M), PΩ(GηTH + ηGH

T )
〉

+ Tr
(
ηTGLrG+ ηTHLcH

)
, (66a)

c2 =
1

2
‖PΩ(GηTH + ηGH

T )‖2F +
〈
PΩ(GHT −M), PΩ(ηGη

T
H)
〉

+

1

2
Tr
(
ηTGLrηG + ηTHLcηH

)
, (66b)

c3 = PΩ(GηTH + ηGH
T ), PΩ(ηGη

T
H), (66c)

c4 =
1

2
‖PΩ(ηGη

T
H)‖2F . (66d)

The solution to s∗ is selected from the real positive roots of the derivative of this quartic
function, which is the polynomial of degree 3, (A+B)′(s) =

∑4
j=1 cjs

j−1, the roots of which
are easily computed.

Computational costs. In Algorithms 4.1–4.2, whenever the line minimization (23) is
required, it always follows the computation of a Riemannian gradient, during which we
have stored the following intermediate matrices (i) S = PΩ(GHT −M?) ∈ Rm×n and (ii)
ΘrG ∈ Rm×k,ΘcH ∈ Rn×k. Hence, in the following list of flop counts, the computations
related to the items above need not be counted:

• For c1 in (66a): (4k + 3)|Ω| + 2(m + n)k flops. Information stored:10 PΩ(GηTH) and
PΩ(ηGH

T ).

• For c2 in (66b): (2k + 4)|Ω| + 2nnz (Θ) k + 2(m + n)k flops. Information stored:
PΩ(ηGη

T
H).

• For c3 in (66c): 2|Ω| flops.

• For c4 in (66d): 2|Ω| flops.

These sum up to
(6k + 11)|Ω|+ 2nnz (Θ) k + 4(m+ n)k. (67)

A.5 The constant parameter δ in the definition of gradients

In all the experiments in Section 6, the gradients defined in (16) or (17) are used with a
parameter δ = 0. In this setting, the underlying metric (12) is not guaranteed to be positive
definite and the metric (17) is not always well-defined at any iterate x ∈ Rm×k × Rn×k.
The convergence analysis does not cover the case where δ = 0 in (16)–(17). Nevertheless,
we note that the convergence behavior of our proposed algorithms so far tested agrees with
the theoretical results presented in Section 5. In fact, in all our experimental settings, the
problem parameters (α, γr, γc) and the largest rank value k are chosen properly, especially
that the rank parameter k is set to an underestimated value. Therefore, we did not observe
any singularity in all the results presented in Section 6.

Figure 10 shows that the iterative results of the proposed RGD algorithms using a strictly
positive δ (for δ set to 10−4) and those using δ = 0 are almost the same. The experimental
setting for this illustration is the same as in Section 6.2.2.

10The information is stored only inside the current iteration.
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Figure 10: RMSE per iteration on sythetic data. The data matrix M? is generated via (48)
and (53): Matrix size m = 1000, n = 900, rank r? = 12. The rank parameter k = 8. The
sampling rate |Ω|/mn = 5%. The results returned by the RGD algorithm using gradients
defined by the two metrics with δ = 10−4 (labeled with “-d”) and δ = 0 respectively. The
convergence behaviors of the algorithms with δ = 0 and with a small δ > 0 are almost same.

A.6 Computation details of Algorithms 4.1–4.2 with Armijo line-search

The line search procedure by backtracking with respect to the Armijo rule (22) is given in
Algorithm A.4.

Algorithm A.4 Armijo line search

Input: f :M 7→ R, a descent direction a retraction R onM, xt ∈M, initial stepsize s0
t > 0

and σ, β ∈]0, 1[.
Output: s.

1: Initialize: s = s0
t .

2: while f(xt)− f(Rxt(sηt)) < σs 〈−gradf
(
xt
)
, ηt〉 do

3: s← βs.
4: end while

Computational cost of RGD (Armijo). RGD (Armijo) corresponds to Algorithm 4.1 us-
ing the backtracking line search with the Armijo condition at each iteration. Computing
once the function value and the Riemannian gradient at the same time costs in total

FLOPSfobj + FLOPSgradf −
[
FLOPS(PΩ(GHT )) + FLOPS(ΘrG,ΘcH)

]
= (6k + 4)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2(m+ n)k. (68)

Hence, the computational cost of the t-th iteration is

(6k + 4)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2(m+ n)k + nLS
t FLOPSfobj, (69)

where FLOPSfobj is defined in (59).

Flop counts for RCG (Armijo). RCG lsArmijo (Algorithm 4.2, with stepsizes chosen via
the Armijo line search) needs to compute the nonlinear CG direction via Algorithm A.3, and
its per-iteration cost is larger than that of RGD (Armijo) by the amount of (61). In sum, it
is

(6k + 4)|Ω|+ 4nnz (Θ) k + 12(m+ n)k2 + 17(m+ n)k + nLS
t FLOPSfobj. (70)

for an iteration t ≥ 0.
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A.7 Algorithms using the Euclidean gradient

The cost for computing the Euclidean gradient is smaller than the cost of computing the
variable metric gradient by the cost of line 3 of Algorithm A.1. Therefore, the computational
cost per-iteration of Euclidean GD (linemin) is smaller than (62) by exactly 4(m+ n)k2,
which is

12(k + 1)|Ω|+ 6nnz (Θ) k + 7(m+ n)k. (71)

Computing the Euclidean CG step, using the same rule for computing the CG directions,
requires the same cost as by (61), hence it equals

13(m+ n)k. (72)

As a consequence, the computational cost per-iteration of Euclidean CG (linemin) is larger
than (71) by exactly that of (72), which is

12(k + 1)|Ω|+ 6nnz (Θ) k + 20(m+ n)k. (73)

A.8 Computation details in GRALS [42]

This subsection contains a description of the algorithm proposed by Rao et al. [42] and a
detailed list of flop counts for the standard CG steps involved in this algorithm. GRALS
consists of the following two alternating least squares procedures

Gt = arg min
G
f(G,Ht−1), (74a)

Ht = arg min
H

f(Gt, H), (74b)

for a given initial point.
The quadratic forms of the least-squares systems (74a)–(74b) have the following struc-

tures. The subproblem (74a) is a least-squares problem whose objective f(G) := f(G,Ht)
can be rewritten as a quadratic form of the vectorization of GT via the identification
f(G) = f̃1(vec(GT )),

min
s
f̃1(s) =

1

2
sTA(1)s− vec(HtTPΩ(M?)T )T s, (75)

where A(1) ∈ Rkm×km has the following structure,

A(1) = B̄(1) + αΘr ⊗ Ik, (76)

where B̄(1) ∈ Rkm×km is block diagonal with m diagonal blocks (B
(1)
i )i=1,...,m of size k × k

such that
B

(1)
i =

∑
j∈Ωi

hjh
T
j , (77)

for i ∈ [[m]]. Here the index sets Ωi := {j ∈ [[n]] : (i, j) ∈ Ω} and

hj = [Hj1, ..,Hjk]
T ∈ Rk (78)

is the transpose of the j-th row of H.
Similarly, the subproblem (74b) can be solved by the same routines (Algorithm A.5

and A.6) as for (74a) by swapping the roles of G and H (and matrices in the regularization
terms) in all computations of matrices involved. In the implementation of GRALS, the linear
CG routine is used to solve the two subproblems in the form of (75). Algorithm A.6 is a
standard CG descent procedure with A ∈ Rq×q, b ∈ Rq as inputs and x0 as the initial point.
Note that GRALS [42] uses a warm-start scheme: x0 corresponds to latest iterate Gt−1 (resp.
Ht−1) for the t-th step (74a) (resp. (74b)).

The Hessian-vector multiplication in the linear CG iteration (Algorithm A.6, line 13) is
computed via Algorithm A.5.
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Algorithm A.5 Hessian-vector multiplication A(1)s [42]

Input: Data (known on Ω) PΩ(M?) ∈ Rm×n,Ω ⊂ [[m]] × [[n]]. Quadratic form A(1) in (76).
Vector s := vec(GT ) ∈ Rk×m. Laplacian-based matrix Θ̄.

Output: A(1)s.
1: for i = 1, ..,m do
2: Get gi := [Gi1.., Gik]

T from s (vectorization of GT ).
3: Compute g̃i =

∑
j∈Ωi

hj(h
T
j gi). # See (77).

4: end for
5: Get G from the vectorization s = vec

(
GT
)

and compute G̃ = Θ̄G.

6: Return: vec([g̃1, .., g̃m]) + vec(G̃T ).

Algorithm A.6 CG Algorithm for solving (74b) (resp. (74a))

Input: A ∈ Rq×q, for q = nk (resp. mk), initial point x0 ∈ Rq. Accuracy parameter ε,
iteration budget nCG.

Output: x? ∈ Rq, n?CG

1: Compute: b = vec(PΩ(M?)TG) ∈ Rq (resp. b = vec(PΩ(M?)H)).
# 2|Ω|k flops

2: r0 = b−Ax0.
3: for k = 0, .., nCG do
4: Compute: ‖rk‖. # 2nk (resp. 2mk) flops
5: if ‖rk‖ ≤ ε‖r0‖ then
6: Break;
7: end if
8: if k = 0 then
9: p1 = r0.

10: else
11: pk+1 = rk + ‖rk‖2

‖rk−1‖2
pk. # 2nk (resp. 2mk) flops

12: end if
13: Compute: vk+1 = Apk+1. # 2(|Ω|+ nnz (Θ))k flops

14: Compute: β = ‖rk‖2
pTk+1vk+1

. # 2nk (resp. 2mk) flops

15: Compute: xk+1 = xk + βpk+1, rk+1 = rk − βvk+1. # 4nk (resp. 4mk) flops
16: end for
17: Return x? = xk, n?CG = k.
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Computational cost of GRALS. The number of flops required by Algorithm A.6 is:

2(n?CG + 1)|Ω|k + 2n?CGnnz (Θ) k + 10n?CGnk

( resp. 2(n?CG + 1)|Ω|k + 2n?CGnnz (Θ) k + 10n?CGmk).

During the t-th iteration in GRALS, let nHt (respectively nGt ) denote the number of CG
iterations (i.e. n?CG returned by this algorithm) required by Algorithm A.6 for solving the
subproblem (74b) (resp. (74a)) at iteration t. Then the number of flops required by GRALS
to complete the t-th iteration, from (Gt, Ht) to (Gt+1, Ht+1) is

2(nGt + nHt + 2)|Ω|k + 2(nGt + nHt )nnz (Θ) k + 10(nGt m+ nHt n)k. (79)

Figure 11 shows the RMSE per iteration, where the x-axis is represented either by the
wall time recorded at each iteration or the cumulative cost (in flops) required by the main
computational steps in each of the algorithms at each iteration.
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Figure 11: RMSE per iteration. Left: the x-axis is wall time at each iteration. Right:
the x-axis is the cumulative computational cost at each iteration. Experimental settings:
m = 1000, n = 900, k = r? = 10, |Ω|/mn = 20.0%. M? is generated with the model (50)
and is partially observed without any noise.

A.8.1 Our implementation (AltMin)

In addition to GRALS [42], we implement the alternating minimization method ((74a)–(74b))
with a linear CG solver that is controlled by the two following parameters,

• nCG: the iteration budget for each of the two least-squares subproblems.

• ε: tolerance parameter to control the accuracy of the solutions to each of the two
subproblems.

The most costly computation in AltMin/GRALS is the computation of A(1)vec
(
GT
)

and A(2)vec
(
HT
)
. Algorithm A.7 avoids searching for indices in the subset Ωi for each

i ∈ [[m]] by using the following incremental procedure. The notations therein are adapted
to the computation of B(1)vec

(
GT
)
. Note that for the computation of B(2)vec

(
HT
)
, this

algorithm applies by swapping the roles of G and H.
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Algorithm A.7 Hessian-vector multiplication B(1)s

Input: Ω ⊂ [[m]]× [[n]]. H ∈ Rn×k, vector s := vec(GT ) ∈ Rkm.
Output: B(1)s, for B(1) in (77).

1: Initialize the k-dimensional vectors: yi = 0 for i = 1, ..,m.
2: for l = 1, .., |Ω| do
3: Get (il, jl): the l-th pair of Ω.
4: Get hjl from H. # See (78).
5: Get gil = [Gil1, .., Gilk]

T , which is (silk−k+1, .., silk).
6: Compute yil = yil + hjl(h

T
jl
gil).

7: end for
8: Return: vec ([y1, .., ym]) ∈ Rkm.

A.9 The Hessian of the objective function of (9)

The second-order Euclidean directional derivative of f at x = (G,H) ∈ Rm×k × Rn×k along
a direction ξ = (ξG, ξH) ∈ Tx

(
Rm×k × Rn×k

)
is defined as

∇2f(x)[ξ] :=
d

dt
∇f(x+ tξ)|t=0. (80)

The gradient vector field has the following expression,

∇f(x) =
(
SH + αΘrG,STG+ αΘcH

)
, (81)

where S := PΩ(GHT −M). To simplify notations, we calculate the two matrix components
separately,

d

dt
∂Gf (x+ tξ) |t=0 = lim

t→0

1

t

[
PΩ((G+ tξG)(H + tξH)T −M)(H + tξH) (82)

−PΩ(GHT −M)H + tαΘrξG

]
= PΩ(GξTH + ξGH

T )H + SξH + αΘrξG. (83)

Similarly, d
dt∂Hf (x+ tξ) |t=0 = PΩ(GξTH + ξGH

T )TG+ ST ξG + αΘcξH . Hence we have

∇2f(x)[ξ] =

(
PΩ(GξTH + ξGH

T )H + SξH + αΘrξG
PΩ(GξTH + ξGH

T )TG+ ST ξG + αΘcξH

)
. (84)

Appendix B The matrix model with graph information and
the graph Laplacian-based regularization

The model (48) is of particular interest because it models a wide range of real data matrices
whose entries present pairwise similarities. Figure 1 shows differences between Z (48a) and
ArZ (48b) in both the data entries and in the graph spectral domain. By using the concept
of graph Fourier transforms (e.g. [46]), we illustrate how (g,Ar, Ac) in (49) transforms a
Gaussian random matrix Z into a matrix with more apparent pairwise similarities on the
given graphs.

By definition (e.g. [46]), the graph Fourier transform of a vector f ∈ Rm with respect to
the graph Laplacian Lr = UΛUT , is

f̂(λl) = (Uel)
T f, ∀l ∈ [[m]].

33



Now we compare the smoothness of the Gaussian low-rank model Z = FQT in (48a) and
the graph-based model X = ArZ (48b) with respect to the row-wise similarity graph Lr: For
any j = 1, . . . , k, the graph Fourier coefficients of the j-th column of the Gaussian random
matrix F ∈ Rm×k and transformed matrix G = ArF are

F̂(j)(λl) = (UT el)
TF(j),

Ĝ(j)(λl) = (UT el)
TArF(j) =

√
g(λl)e

T
l F(j),∀l ∈ [[m]],

where F(j)
i.i.d.∼ N (0, σ2

F Im). From basic calculations, the amplitudes of their graph Fourier
coefficients satisfy

E
[
|F̂(j)(λl)|2

]
=

m∑
i=1

U2
(i,l)E

[
F 2

(i,j)

]
= σ2

F

m∑
i=1

U2
(i,l) = σ2

F , (85)

E
[
|Ĝ(j)(λl)|2

]
= g(λl)E

[
‖eTl F(j)‖22

]
= σ2

F g(λl) (86)

Therefore, when g is decreasing on (0,+∞) as defined in (50), the sequence (g(λl))l is
decreasing for increasing values of (λl)l=2,...,m. Note that a small eigenvalue λ corresponds
eigenfunctions on the graph with small variations. This means the energy of G(j) in the

graph Fourier domain, determined by (|Ĝ(j)(λl)|)1≤l≤m, is mostly concentrated on the “low
graph-vertex frequencies”.

The overall variations of the matrix factor G is related to Tr
(
GTLrG

)
in the regularizer

of our main problem (9) as follows,

1

k
Tr
(
GTLrG

)
=

1

k

k∑
j=1

m∑
l=1

λ2
l |Ĝ(j)(λl)|2 =

m∑
l=1

λ2
l Ẽ|Ĝ(1)(λl)|2. (87)

The weighted-sum expression (87) dictates that Tr
(
GTLrG

)
is small when the amplitudes

(‖Ĝ(1)(λl)‖)l are concentrated on low-frequencies, such as in (86). The same property applies
to the factor H with respect to Lc. This reflects that the graph-based regularizer

SL(x) = Tr
(
GTLrG

)
+ Tr

(
HTLcH

)
,

quantifies the smoothness of of the entries of (G,H) on the row and column index sets with
respect to the row-wise and column-wise similarity graphs (Gr and Gc), as explained in (2).
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