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Abstract

We consider the manifold of rank-p positive-semidefinite matrices of size n, seen
as a quotient of the set of full-rank n-by-p matrices by the orthogonal group
in dimension p. The resulting distance coincides with the Wasserstein distance
between centered degenerate Gaussian distributions. We obtain expressions for
the Riemannian curvature tensor and the sectional curvature of the manifold.
We also provide tangent vectors spanning planes associated with the extreme
values of the sectional curvature.

1 Introduction

Positive-semidefinite (PSD) matrices appear, e.g., as covariance matrices in statis-
tics, kernels in machine learning, and variables in semidefinite optimization; see,
e.g., [MA18] for pointers to the literature.

The set of PSD matrices of size n× n is a stratified space [Tak11, Thm. C],
in which the strata are the manifolds

S+(p, n) = {S ∈ Rn×n|S � 0, rank(S) = p},

of PSD matrices of rank p, for p = 0, . . . , n. In many practical applications, the
rank of all the datapoints can be truncated to a common value, so that algorithms
can be restricted to handle datapoints lying on the same stratum (see [MA18]
and references within). This is for example the case when the data points are
low-rank approximations of large PSD matrices. Each stratum S+(p, n), with
p ≥ 1, can be given a Riemannian structure.

Classical algorithms on Riemannian manifolds can thus be used for pro-
cessing data on S+(p, n). For example, optimization on S+(p, n) has been used
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in [MBS11,MMS11,MHB+16] for distance learning, distance matrix completion,
and role model extraction. The works [LB14,GMM+17,KDB+18,MGS+19] run
interpolation algorithms on S+(p, n) for generating protein conformation tran-
sitions, modeling wind field, video classification and parametric model order
reduction.

In the full-rank case, i.e., when p = n, the manifold S+(n, n) is classically
identified to the reductive homogeneous space S+(n, n) ' GLn/On, where GLn
is the general linear group. Therefore, there exists a GLn-invariant metric on
GLn/On which leads (up to a scaling factor) to the natural, affine-invariant
metric, or Fisher-Rao metric on S+(n, n), see [Smi05]. When p 6= n, the set
S+(p, n) can be identified to a homogeneous space (see [VAV13]), but this ho-
mogeneous space is shown to be nonreductive, and there is no metric invariant
under the group action. There is thus no wide agreement on a preferred metric
on S+(p, n).

In this work, we consider the identification S+(p, n) ' Rn×p∗ /Op, with Rn×p∗
the set of full-rank n-by-p matrices. The quotient manifold Rn×p∗ /Op is endowed
with the metric induced from the Euclidean metric in Rn×p∗ . This geometry was
already proposed in [JBAS10] (which contains, e.g., expressions for the Rieman-
nian exponential and for the projector on the horizontal space) and more recently
described in [MA18]. In this last paper, we obtained expressions for the Rieman-
nian logarithm, the injectivity radius and the cut locus. We mention that several
other geometries have been proposed on S+(p, n): [VAV09] represents S+(p, n) as
an embedded submanifold of Rn×n, [BS09] identifies it to the quotient manifold
(St(p, n)× S+(p, p))/Op, and, as already mentioned, [VAV13] identifies S+(p, n)
to a homogeneous space endowed with a right-invariant metric.

Even though the metric resulting from the identification S+(p, n) ' Rn×p∗ /Op
does not lead to a complete metric space, there are two main motivations to con-
sider it. The first one is the low computation cost associated with the most com-
mon operations on the manifold. Indeed, the operations are directly performed
on the representatives in Rn×p∗ of the matrices, which are smaller than the initial
n× n matrices. As shown in [JBAS10,MA18], the Riemannian exponential and
logarithm have a computational cost that evolves linearly with n. Among all
the geometries proposed for S+(p, n), this is to our knowledge the only one that
leads to expressions for both the logarithm and the exponential maps that are
cheap to evaluate.

The second motivation to consider this quotient geometry is its interpreta-
tion with respect to optimal transport theory. Indeed, there exists a bijection be-
tween the set of n×n PSD matrices and the set of (possibly degenerate) centered
Gaussian distributions on Rn. Let C1, C2 ∈ S+(n, n), two nonsingular covariance
matrices, and let W2(µ1, µ2) be the 2-Wasserstein distance between the nonde-
generate centered Gaussian distributions µ1 := N (0, C1) and µ2 := N (0, C2).
It is well-known that W2(µ1, µ2) coincides with the Riemannian distance be-
tween C1 and C2, for the metric inherited from the quotient representation
S+(n, n) ' GL(n)/On (see, e.g., [Tak11, BJL18]). When C1, C2 ∈ S+(p, n),
for p < n, the same conclusion holds: W2(µ1, µ2) is equal to the Riemannian
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distance between the low-rank covariance matrices C1 and C2, for the metric
induced by the quotient S+(p, n) ' Rn×p∗ /Op [Gel90, Cor. 2.5]. Specifically, the
distance is given by (see [MA18, §2.10]):

d(C1, C2) =

[
tr (C1) + tr (C2)− 2tr

((
C

1/2
1 C2C

1/2
1

)1/2)]1/2
.

The Wasserstein metric is also known as the Bures metric in quantum theory
(see [BJL18] and references therein).

Geometric properties of the manifold S+(n, n) ' GL(n)/On have been widely
studied, see, e.g., [Tak11,BJL18,MMP18]. In particular, its sectional curvature
has been computed in [Tak11]. The contribution of this paper is to compute
the Riemannian curvature tensor and the sectional curvature of the manifold
S+(p, n) ' Rn×p∗ /Op. We also provide tangent vectors spanning tangent planes
associated with the maximal and minimal sectional curvatures. Bounds on the
curvature of the manifold appear, e.g., in some optimization algorithms and as-
sociated convergence results on manifolds [ATV13, Bon13], and in guarantees
for the continuity of the result of some curve fitting algorithms [AGSW16]. The
Riemannian curvature tensor is, e.g., used in [SASK12] for curve fitting on man-
ifolds. We show that the sectional curvature is non-negative, and may become
infinitely large when approaching the boundary of the manifold (specifically, if
two singular values go simultaneously to zero). A consequence is that some of
the above-mentioned results involving bounds on the sectional curvature (in opti-
mization or curve fitting) do not directly apply on this manifold. Our conclusions
agree with the work [Dit95], which computes the curvature of the manifold of
density matrices (n×n positive-definite complex matrices of unit trace), endowed
with the Bures metric, and observes a similar unboundedness of the sectional
curvature as the rank of the matrix goes to n− 2.

The structure of this paper is as follows. Section 2 presents a brief summary of
the geometry of Rn×p∗ /Op. In Section 3, we derive expressions for the Riemannian
curvature tensor and the sectional curvature. Finally, we compute in Section 4
the extreme values of the sectional curvature.

2 Geometry of the manifold S+(p, n) ' Rn×p
∗ /Op

This quotient geometry, described in [MA18], relies on the characterization
S+(p, n) = {Y Y >|Y ∈ Rn×p∗ }. The quotient representation comes from the
fact that the set of points YOp := {Y Q|Q ∈ Op} is a fiber under the map
Y 7→ Y Y >. The tangent space TY Rn×p∗ ' Rn×p is the direct sum of two or-
thogonal subspaces: the vertical space (the tangent space of the fiber YOp), and
the horizontal space (its orthogonal complement, with respect here to the Eu-
clidean metric). The vertical space at Y is given by VY = {Y Ω|Ω = −Ω> ∈
Rp×p}, while the horizontal space is HY = {η̄Y = Y (Y >Y )−1S + Y⊥K|S ∈
Rp×p, S = S>,K ∈ R(n−p)×p}. Let π : Rn×p∗ → Rn×p∗ /Op be the quotient
map, mapping points from Rn×p∗ to their fibers. For any Y ∈ Rn×p∗ , any tan-
gent vector ξπ(Y ) ∈ Tπ(Y )Rn×p∗ /Op is associated to a unique horizontal lift
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ξ̄Y ∈ HY , such that ξπ(Y ) = Dπ(Y )[ξ̄Y ]. The metric in Rn×p∗ /Op is defined

as gπ(Y )

(
ξπ(Y ), ηπ(Y )

)
:= tr

(
ξ̄>Y η̄Y

)
, which turns the quotient map π into a

Riemannian submersion. Finally, given two horizontal vector fields ξ̄, η̄, the pro-
jection on the vertical space of the bracket [ξ̄, η̄] is:

Pv
Y [ξ̄, η̄] = YT−1

Y >Y

(
2
(
η̄>Y ξ̄Y − ξ̄>Y η̄Y

))
, (1)

with T−1
Y >Y

(Ω) the unique solutionX to the Sylvester equation Y >Y X+XY >Y =
Ω, see [MA18, Prop. 2.37].

3 Curvature of the manifold Rn×p
∗ /Op

In this section, we obtain expressions for the Riemannian curvature tensor and
the sectional curvature of the manifold Rn×p∗ /Op. We rely on the fact that the
operator π : Rn×p∗ → Rn×p∗ /Op is a Riemannian submersion.

Theorem 1. Let ξ, η, α and β be vector fields on Rn×p∗ /Op, and let ξ̄, η̄, ᾱ and
β̄ be their horizontal lifts. The Riemannian curvature tensor at π(Y ) satisfies:

〈RRn×p
∗ /Op

(ξπ(Y ), ηπ(Y ))απ(Y ), βπ(Y )〉 =
1

2
〈Pv

Y [ξ̄, η̄],Pv
Y [ᾱ, β̄]〉

−1

4

(
〈Pv

Y [η̄, ᾱ],Pv
Y [ξ̄, β̄]〉 − 〈Pv

Y [ξ̄, ᾱ],Pv
Y [η̄, β̄]〉

)
,

with Pv
Y [ξ̄, η̄] given by (1).

Proof. According to [O’N66, Thm. 2], there holds:

〈RRn×p
∗ /Op

(ξπ(Y ), ηπ(Y ))απ(Y ), βπ(Y )〉 = 〈RRn×p
∗

(ξY , ηY )αY , βY 〉

+
1

2
〈Pv

Y [ξ̄, η̄],Pv
Y [ᾱ, β̄]〉 − 1

4
〈Pv

Y [η̄, ᾱ],Pv
Y [ξ̄, β̄]〉 − 1

4
〈Pv

Y [ᾱ, ξ̄],Pv
Y [η̄, β̄]〉.

Since Rn×p∗ is an open subset of Rn×p, its Riemannian curvature tensor is
zero [O’N83, p.79], hence the first term of the previous expression vanishes.

ut

The sectional curvature is then obtained as a corollary, see [O’N66, Cor. 1, eq.
3]. In the case n = p, these results are already given in [Tak11].

Corollary 1. Let ξπ(Y ), ηπ(Y ) be (independent) tangent vectors on Rn×p∗ /Op,

with horizontal lifts ξ̄Y , η̄Y . The sectional curvature at π(Y ) in Rn×p∗ /Op is

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) =
3
∥∥YT−1

Y >Y

(
η̄>Y ξ̄Y − ξ̄>Y η̄Y

)∥∥2
F

〈ξ̄Y , ξ̄Y 〉〈η̄Y , η̄Y 〉 − 〈ξ̄Y , η̄Y 〉2
. (2)

The rest of the paper aims at computing the maximal and minimal sectional
curvatures at an arbitrary π(Y ) ∈ Rn×p∗ /Op.
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4 Extreme values of the sectional curvature

We first introduce two lemmas. The first one solves for X a Sylvester equation
of the form Y >Y X +XY >Y = Ω, a step required to evaluate (2).

Lemma 1. Let Y ∈ Rn×p∗ , with Y =: UΣV > a singular value decomposition,
with singular values σ1 ≥ · · · ≥ σp > 0, and let Ω ∈ Rp×p. The solution X to
the Sylvester equation Y >Y X +XY >Y = Ω is

X = V X̃V >, with X̃ ∈ Rp×p, X̃ij :=
Ω̃ij

(σ2
i + σ2

j )
, Ω̃ := V >ΩV. (3)

Moreover, if the matrix Ω is skew-symmetric, then so are X̃ and X.

Proof. We sketch the proof, presented in [BR97, §10], for the reader’s conve-
nience. Since Y >Y = V Σ2V >, the Sylvester equation becomes: V Σ2V >X +
XV Σ2V > = Ω. Applying a similarity associated with V to both sides of the
equation yields: Σ2V >XV + V >XV Σ2 = V >ΩV. Now, defining X̃ := V >XV
and Ω̃ := V >ΩV , the equation becomes: Σ2X̃ + X̃Σ2 = Ω̃, which implies that
(σ2
i + σ2

j )X̃ij = Ω̃ij . �

The second lemma provides an upper bound on the Frobenius norm of the
skew part of the product of two matrices with unit norm. We will need this
result when computing the maximal sectional curvature of Rn×p∗ /Op at some
point π(Y ) ∈ Rn×p∗ /Op.

Lemma 2. Let A,B ∈ Rn×p, such that ‖A‖F = ‖B‖F = 1. Then,∥∥A>B −B>A∥∥2
F
≤ 2.

Proof. Let us consider the optimization problem:

max
‖A‖F=‖B‖F=1

∥∥A>B −B>A∥∥2
F
.

Observe that, by symmetry of the problem, the Lagrange multipliers associated
with the constraints ‖A‖F = 1 and ‖B‖F = 1 are equal, and that the linear
independence constraint qualification (LICQ) condition holds. Hence the KKT
first-order necessary optimality conditions are:

2B(B>A−A>B)− λA = 0

−2A(B>A−A>B)− λB = 0

‖A‖F = ‖B‖F = 1.

(4.a)

(4.b)

(4.c)

Premultiplying (4.a) by A>, (4.b) by B>, and taking the sum of the two yields:

λ(A>A+B>B) = 2(A>B −B>A)(B>A−A>B).
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Taking the trace of both sides of the equation, we obtain:

λ = tr
(
(B>A−A>B)>(B>A−A>B)

)
=
∥∥A>B −B>A∥∥2

F
.

We will show that λ ≤ 2, which will conclude the proof. If B = 0, then the claim
obviously holds, hence we assume from now on that B 6= 0. Let B = UΣV >

be a compact singular value decomposition, where U ∈ Rn×r, Σ ∈ Rr×r and
V ∈ Rp×r, with r the rank of B and U>U = V >V = Ir. Equation (4.a) becomes:

2UΣ2U>A− 2UΣV >A>UΣV >= λA.

Left- and right-multiplying this equation by respectively U> and V yields:

2Σ2U>AV − 2ΣV >A>UΣ = λU>AV.

Now, defining Ã := ΣU>AV , we get:

2ΣÃ− 2ΣÃ>= λΣ−1Ã,

which can be written as:

2Σ2Ã− 2Σ2Ã>= λÃ. (5)

Assume first that Ã 6= 0. Then, if r = 1, λ = 0. If r ≥ 2, the coefficients Ãij ,

i, j = 1, . . . , r of the matrix Ã satisfy the equation:

λ(Ãij − Ãji) = 2(σ2
i + σ2

j )(Ãij − Ãji).

If for some i, j ∈ {1, . . . , r}, Ãij 6= Ãji there holds λ = 2(σ2
i +σ2

j ) ≤ 2 ‖B‖2F = 2.

Otherwise (i.e., Ã 6= 0 is symmetric), λ = 0 by (5).
There remains to check the value of λ when Ã = 0. It can be readily checked

that the matrix [V, V⊥]>B>A[V, V⊥] is of the form:

[V, V⊥]>B>A[V, V⊥] =

[
Ã ΣU>AV⊥

0p−r×r 0p−r×p−r

]
.

Since Ã = 0, the matrix is strictly upper triangular. There holds∥∥B>A−A>B∥∥2
F

=
∥∥[V, V⊥]>(B>A−A>B)[V, V⊥]

∥∥2
F

= 2
∥∥ΣU>AV⊥∥∥2F ≤ 2,

which concludes the proof. �

We are now able to compute the minimum and maximum values of the sec-
tional curvature of Rn×p∗ /Op at some point π(Y ). Observe that, since the sec-
tional curvature is associated to a tangent plane, it does not depend on the
choice of the vectors ξπ(Y ), ηπ(Y ) that span this tangent plane. As a result, we
make the assumption in the rest of the document that the horizontal lifts ξ̄Y
and η̄Y are orthonormal vectors, i.e., 〈ξ̄Y , ξ̄Y 〉 = 〈η̄Y , η̄Y 〉 = 1 and 〈ξ̄Y , η̄Y 〉 = 0.
This makes the denominator of (2) equal to one.
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Proposition 1. The minimum of the sectional curvature at π(Y ) of the quotient
manifold Rn×p∗ /Op is always zero. If p = 1, the sectional curvature is equal to
zero.

Proof. By (2), the sectional curvature associated with a pair of orthonormal
tangent vectors ξπ(Y ), ηπ(Y ) is defined as:

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥YT−1

Y >Y
(η̄>Y ξ̄Y − ξ̄>Y η̄Y )

∥∥2
F
.

Using Lemma 1, with Y = UΣV > a singular value decomposition and Ω̃ :=
V >(η̄>Y ξ̄Y − ξ̄>Y η̄Y )V , there holds:

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥∥(UΣV >) (V X̃V >)∥∥∥2

F
, X̃ij =

Ω̃ij
(σ2
i + σ2

j )
.

Due to the unitarily invariance of the Frobenius norm, there holds:

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥∥ΣX̃∥∥∥2

F
= 3

p∑
i,j=1

σ2
i Ω̃

2
ij

(σ2
i + σ2

j )2
. (6)

This is zero if and only if Ω̃ is zero. If p = 1, the sectional curvature is always zero
since η̄>Y ξ̄Y ∈ R. If p ≥ 2, take for example ξ̄Y = Y (Y >Y )−1S with S = S>, and

η̄Y = Y ‖Y ‖−1F . Then, Ω̃ = 0, and if the matrix S is chosen such that
∥∥ξ̄Y ∥∥F = 1

and Diag (S) = 0, the two vectors ξ̄Y and η̄Y are orthonormal. �

The following result characterizes the maximum of the sectional curvature of
Rn×p∗ /Op at some point π(Y ).

Proposition 2. Let Y ∈ Rn×p∗ and Y = UΣV > a singular value decomposition,
with singular values σ1 ≥ σ2 ≥ · · · ≥ σp > 0. If p = 1, the sectional curvature
is always zero. If p ≥ 2, the maximum of the sectional curvature at π(Y ) of the
quotient Rn×p∗ /Op is:

KRn×p
∗ /Op

(ξ∗π(Y ), η
∗
π(Y )) =

3

σ2
p−1 + σ2

p

. (7)

This value is reached for, e.g., ξ∗π(Y ) = Dπ(Y )[ξ̄∗Y ] and η∗π(Y ) = Dπ(Y )[η̄∗Y ], with

ξ̄∗Y = Y (Y >Y )−1Sξ and η̄∗Y = Y (Y >Y )−1Sη, where

Sξ :=
V (Ep−1,p−1 − Ep,p)V >√

σ−2p−1 + σ−2p
Sη :=

V (Ep−1,p + Ep,p−1)V >√
σ−2p−1 + σ−2p

,

with Eij the matrix whose elements are zero excepted E(i, j) = 1.
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Proof. Similarly as in the proof of Proposition 1, let us write:

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3

p∑
i,j=1

σ2
i Ω̃

2
ij

(σ2
i + σ2

j )2
= 3

∑
i>j

Ω̃2
ij

(σ2
i + σ2

j )
, (8)

where the last inequality comes from the fact that Ω̃ := V >(η̄>Y ξ̄Y − ξ̄>Y η̄Y )V is
skew-symmetric. According to Lemma 2, the squared Frobenius norm of Ω̃ is
upper bounded by 2:∥∥∥Ω̃∥∥∥2

F
=
∥∥V >(η̄>Y ξ̄Y − ξ̄>Y η̄Y )V

∥∥2
F

=
∥∥η̄>Y ξ̄Y − ξ̄>Y η̄Y ∥∥2F ≤ 2.

Therefore:

KRn×p
∗ /Op

(ξπ(Y ), ηπ(Y )) ≤
3
∑
i>j Ω̃

2
ij

(σ2
p−1 + σ2

p)
≤ 3‖Ω̃‖2F

2(σ2
p−1 + σ2

p)
≤ 3

σ2
p−1 + σ2

p

.

To finish the proof, we show that this bound is reached for the vectors ξ̄∗Y
and η̄∗Y given in the proposition. It can be readily checked that ξ̄∗Y and η̄∗Y are
orthogonal and have unit norm. There remains to compute Ω̃∗:

η̄∗>Y ξ̄∗Y = Sη(Y >Y )−1Sξ =
V (Ep−1,p + Ep,p−1)Σ−2(Ep−1,p−1 − Ep,p)V >

σ−2p−1 + σ−2p
,

which simply becomes

η̄∗>Y ξ̄∗Y =
V (σ−2p−1Ep,p−1 − σ−2p Ep−1,p)V

>

σ−2p−1 + σ−2p
.

Therefore, Ω̃∗ is:

Ω̃∗ =
(σ−2p−1 + σ−2p )Ep,p−1 − (σ−2p−1 + σ−2p )Ep−1,p

σ−2p−1 + σ−2p
= (Ep,p−1 − Ep−1,p),

such that

KRn×p
∗ /Op

(ξ∗π(Y ), η
∗
π(Y )) =

3

σ2
p−1 + σ2

p

. �

5 Conclusion

We have computed the curvature of the manifold S+(p, n) endowed with the
Bures–Wasserstein metric. We have provided expressions for the Riemannian
curvature tensor and the sectional curvature of the manifold. We have shown
that in the case p = 1 the sectional curvature is always zero. If p ≥ 2, the
minimum over the tangent planes of the sectional curvature is zero, while the
maximum goes to infinity as the pth and p−1th eigenvalues of the PSD matrix go
simultaneously to zero. Further works might aim at computing the curvature of
S+(p, n) endowed with the other metrics proposed in the literature (see [VAV09,
BS09,VAV13]), which to our knowledge are still unknown.
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