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Abstract. We study the problem of finding a subspace representative of
multiple datasets by minimizing the maximal dissimilarity between this
subspace and all the subspaces generated by those datasets. After argu-
ing for the choice of the dissimilarity function, we derive some properties
of the corresponding formulation. We propose an adaptation of an algo-
rithm used for a similar problem on Riemannian manifolds. Experiments
on synthetic data show that the subspace recovered by our algorithm is
closer to the true common subspace than the solution obtained using an
SVD.
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1 Introduction

We address the problem of extracting common information from multiple data-
sets. In recent years data has become increasingly easy to generate and store
for analysis to guide decision making, and it is not uncommon to have access to
datasets representing similar but not exactly equivalent phenomena. A typical
example can be found in bioinformatic, where datasets usually have a few tens
to at most a few hundreds of samples for a few (tens of) thousands of features.
However there usually exist various datasets measuring the same disease on
different sets of patients, but corresponding to different studies and different
experimental conditions that should be taken into account in further analysis.
Considering all those similar datasets at once can be very useful to deal with
the high number of features since statistical inferences require a large number of
samples to be robust enough and generalizable to other data.

Beside the basic possibility to simply concatenate all the datasets X1,...,Xm

into a larger dataset X = [X1 . . . Xm] and apply usual methods such as princi-
pal components analysis on X, more specific approaches exist to extract common
components present in the datasets. A method to factorize two datasets with a
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common factor was proposed in [1] with a closed-form solution, and an exten-
sion to more than two datasets was proposed in [2]. However, such methods
assume that the common dimension of the datasets is full-rank, which is not
the case if we consider datasets with a higher number of variables than samples,
such as gene expression datasets. The best known method is probably canoni-
cal correlation analysis (CCA) [3], which aims to find a linear combination of
the initial features for both datasets maximizing the correlation between those
two combinations. When dealing with two datasets only, an exact solution can
be computed based on the covariance matrix. In order to find more than one
pair of correlated combination of features, deflation is usually used: the same
procedure (CCA) is repeated on the data from which the previous components
were removed. Another well known method, partial least square regression [4],
aims to find linear combinations of features for the two datasets such that the
covariance between those two new representations is maximal. As in CCA a
closed-form solution exists, and deflation can be used to compute the follow-
ing components. Another variation is co-inertia analysis (CIA) and its extension
multiple CIA [5] that maximizes a sum of weighted squared covariances between
linear combination of the datasets features and a reference vector. Consensus
principal component analysis is very similar to CIA, the main difference being
in the deflation process [6]. Different extensions of those methods to more than
two datasets have been proposed, with various criteria to optimize (see for ex-
ample [7, 8] and references within): maximizing a sum on all pairs of datasets
of covariances or correlations, possibly squared or in absolute value, and with
different constraints. In such cases, a closed-form solution does not always exist.

A central question when using more than two datasets is the importance to
give to those different (pairs of) datasets. Common approaches are to give all
datasets the same importance or, as in [7], to consider if a pair of datasets is
connected or not and to give to the corresponding term a weight of 1 or 0. If
we are dealing with a set of datasets all very similar except one (for example,
because measured using another technology), those kind of choices can lead to
components representing very well all the similar datasets but being not repre-
sentative at all of the last one. Here, we want to avoid this situation, and in order
to take all Xi into account we propose to minimize the maximal dissimilarity d
between the common component U ∈ Rp×K and all datasets Xi ∈ Rp×ni :

U∗ = arg min
U

max
i
d(U,Xi). (1)

This formulation can be viewed as looking for the center of the smallest-radius
sphere enclosing allXi, and can be linked to the minimum enclosing ball, 1-center
problem or minimax optimization problem. However, since here U represents a
subspace, we are really interested in the subspace generated by the columns of U .
So we want to solve problem (1) such that d(U,Xi) = d(U ,Xi) is a dissimilarity
measure between U and Xi, the subspaces generated by the columns of U and
X.

The problem of finding the smallest enclosing ball of a finite point set
X = {x1, . . . , xm} has been already thoroughly investigated in Euclidean space,
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and an efficient approximation algorithm has been proposed in [9]. An adaptation
of the algorithm presented in [9] to Riemannian geometry is proposed in [10] with
a study of the convergence rate, and in [11] to compute Riemannian L1 and L∞
center of mass of structure tensor images in order to denoise those images.

In this paper we assume that each point Xi represents a subspace of dimen-
sion ni in Rp, that is Xi belongs to the Grassmannian manifold G(ni, p) and
so X = {X1, . . . ,Xm} is included in the total Grassmannian ∪G(ni, p). The pro-
posed approach to solve problem (1) is inspired by [10]. The main difference
is that each data point Xi belongs to a different Grassmannian G(ni, p), which
prevents us by using the usual Grassmannian distance. Instead we use an adap-
tation based on principal angles, which allows us to measure the dissimilarity
between any pair of subspaces of different dimension, and to project G(ni, p) on
G(K, p) in order to return to a common manifold.

The paper is organized as followed. We first discuss the choice of the dis-
similarity measure and the resulting problem in Section 2, then details of the
proposed approach are presented in Section 3. Section 4 describes the results
obtained on synthetic data, and we conclude in Section 5.

2 Problem formulation

Let Xi ∈ Rp×ni be a matrix of p variables times ni samples, for i = 1, ...,m. Our
goal is to find a subspace U of dimension K representative of all the subspaces Xi,
where Xi is the subspace generated by the columns of Xi. In other words we are
looking for a U ∈ Rp×K minimizing d(U,Xi) for all i, where d(U,X) = d(U ,X )
is a dissimilarity measure between the span of U and the span of X.

2.1 Dissimilarity measure

Different dissimilarities are possible to quantify d(U,X), we detail some of them
below. For K = 1, a possible choice to evaluate if a vector u ∈ Rp is close to X
is the angle between u and its orthogonal projection on X . A vector u is close
to the subspace X if the (positive) angle between them is small. If we define φ
as the angle between u and X (in [−π2 ,

π
2 ]), we have

u>X̌X̌>u = cos2 φ

where ||u|| = 1 and X̌ is an orthonormal basis of X . The term u>X̌X̌>u can
then be seen as a similarity measure evaluating how close u is to X , with a value
of 1 when u is in the subspace X , and 0 when they are orthogonal. We can then
define a dissimilarity:

d(u,X) = 1− u>X̌X̌>u = sin2 φ

with d(u,X) = 0 if and only if u ∈ X .
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This can be extended to a more general U ∈ Rp×K with p ≥ n ≥ K ≥ 1
(with n the dimension of X ) by summing the dissimilarities obtained for each
element of an orthonormal basis Ǔ of U :

da(U,X) =
∑
k

1−Ǔ(:, k)>X̌X̌>Ǔ(:, k) = K−Tr
(
Ǔ>X̌X̌>Ǔ

)
=
∑
k

sin2 φk(U,X)

with cosφk(U,X) the singular values of Ǔ>X̌. Note that this quantity does not
depend on the Ǔ or X̌ chosen.

Another possible dissimilarity is [12]:

db(U,X) =
1√
2
||Ǔ Ǔ>− X̌X̌>||F =

√
K + n

2
− Tr(Ǔ>X̌X̌>Ǔ)

=

√
n−K

2
+
∑
k

sin2 φk(U,X).

Similarly, we can consider the norm between X̌ and its projection onto the
common subspace U (termed chordal metric in [13, Table 3]):

dc(U,X) = ||(I − Ǔ Ǔ>)X̌||F =
√
n− Tr

(
Ǔ>X̌X̌>Ǔ

)
=

√
n−K +

∑
k

sin2 φk(U,X).

Another possibility is to consider the principal angles φk between both sub-
spaces:

dd(U,X) =

√∑
k

φ2k(U,X)

See [13] for other possible dissimilarity measures.
Letting σk = cosφk(U,X) denote the kth singular value of Ǔ>X̌, we can

compare the different dissimilarities in Table 1 (with nu and nx dimensions of
subspaces U and X ). When using those dissimilarities in minU maxi d(U,Xi), db
and dc will give more importance to datasets Xi with a higher ni. All dissimi-
larities except dd can be directly expressed in terms of Ǔ>XX>Ǔ . As da and dd
respect U ( X ⇒ d(U,X) = 0, they are not distances. Note that if nx = nu, we
have

√
da = db = dc.

In the context of (1), it is natural to require that d(U,X) = 0 when U ⊂ X
or X ⊂ U . We opt for da, since it yields a simpler objective function than dd.
Hence, (1) becomes:

min
U∈Rp×K

max
i
K − Tr(Ǔ>X̌iX̌

>
i Ǔ).

Since K is fixed and Ǔ verifies Ǔ>Ǔ = IK , this is equivalent to

max
U>U=I

min
i

Tr(U>X̌iX̌
>
i U). (2)
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Formulation Distance U ⊂ X ⇒ d(U,X) = 0

da(X,U) = min(nx, nu)−
∑min(nx,nu)
k cos2(φk) - X

db(X,U) =
√

nx+nu
2
−

∑min(nx,nu)
k cos2(φk) X -

dc(X,U) =

√
max(nx, nu)−

∑min(nx,nu)
k cos2(φk) X -

dd(X,U) =

√∑min(nx,nu)
k φ2

k - X
Table 1. Summary of the dissimilarities

Since maxU mini fi(U) is equivalent to maxU,τ τ subject to τ ≤ fi(U) for all i,
(2) is equivalent to:

max
U,τ

τ

s.t. τ −
K∑
k=1

u>kX̌iX̌
>
i uk ≤ 0 ∀i = 1, ...,m (3a)

u>j uj − 1 = 0 ∀j = 1, ...,K (3b)

u>j uk = 0 ∀k 6= j, j = 1, ...,K ; k = 1, ...,K (3c)

with ui the ith column of U . Observe that (3) is an optimization problem with
a linear objective function and quadratic (in)equality constraints.

2.2 KKT conditions

We derive the first order necessary conditions of optimality for problem (3). As-
sociating Lagrange multipliers γi’s with constraints (3a), Mjj ’s with constraints
(3b) and Mjk’s with constraints (3c), the KKT conditions, see e.g., [14] can be
written as: ∑

i

γi = 1 (4a)(∑
i

γiX̌iX̌
>
i

)
U = UM (4b)

U>U = I (4c)

τ − Tr
(
U>X̌iX̌

>
i U
)
≤ 0 ∀i = 1, ...,m (4d)

γi ≥ 0 ∀i = 1, ...,m (4e)

γi
(
τ − Tr

(
U>X̌iX̌

>
i U
))

= 0 ∀i = 1, ...,m (4f)

The Mij ’s correspond to the Lagrange multipliers associated with constraints
u>i uj = 0 and the Mii’s to u>i ui − 1 = 0, so M is symmetric. Therefore there
exist a diagonal matrix D and an orthogonal matrix Q such that M = QDQ>.
We have then

(∑
i γiX̌iX̌

>
i

)
UQ = UQD which means that UQ is a matrix of

eigenvectors of
∑
i γiX̌iX̌

>
i . The γi’s can be interpreted as the importance given
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to the corresponding subspaces, and are positive only for those subspaces that
achieve the max of problem (3).

Let UYDY V
>
Y be the singular value decomposition of

Y = [
√
γ1X̌1,

√
γ2X̌2, ...,

√
γmX̌m] ∈ Rp×N .

Observe that UYD
2
Y U
>
Y is then an eigendecomposition of Y Y >. A candidate

solution of problem (3) would then be, for fixed γi respecting condition (4f):

Mij = 0 ∀i 6= j U = UY

Mii = D2
Y (i, i) τ = Tr

(
U>Y Y >U

)
.

The last equality results from the combination of conditions (4a) and (4f):

τ =
∑
i

γiτ =
∑
i

γi Tr
(
U>XiX

>
i U
)
.

To maximize τ , we should consider the K first singular values of Y . The difficulty
is then to find γi such that condition (4f) is respected.

We can easily see that unless the optimal U belongs to all subspaces Xi,
more than one γi is nonzero. To see this, observe that if γi = 0 for all i 6= j,
constraint (4b) would imply that U belongs to subspace Xj , which means that
Tr(U>X̌jX̌

>
j U) = K and τ = K by condition (4f). Since for all i, k we have

0 ≤ u>kX̌iX̌
>
i uk ≤ 1 and Tr

(
U>X̌iX̌

>
i U
)
≥ τ = K by condition (4d), we have

Tr
(
U>X̌iX̌

>
i U
)

= K for all i, and U belongs to all the other Xi’s. As a result,
any candidate solution should have at least two Xi’s realizing the optimum.

3 Proposed approach

In [9], a fast and simple procedure is proposed to find an approximation of
the minimum enclosing ball center of a finite-dimensional Euclidean space. The
procedure is extended to arbitrary Riemannian manifolds in [10]:

– Initialize the candidate solution U (t) with a point in the set

– Iteratively update as U (t+1) = Geodesic
(
U (t), X

(t)
f , 1

t+1

)
, where X

(t)
f is the

farthest point to U (t), and Geodesic(p, q, t) represents the intermediate point
m on the geodesic passing through p and q such that dist(p,m) = dist(p, q).

Since we are interested in finding the best subspace of dimension K in Rp,
our solution U belongs to the Grassmann manifold G(K, p). The main difference
with [10] is that we are dealing with points representing subspaces of differ-
ent dimensions ni and therefore belonging to different manifolds G(ni, p). The
first consequence is that the usual Grassmaniann distance cannot be used to

determine the farthest point X
(t)
f . Since we want to preserve d(U,Xi) = 0 when

U ⊂ Xi, we used a dissimilarity which is not a metric except if the two sub-
spaces belongs to the same Grassmannian. The second consequence is that to
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update the current iterate U (t) using a geodesic, X
(t)
f should be first projected on

G(K, p). The next proposition shows how, given Xf ∈ G(nf , p) and U ∈ G(K, p)
with nf ≥ K, we can compute Yf ∈ G(K, p) included in Xf that minimizes the
distance to U . We can then update U using the corresponding geodesic.

Proposition 1 Let Y, U ∈ G(K, p) and X ∈ G(n, p) where n ≥ K, with X̌ and
Ǔ orthonormal basis of X and U . Let A1D1B

T
1 be an SVD of ǓT X̌, then we

have

min
Y⊂X

da(Y,U) = da(X ,U) = da(Col(XB1),U).

Those equalities hold also for dd.

An adaptation is proposed in Algorithm 1, integrating results obtained from
the KKT conditions analysis. We initialize using a K-truncated SVD of
Y = [X̌1, X̌2, ..., X̌m], corresponding to the case where all the γi’s are equal
(line 2), and stop when the two farthest subspaces have close dissimilarity values
(line 18). As explained in Subsection 2.2, this is a necessary, but not sufficient,
condition at optimality. The farthest Xi from current U (t) is determined using
the chosen dissimilarity based on the principal angles (lines 5 to 8). The associ-
ated orthonormal basis S0 and S1 of U and Ximax are computed (lines 9 to 11)
to update U (t) in the direction of Ximax with a step 1

t+1 along the Grassmannian
geodesic [15] (lines 12 to 16).

Algorithm 1 Heuristic to extract a subspace minimizing the maximal dissimi-
larity with the Xi.

Require: tol, ε, X1, ...,XN
1: t← 1
2: U (0)D(0)V (0)T ← SVD([X̌1...X̌m],K)
3: err(0) ← tol + 1
4: while err(t) ≥ tol do
5: for all X̌j do

6: d
(t)
j ← da(U (t), X̌j)

7: end for
8: imax ← arg maxi d

(t)
i

9: UcDcV
>
c ← SVD(X̌>imax

Ǔ (t),K)
10: S0 ← U (t)Vc
11: S1 ← X̌imaxUc
12: Θ ← arccos diagDc
13: Γα ← diag cosαΘ
14: Σα ← diag sinαΘ
15: δ ← 1

t+1

16: U (t+1) ← S0Γδ + (S1 − S0Γ1)Σ−1
1 Σδ

17: dsorted ← sortdecreasing(d(t))
18: err(t) ← dsorted(1)− dsorted(2)
19: t← t+ 1
20: end while
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4 Experiments

We generated synthetic data to represent a case where datasets are unevenly
distributed in space and the minimax approach is justified. We first generated
a common subspace Uc ∈ Rp×Kc ∼ N(0, 1). We then perturbed it to generate
two different noisy versions Uj = Uc + N(0, sjµUc), j ∈ {1, 2}, with µUc =
mean(|Uc|), from which we generated two groups of data. For each Uj , j ∈ {1, 2},
we generated different datasets Xi:

Xi =
[
Uj Ai

] [V >i
B>i

]

where Bi ∈ Rni×Ki is distributed ∼ U[0,1], and Ai ∈ Rp×Ki ∼ N(0, 1). Each
column of matrices Uj , Ai and Bi is normalized (using the L2 norm) to give the
same importance to each component within the dataset. Each column Vi(:, j) of
Vi ∈ Rni×Kc is distributed ∼ U

[0,
3wij

p ]
, where wij represents the importance of

the common component j within dataset i. Finally, Gaussian noise εi ∼ N(0, σi∗
µXi) is added to each datasets: Xi ← Xi+N(0, σi∗µXi) with µXi = mean(|Xi|).

We generated datasets in two groups: the first, based on U1, contains more
datasets but with higher noise, while the second group, based on U2, contains
fewer less noisy datasets. The first group contains 17 datasets with s1 = 1,
while the second contains 3 datasets with s2 = 0.1. We took Kc = 3 common
components and Ki = 5 additional components, p = 1000 features and ni ∼
U[20 220] samples for each dataset Xi. The weights wij were randomly generated
as ∼ U[0.05 0.5] to ’hide’ the common components in the datasets. The final added
noise has σi = 0.1.

We compared our Grassmaniann Minimum Enclosing Ball approach GMEBda
described in Algorithm 1 to a K-truncated SVD on X = [X1...Xn] (SV D) and
X̌ = [X̌1...X̌n] (SV Do). Working with X̌ instead of X improves the recovery of
components that are (weakly) present in all Xi’s. For each subspace obtained,
we computed its maximal dissimilarity to X̌i, but also to the background truth
Uc and the two noisy Uj . Mean results on 100 randomly generated datasets are
shown on Figure 1, where we also give results when using dissimilarities db, dc
or dd in Algorithm 1.

When computing dissimilarities to the U ’s, we logically have
√
da = db = dc

since, in these cases, nx and nu of Table 1 are equivalent. Results obtained for
db and dc with X̌i are similar for all methods, due to the influence of ni in
the dissimilarities. Since we have dc(U,Xi) ∈ [

√
ni −K,

√
ni] and ni > K, the

results are mainly influenced by maxi ni. On the criterion minimized (da on X̌i),
the common subspace approach is the best one. As expected, SV Do recovers
very well the noisy components U1, but the common subspace approach recovers
better the U2. The original Uc is then recovered better by the subspace approach
than by SV Do.
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Fig. 1. Mean on 100 tests of maximal dissimilarity, for different dissimilarities and
methods. Observe that methods GMEBda and GMEBdd perform best at recovering
the ground truth Uc.

5 Conclusion

In this paper, we examined the problem of finding a subspace representative
of multiple datasets by minimizing the maximal dissimilarity between this sub-
space and all the subspaces generated by those datasets. After arguing for a
particular choice of dissimilarity measure, we derived some properties of the cor-
responding formulation. Based on those properties, we proposed an adaptation
of an algorithm used for a similar problem on a Riemannian manifold. We then
tested the proposed algorithm on synthetic data. Compared to SVD, the sub-
space recovered by our algorithm is closer to the true common subspace. Based
on these promising results, the next step is to analyze properly the convergence
of the proposed algorithm. Other approaches to solve the problem should also
be investigated, for example based on the KKT conditions or on linearization.
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