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Université catholique de Louvain
Louvain-la-Neuve, 1348, Belgium
Email: emilie.renard@uclouvain.be

P.-A. Absil
ICTEAM Institute
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Abstract—Merging gene expression datasets is a simple way
to increase the number of samples in an analysis. However
experimental and data processing conditions, which are proper
to each dataset or batch, generally influence the expression
values and can hide the biological effect of interest. It is then
important to normalize the bigger merged dataset, as failing to
adjust for those batch effects may adversely impact statistical
inference. Batch effect removal methods are generally based
on a location-scale approach, however less widespread methods
based on matrix factorization have also been proposed. We
investigate on breast cancer data how those batch effect removal
methods improve (or possibly degrade) the performance of simple
classifiers. Our results indicate that the matrix factorization
approach would deserve greater attention, as it gives results
at least as good as common location-scale methods, and even
significantly better results in specific cases.

I. INTRODUCTION

Nowadays, the development of sequencing technologies
allows to measure gene expression levels at a reasonable cost.
The analysis of the resulting data helps to better understand
how genes are working, with the goal of developing better
cures for genetic diseases such as cancer. Due to different
constraints such as the limited number of samples that can
be processed at the same time in an experiment, the size of
such datasets is often limited in samples. However, statistical
inferences need a high number of samples to be robust enough
and generalizable to other data. As more and more of those
datasets are available on public repositories such as GEO
http://www.ncbi.nlm.nih.gov/geo/, merging and combining dif-
ferent datasets appears as a simple solution to increase the
number of samples analyzed and potentially improve the
relevance of the biological information extracted.

Expression levels of genes are the result of interactions
between different biological processes. When measuring those
expression levels, noise may also be added at each step of data
acquisition due to imprecisions. In particular, different biases
can be introduced depending on experimental conditions. Such
confounding factors, or batch effects, that complicate the
analysis of genomic data can be for example due to difference

in chip type or platform, procedures that can differ from one
laboratory to another, storage conditions, ambient conditions
during preparation, etc. A carefully designed experimental
process can limit the impact of such effects, but some are
often unavoidable, especially when a large number of samples
is necessary. Those batch effects can be quite large and hide
the effects related to the biological process of interest. Not
including those effects in the analysis process may adversely
affect the validity of biological conclusions drawn from the
datasets [1]–[3]. It is then important to be able to combine
data from different sources while removing the batch effects.
The difficulty is that the precise effects of those technical
artefacts on gene expression levels is often unknown. However
some partial information is usually available, such as the batch
number or the date of experiment, and can be used as a proxy
for those effects.

Available batch effect removal methods can be classified
in two main approaches: location-scale methods and matrix
factorization methods. The location-scale methods assume a
model for the data distribution within batches, and adjust
the data within each batch to fit this model. This approach
is the most straight-forward one and many methods have
already been proposed: XPN [4], DWD [5], ratio-based meth-
ods [6], ComBat [7], quantile based methods [8], mean or
median centering [9], [10], etc. The matrix factorization based
methods assume that the gene-by-sample expression matrix
can be represented by a small set of rank-one components
which can be estimated by means of matrix factorization.
The components that correlate with the batch number are
then removed to obtain the normalized dataset [11], [12]. In
[2], [3], matrix factorization is used to model covariates in a
differentially expressed gene (DEG) detection process. Matrix
factorization based methods are less used, probably because of
the indirect approach to the problem: if no clear batch effect
is recovered in the rank-one components, then the data matrix
is left unchanged. However, not forcing the direct removal of
differences between batches can be an advantage as it is more
adaptable to cases where real technical artifacts are not exactly
linked to the known batches. Another option is to look directly
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for patterns present in all batches (or latent variables). Various
implementation of such an approach were already proposed in
the case of multi-omic data integration (combining data where
the common dimension is the samples), but a recent adaptation
was proposed in [13] in the specific context of classification
based on independent datasets.

The presence or absence of batch effects in a dataset—
and thus the effectiveness of batch effect removal methods—
can be evaluated by different methods (see, e.g., [14] for an
overview), which can be classified in three main groups: local
approaches, global approaches and, in supervised cases, per-
formance based approaches. Global methods aim to illustrate
the global behavior of the dataset: the evaluation of batch
effect presence uses many features at once. For example, the
global behavior of all genes can be summarized by a clustering
dendogram or a plot of the first principal components. A
clustering of samples by batch shows presence of batch effects;
it means that the predominant trend present in the data is
linked to batches. However it does not imply that all genes
are affected to the same extent, or even affected at all.

On the contrary, local evaluation methods examine the
behavior of one gene at a time: expression levels of a gene
should have the same behavior (typically similar probability
distributions) for all batches. When evaluating a batch effect
removal method, the clustering by batch and/or the differences
in behavior across batches should disappear (or at least be
weaker).

Those evaluation methods are unsupervised in the sense
that there is no ground truth to refer to. Hence they are
unable to tell if the evaluated batch effect removal method has
removed differences between batches that are due to technical
artifacts (as they should) or to biological differences between
batches (as they should not). Batch effect removal methods that
also remove differences between batches that have biological
origins—a major danger when the batches are imbalanced—
can thus be favored by such unsupervised evaluation methods.

Now, if there is some ground truth to refer to, then a
more meaningful evaluation of batch effect removal methods
can be carried out. If some genes are known to be truly
(not) differentially expressed, the proportion of those genes
in the DEG list after removal of batch effect should ideally
be higher (lower). P-values corresponding to null genes or
negative control genes should be uniformly distributed across
[0, 1]. The list of DEG should also be more stable from one
batch to another. In prediction tasks where the final objective is
for example to determine to which class a new sample belongs,
performances should be improved after batch effect removal.
See for example [14] for a list of techniques to evaluate batch
effects presence.

Various comparisons of different batch effect removal meth-
ods can be found in [4], [6], [14]–[18]. While some methods
appear more often among the best ones, there is not one
best method outstanding from those studies as the context
and objective of comparison varies. The set of tested methods
varies from one study to another, but very few matrix factor-
ization based methods were considered in those comparisons.

Reference [12] compared some matrix factorization methods
to ComBat in a classification task and showed that such kind
of approach can improve results. However, only four batch
effect removal methods were compared, only one classifier
was considered, and training and testing sets were separated
only after removal of batch effects.

In this paper, we carry out a more thorough investigation of
the impact of general purpose batch effect removal methods on
sample classification tasks. We compare the two families of
approaches (location-scale vs matrix factorization) to under-
stand their advantages and weaknesses. For this we use nine
different methods (15 with variants) and five classifiers, taking
care of separating training and testing data from the very
beginning (i.e., as an addon method such as explained in [18]).
Our salient finding is that some matrix factorization methods,
though less widely investigated in the literature, have the edge
over location-scale methods; see Section IV for details.

The paper is organized as follows. Section II details the
methods examined, which are experimented and analyzed in
Section III, and conclusions are drawn in Section IV.

II. BATCH EFFECT REMOVAL METHODS

Among the many batch effect removal methods mentioned
above, we choose to investigate various well known location-
scale methods and a few matrix factorization based ones. The
choice of those specific methods was quite arbitrary, however
we try to represent the different cases. Some methods, such
as standardization, are really simple while others, such as
ComBat, are more complex. FAbatch combines location-scale
and matrix factorization approaches, and rgCCA is to our
knowledge tested for the first time in this context. More in
depth explanations of the chosen methods are detailed in this
Section.

A. Location-scale methods

Location-scale methods are maybe the most intuitive way
to handle the data. Choosing a reasonable model representing
the probability distribution of gene expression, and assuming
that genes behave in the same way in each batch, expression
values are adapted to fit this model within each batch. The
goal is to let each gene have a similar mean and/or variance
in each batch. A main hypothesis in such methods is that by
adjusting the gene distributions no biological information is
removed, and that each batch groups samples with reasonably
similar experimental conditions.

The simplest way to normalize a dataset in order to remove
batch effects is to center (called Centering) or standardize
(called Std) each batch separately. That is, for each gene in
each batch, the expression values are centered, and divided by
their standard deviation if desired.

Other simple approaches are ratio-based methods [6], which
scale each value with a reference. Usual references can be
arithmetic (called RatioA) or geometric (called RatioG)
mean value of the corresponding variable in the same batch.



A widely used and more complex location-scale method is
ComBat [7] (called ComBat). The expression value of gene
i for sample j in batch b is modeled as

Xbij = αi + βiCj + γbi + δbiεbij

where αi is the overall gene expression, and Cj is the vector
of known covariates representing the sample conditions (such
as batch membership). The error term εbij is assumed to
follow a normal distribution N(0, σ2

i ). Additive and multi-
plicative batch effects are represented by parameters γbi and
δbi. ComBat uses a Bayesian approach to model the different
parameters, and then removes the batch effects from the data
to obtain the clean data X∗bij = ε̂bij + α̂i + β̂iCj . By pooling
information across genes, this approach is more robust to
outliers in small sample sizes.

B. Matrix factorization based methods

The main assumption is that the gene-by-sample matrix X
can be represented using a low-rank factorization :

X ≈ ABT =
∑
k

A(:, k)B(:, k)T . (1)

A(:, k) can be interpreted as the gene activation pattern of
component k and B(:, k) as the weights of this pattern in
the samples. For each k, the highly activated genes in A(:, k)
can be viewed as a group of genes working together in a
specific condition, and B(:, k) is the intensity of this condition
among samples. The hope is then that some of the components
represent the biological conditions of interest (and should be
kept) while others represent the batch effects (and could be
removed from the data). In other words, we are looking for
a basis U ⊂ A representing the gene activation patterns not
linked to batch. This basis U can then be used in an “addon”
way as described in Subsection III-B.

When dealing with different batches, two approaches can be
investigated. The first one is to look directly for components
present in all batches (or latent variables) such that Xb ≈
UV T

b (where b represents the batch) . The other option is to
directly apply the factorization on X , the concatenation of the
m batches, to obtain X = [X1...Xm] ≈ ABT = A[B1...Bm]T

and then remove components correlating with batch number.
Specific supervised methods were also developed to integrate
class labels in the process.

1) Keeping common components: The first approach is
inspired by Canonical Correlation Analysis [19], which aims
to find linear combinations of the variables of two datasets
with a maximum correlation. A generalization to more than
two datasets was proposed by [20]:

max
tb

∑
j 6=k

cjkg(Cov(Xjtj , Xktk))

s.t. τb||tb||2 + (1− τb)V ar(Xbtb) = 1 ∀b

where in our case Xb represents the matrix of expression
values of batch b. Function g is usually the identity (the method
is then called rgCCAid), the absolute value or the square
function (the method is then called rgCCAsq). Parameter cjk

represents the link between batches j and k, and 0 ≤ τb ≤ 1
let us choose between the type of constraint on tb and/or Xbtb.
We took all cjk = 1 and τ = 1, common basis U was then
obtained as U = XV (V TV )−1 with V = [t1...tm].

2) Removing batch related components: A template for the
second approach, adapted from [12], is detailed in Table I. The
first step is to factorize the matrix X (line 1). Many methods
exist to factorize a matrix, depending on the properties the fac-
torization components have to fulfill. Imposing orthogonality
among components leads to a Singular Value Decomposition.
Analysis of gene expression data using SVD was first proposed
in [11]. Minimizing statistical dependence across component
leads to Independent Component Analysis (ICA) methods.
Different variants exist for such methods depending on how
statistical dependence is evaluated, and wether we want to
impose independence among genes or samples dimension, or
even using a trade-off between both options [12]. ICA was
shown to better model the different sources of variation than
SVD [3]. Other factorization methods exist in the literature,
such as Non-negative Matrix Factorization [21] which can be
used when dealing with non-negative matrix values to obtain
components with non-negative values only.

Once the factorization is computed, we select the B:,k’s
that correlate with the batch. If a component presents enough
correlation with the batch (line 3), then this component is
selected. As batch is a categorical information and the B:,k’s
are continuous, the usual linear correlation formula (Pearson or
Spearman) cannot be used. To estimate which components are
related to batch, as in [12] we use the R2 value that measures
how well a variable x (here, c) can predict a variable y (here,
B:k) in a linear model:

R2(x, y) ≡ 1− SSres

SStot
.

SStot =
∑

i(yi − ȳ)2 is the sum of squares of the prediction
errors if we take the mean ȳ = 1

n

∑n
i=1 yi as predictor of y.

SSres =
∑

i(yi− ŷi)2 is the sum of squares of the prediction
errors if we use a linear model ŷi = f(xi) as predictor: if x is
continuous the prediction model is a linear regression, if x is
categorical we use a class mean. The R2 value indicates the
proportion of the variance in y that can be predicted from
x, and has the advantage to be usable with categorical or
continuous variables. So the higher the R2 value, the better the
association between both variables. As the batch information
is categorical, R2(c,B:k) compares the prediction of Bik by a
general mean

∑
j

Bjk

n or by a batch mean
∑

j∈Ci

Bjk

#Ci
(where

Ci represents all samples in the same batch as sample j).
An additional step can be added in the process to check if

the selected components do not correlate with some informa-
tion of interest (lines 4-6, optional). The selected components
are then removed from the matrix X to obtain a cleaned dataset
(line 7). The common basis U is then generated by the matrix
A cleaned from the selected components (line refalgu).

As matrix factorization methods, we tested the singular
value decomposition (called SV D) and spatio-temporal ICA



TABLE I
MATRIX FACTORIZATION BASED METHOD

(REMOVING BATCH RELATED COMPONENTS)

Require: X (p × n) the aggregated dataset to be normalized, c (n) a
categorical variable indicating the batch number, matfact the matrix
factorization method, t ∈ [0, 1] the threshold to consider a component
associated to c, [optional] c2 (n) categorical/continuous information that
we want to preserve

1: A,B ← matfact(X)
2: R← cor(c, B)
3: ix← which(R ≥ t)
4: R2 ← cor(c2, B) {optional}
5: ix2 ← which(R2 ≥ R){optional}
6: ix← ix \ ix2{optional}
7: X̂ ← X −A[:, ix] ∗B[:, ix]T

8: U ← A[:,−ix]

as presented in [22] with α ∈ {0, 0.25, 0.5, 1} (called stICA0,
stICA0.25, stICA0.5 and stICA1).

3) Supervised methods: A well-known batch effect removal
method is surrogate variable analysis [1] (called SV A), which
combines SVD and a linear model analysis to estimate the
eigengenes from a residual expression matrix from which
biological variation has already been removed:

xij = µi + fi(yj) +
∑
k

λkigkj + εij

with µi+fi(yj) a linear regression on the phenotype to predict
xij from yj , and surrogate variables gkj estimated using SVD.

In the same direction, a method combining latent factor
adjustment and location-scale was proposed in [23] (called
FA):

xbij = αi + aTjbβi + γbg +

kb∑
l=1

bbilZjbl + δbiεbij

with Zjbl ∼ N(0, 1) for all j in 1, ..., kb and εbij ∼ N(0, σ2
i ).

All known factors of interest, such as the phenotype to predict,
are represented in the term aTjb. Latent variables (including
batch effects) are represented by bbilZjbl and estimated using
an EM algorithm.

Those last two batch effect removal methods are supervised
in the sense that they explicitly integrate information about the
phenotype to predict in their models. It is of course possible
to go a step further by computing specifically components
correlating with this information, like in [13]. FA and SV A
could be seen as weakly supervised in the sense that they try
to avoid removing the class information, while [13] aims to
find components specifically representing this information and
is then more strongly supervised. The method in [13] is then
less general than the ones detailed previously, so we did not
consider it as a general purpose batch effect removal method.

III. RESULTS AND DISCUSSION

We tested the batch effect removal methods rgCCAid,
rgCCAsq , stICA0, stICA0.25, stICA0.5 and stICA1 for
matrix factorization and ComBat, Std, Centering, RatioA
and RatioG for location-scale. We also tested SV A and FA,

TABLE II
SUMMARY OF BATCHES USED, NAMED AFTER THEIR GSE REFERENCES

AND THE PLATFORM USED.

Batch Technology # ER- # ER+
Train GSE203496 Affymetrix 77 209

GSE21653570 Affymetrix 113 150
GSE299096 Affymetrix 34 85
GSE17040887 Agilent 11 44
GSE1992887 Agilent 16 23
NKI2 Agilent 43 159

Test GSE1770596 Affymetrix 0 298
GSE349496 Affymetrix 34 213
GSE532796 Affymetrix 58 0
GSE6532570 Affymetrix 0 87
GSE653296 Affymetrix 11 115
GSE739096 Affymetrix 64 134
GSE32641887 Agilent 84 0
GSE8465887 Agilent 17 16
NKI Agilent 40 74

two methods using class information, and the case without
batch effect removal (called None) as reference. We tested
all those methods on breast cancer expression; more details
on the datasets used can be found in Table II. We took as
phenotype of interest to predict the estrogen-receptor status
(ER), and consider each dataset with a specific platform
as a batch. Features of the different datasets were matched
using the common Entrez ID, and samples and features with
respectively more than 1% and 10% of missing information
were removed, giving an aggregated dataset of 9371 genes and
2209 samples. The missing information was then imputed for
each batch using the ‘impute’ R package. Code is available
from https://sites.uclouvain.be/absil/2017.09.

A. Global effect of batch effect removal methods

To evaluate the presence of batch effects, we plotted the
two first principal components of the datasets (see Figure 1).
Principal components represent linear combinations of features
(here, genes values) giving the largest possible variance, such
that components are uncorrelated: the first components capture
most of the variability in the data. On Figure 1, we can see that
without removal of batch effect (subplot ‘None’) the first two
principal components of the datasets show a global clustering
by batch. Moreover, all Agilent datasets are clustered together
on the right. The two batches corresponding to the same
platform (GPL570) are also close.

The three other subplots give an idea on how the different
types of batch effect removal method work. Clearly, applying
a batch effect removal method reduces the batch clustering,
and even tends to cluster samples by ER status. Note that
by forcing each dataset to have the same mean, ComBat
cannot merge the two clusters present in GSE653296. Such
distinct clusters are no more present for SVD. However
samples belonging to the same batch still tend to stay in the
same neighborhood, probably because the batch information
is not directly used when computing the new representation
of the data. In FA, which combines location-scale and matrix
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factorization approaches, there is no more clustering by batch
at all.

B. Validation by impact on classification

To compare the different batch effect removal methods, we
used them in a whole classification process where the ER
status is predicted. The ER status is thus the phenotype to
predict, i.e. the outcome. The whole process is described in
Table III. The first step is to separate training and testing
sets (lines 1–2). Next batch effects are removed from the
training datasets with the chosen method (line 3). Optionally,
the training labels can be used as extra information to preserve.
Here we did not use this option in our experiments except for
SV A and FA (in particular, c2 is not used in the process of
Table I). In matrix factorization based methods, we computed
the K = 20 first components and removed the components
with an R2 value higher than t = 0.5.

A basic feature selection is performed by selecting the genes
with the best association with the ER label based on a t-test
(line 4). A classifier is trained based on those genes (lines 5–6).
When training the classifier model, train data are first centered
and scaled to ensure to treat all features with the same weight.

Batch effects are then removed from the test dataset Xte

(line 7) using an addon counterpart of the chosen method.
In case of a matrix factorization based approach, in order to
comply with the addon requirement [18], the batch effect free
dataset X̂te is computed using the projection of Xte on the
basis U (see Subsection II-B):

X̂te = U(UTU)−1UTXte.

After centering and scaling, the ER labels of testing set are
finally predicted using the classifier (line 8).

We repeated lines 5 to 8 using different numbers of selected
genes (line 4) and different classifiers (line 6). We started with
2000 features, repeatedly removing 20% of them until reaching
less than 150 features; then we removed 10% until a minimum
of 10 features. Classifiers tested are k-Nearest Neighboors,
Support Vector Machine, Naive Bayes, Random Forest, and
Adaboost with logistic regression.

In order to comply with the ‘addon’ scenario [18] where
the model is built once and for all on some studies and then
validated on other separate studies, the parameters of batch
effect removal methods and classifiers are estimated using only
the training datasets. We applied the whole procedure on any
subset of four training datasets (C4

6 = 15 experiments), and
then tested it on the all nine testing sets (described in Table II).

We choose to use the balanced classification rate (BCR)
as performance measure. The balanced classification rate, or
balanced accuracy, is computed as 0.5( TP

TP+FN + TN
TN+FP )

and allows to take into account a potential imbalance between
classes. The reference value is then 0.5, which corresponds to
assigning randomly the labels based on the classes probabili-
ties.

1) Influence of test dataset: As described in Table II, the
datasets used vary on different aspects such as the technology
used, the number of samples or the proportion of ER+/ER-

TABLE III
CLASSIFICATION PROCESS

Require: X (p × n) aggregated matrix of gene expression, y (n) the label
to predict, c (n) the batch information

1: ytr, yte ← y
2: Xtr, Xte ← X
3: X̂tr, paramBE ← BEremoval(Xtr, c, ytr)
4: idxbestGenes ← ttest(ytr, X̂tr)
5: Xclass ← X̂tr[idxbestGenes, :]
6: modelclass ← classifier(Xclass, ytr)
7: X̂te ← BEremoval(Xte, paramBE)
8: ŷte ← prediction(modelclass, X̂te[idxbestGenes, :])

classes. Figure 2 shows for each dataset and each batch effect
removal method the mean BCR obtained when averaging on
the different classifiers and training sets. In order to stay
concise, results where also averaged on all number of selected
features as similar results were obtained when considering
different numbers of selected features.

We can see on Figure 2 that in some cases such as RatioA
or rgCCAsq , some methods appear to worsen the BCR
compared to the reference case without any batch effect
removal. Datasets GSE532796 and GSE32641887 have really
bad results (BCR ≤ 0.5), probably due to the fact that their
class frequencies (100% of ER-) are really far from the
training ones (majority of ER+). From now on, we will
exclude those two datasets from the testing set. All other
datasets have a quite similar behavior, except for GSE653296
which leads to bad results for location-scale methods.

Detailed results for dataset GSE653296 are shown on Fig-
ure 3, where we can see that applying a specific method can
really decrease or increase the performances. Any location-
scale method worsens the results while FA and SVD improve
it significantly. The bad behavior of location-scale methods
can probably be explained by the two clusters initially present
in the dataset and that cannot be removed by a simple location-
scale method (see Figure 1). On the contrary, matrix factor-
ization methods, in view of their unsupervised foundations
(namely, line 1 of Table I is unsupervised), are able to capture
trends within batches.

2) Influence of classifier: Similarly, the effects of the
different batch effect removal methods and classifiers on the
testing sets were compared on Figure 4. We can see on
Figure 4 that all classifiers appear to have a similar behavior
for the majority of methods. Some methods such as RatioA,
SV A or rgCCAsq worsen the BCR while FA, SV D and
stICA0.25,0.5 lead to the best results, with a slightly higher
mean and a smaller variance than None. Note that while using
class information, SV A performances are among the worse,
probably due to the fact that the method does not use the batch
information.

3) Influence of technology used: As initially the datasets
tend to cluster by the technology used (Affymetrix or Agilent),
we investigated more in depth the influence of this factor in
the training and testing sets on Figure 5. For this purpose
two more classification models were trained, one on the 3
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models precedently trained.

4) Influence of training set: Figure 6 shows the average
performances depending on the training set used. Whereas the
results depend strongly on the training test when no method
is used, applying any batch effect removal method increases
the stability of results. The best methods regarding stability
are still the same: FA, SV D, stICA0.25,0.5. ComBat, Std
and Centering are slightly below due to GSE653296.

5) Influence of class frequencies in the training set: As
seen previously, the models used have real difficulties to make
correct predictions for datasets with only ER- samples. To
investigate the effect of imbalanced repartition of classes in
the training set, we trained our models on training datasets
randomly subsampled to increase the proportion of ER- sam-
ples (described in Table IV). Performances obtained on those
training datasets are shown on Figure 7. The two worse test
datasets are the two with only ER+ samples. All datasets
with a majority of ER+ samples have degraded BCR while
performances of those with ER- only have improved compared
to Figure 2. General behavior of the different methods is
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Fig. 6. Influence of batch effect removal methods and training sets on BCR,
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different training set.
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similar to the previous observations, except for FA which is
now among the worse methods.

IV. CONCLUSION

In the context of merging gene expression datasets, we have
investigated two types of batch effect removal approaches:
location-scale and matrix factorization based methods. We
have compared those methods used as preprocessing tools for
various basic classifiers. To comply with real-life scenario,
we first applied the batch effect removal method, selected the
features and trained the classifiers on a subset of datasets. Once
all the models were trained based on the training set, we then
applied on a separated test set the batch effect removal method
and the classifier using the previously fixed models.

The first observation is that in a specific case (dataset
GSE653296), applying location-scale methods can worsen the



TABLE IV
SUMMARY OF BATCHES SUBSAMPLED TO MODIFY THE CLASS

FREQUENCIES.

Batch Technology # ER- # ER+
Train GSE203496 Affymetrix 77 19

GSE21653570 Affymetrix 113 28
GSE299096 Affymetrix 21 85
GSE17040887 Agilent 11 44
GSE1992887 Agilent 6 23
NKI2 Agilent 43 11

classification performances. This may be due to the presence
of a batch effect within the dataset. On the contrary, matrix
factorization based methods allows to significantly improve
the performances.

In most cases we examined, applying a batch effect re-
moval method did not increase a lot the performances, some
even nearly systematically decreasing it (RatioA, SV A, and
rgCCA). However even those methods appear to decrease
the influence of the training set used (see Figure 6), which is
essential in the reproducibility of results. The best methods
in our tests are FA, SV D, and stICA0.25,0.5. FA being
among the best methods is not surprising as it uses the class
information in the training set, whereas the other methods do
not use at all the class information. In other words, FA is
a classification-task-aware method, whereas the other batch
effect removal methods are more general purpose. More unex-
pected is that SV D and some of the ICA based methods, that
unlike FA uses only batch information, behave as well as FA;
see Figure 4. Note that if we do not consider dataset GSE6532,
location-scale methods ComBat, Std and Centering behave
as well as the previous ones.

Class frequency in the training set influences also the results,
and extra caution should be taken in presence of imbalanced
repartition of the classes among the datasets, especially with
supervised methods such as FA.

To conclude, we have shown that matrix factorization based
methods behave at least as well as more common location-
scale methods, and even better when all the batch information
is not specifically known. We only tested a few factorizations,
but different approaches such as non-negative matrix factor-
ization or other versions of rgCCA should be investigated.
Such methods are often used in multi-omics data integration,
but could also be adapted in the case of batch effect removal.

REFERENCES

[1] J. T. Leek and J. D. Storey, “Capturing heterogeneity in gene expression
studies by surrogate variable analysis,” PLoS Genet, vol. 3, no. 9, p.
e161, 09 2007.

[2] J. T. Leek et al., “Tackling the widespread and critical impact of batch
effects in high-throughput data.” Nat Rev Genet, vol. 11, no. 10, pp.
733–739, Oct. 2010.

[3] A. E. Teschendorff, J. Zhuang, and M. Widschwendter, “Independent
surrogate variable analysis to deconvolve confounding factors in large-
scale microarray profiling studies.” Bioinformatics, vol. 27, no. 11, pp.
1496–1505, 2011.

[4] A. A. Shabalin, H. Tjelmeland, C. Fan, C. M. Perou, and A. B. Nobel,
“Merging two gene-expression studies via cross-platform normaliza-
tion,” Bioinformatics, vol. 24, no. 9, pp. 1154–1160, 2008.

[5] M. Benito et al., “Adjustment of systematic microarray data biases,”
Bioinformatics, vol. 20, no. 1, pp. 105–114, 2004.

[6] J. Luo et al., “A comparison of batch effect removal methods for
enhancement of prediction performance using maqc-ii microarray gene
expression data,” The pharmacogenomics journal, vol. 10, no. 4, pp.
278–291, 2010.

[7] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in mi-
croarray expression data using empirical bayes methods,” Biostatistics,
vol. 8, no. 1, pp. 118–127, 2007.

[8] P. Warnat, R. Eils, and B. Brors, “Cross-platform analysis of cancer
microarray data improves gene expression based classification of phe-
notypes,” BMC bioinformatics, vol. 6, no. 1, p. 1, 2005.

[9] A. Sims et al., “The removal of multiplicative, systematic bias allows
integration of breast cancer gene expression datasets–improving meta-
analysis and prediction of prognosis,” BMC medical genomics, vol. 1,
no. 1, p. 42, 2008.

[10] H. Yasrebi, “Comparative study of joint analysis of microarray gene
expression data in survival prediction and risk assessment of breast
cancer patients,” Briefings in bioinformatics, vol. 17, no. 5, pp. 771–
785, 2015.

[11] O. Alter, P. O. Brown, and D. Botstein, “Singular value decomposition
for genome-wide expression data processing and modeling,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 97, no. 18, pp. pp. 10 101–10 106, 2000.

[12] E. Renard, S. Branders, and P.-A. Absil, “Independent component
analysis to remove batch effects from merged microarray datasets,” in
Algorithms and Bioinformatics - 16th International Workshop, WABI
2016, Aarhus, Denmark, August 22-24, 2016. Proceedings, ser. Lecture
Notes in Bioinformatics. Springer, 2016, vol. 9838, pp. 281–292.

[13] F. Rohart, A. Eslami, N. Matigian, S. Bougeard, and K.-A. Le Cao,
“Mint: A multivariate integrative method to identify reproducible molec-
ular signatures across independent experiments and platforms,” BMC
bioinformatics, vol. 18, no. 1, p. 128, 2017.

[14] C. Lazar et al., “Batch effect removal methods for microarray gene ex-
pression data integration: a survey,” Briefings in bioinformatics, vol. 14,
no. 4, pp. 469–490, 2013.

[15] J. Taminau, C. Lazar, S. Meganck, and A. Nowé, “Comparison of
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