
http://sites.uclouvain.be/absil/2016.12 Tech. report UCL-INMA-2016.12

Matrix geometric means based on shuffled inductive
sequences ∗

Estelle M. Massart† Julien M. Hendrickx† P.-A. Absil†

October 19, 2016

Abstract
We propose a new deterministic sequence converging to the least squares mean of N sym-
metric positive definite (SPD) matrices. By "least squares mean", we refer to the Rie-
mannian barycenter with respect to the natural metric (also known as the trace metric or
affine-invariant metric) on the set Pn of n × n SPD matrices. In some papers, this mean
is also referred to as the Karcher mean. The sequence we propose belongs to the family
of Inductive sequences, obtained by letting a point take successive steps towards the data
points, with step lengths progressively diminishing to zero. We use the word "Inductive"
since each point of those sequences can be seen as the Inductive mean of a well-chosen set
of points containing multiple replications of the data points. We show that visiting the
data points in a cyclic order usually results in a slow convergence, and remedy this weak-
ness by reordering repeatedly the data points using a shuffling algorithm. We prove the
convergence of the resulting Inductive sequence to the least squares mean of the data in the
general framework of NPC spaces (complete metric spaces with non-positive curvature),
which includes the set Pn. We also illustrate numerically on Pn that some points of this
sequence are fairly accurate estimates of the least squares mean, while being considerably
cheaper to compute, and perform well as initializers for state-of-the-art algorithms. To
reduce further the computation time, we finally exploit Inductive sequences to produce a
family of parallelizable algorithms for estimating the least squares mean.

Keywords: geometric means, Karcher mean, least squares mean, inductive mean, symmetric
positive definite matrices, NPC spaces.

AMS subject classifications: 15A45, 47A64, 65F30

1 Introduction
We consider the problem of efficiently averaging a set of N symmetric positive definite
(SPD) matrices. This task arises in many applications, e.g., in medical imaging (DTI
∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control,

and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office.
†ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

1

http://sites.uclouvain.be/absil/2016.12

images denoising and segmentation [CSV12]), in mechanics (elasticity tensor computa-
tion [Moa06]) and in some recently developed algorithms for video tracking and radar
detection [LLS10,NB13]. The development of fast averaging methods is crucial to allow
algorithms to run in real time in this last application.

A simple way to average SPD matrices is to take their arithmetic mean. However,
this approach has some important shortcomings. First, some applications require the
mean M to be invariant under inversion, meaning that M(A,B) = M(A−1, B−1)−1 for
any A,B ∈ Pn (with Pn the cone of n × n SPD matrices), which is not the case for the
arithmetic mean. Secondly, the determinant of the arithmetic mean of two matrices can
be considerably bigger than the determinants of the two matrices themselves, which does
not make sense in some applications [PFA06].

A matrix geometric mean is a functionG : PNn → Pn that satisfies all 10 properties of the
celebrated ALM list (see [ALM04] or Appendix A). This uniquely defines the two-variable
geometric mean G(A,B) as

G(A,B) = A
1
2 (A− 1

2BA−
1
2) 1

2A
1
2 , (1)

but several geometric means are known for N ≥ 3.
First generalizations of the two-variable geometric mean to more matrices were built

recursively, starting from expression (1). These means, which include among others the
ALM and BMP means [ALM04, BMP10], were shown to meet the ten ALM properties.
However, their recursive definition results in a prohibitive computation time when the
number of matrices is large. To remedy this situation, other computationally cheaper
matrix means were proposed, such as the Cheap mean [BI11], the Circular mean [Pál11]
and the Arithmetic-Harmonic mean [JV13]. However, these new means do no longer satisfy
the ten ALM properties: they can be considered as quasi-geometric means.

Another popular mean on Pn is the Riemannian center of mass, often termed least
squares mean, or Karcher mean in view of the seminal work [Kar77], defined by

Λ(A1, . . . , AN) = arg min
X∈Pn

N∑
i=1

δ2(X,Ai) (2)

where δ(A,B) is the affine-invariant distance: δ(A,B) = || log(A− 1
2BA−

1
2)||F for A,B ∈

Pn. The least squares mean has been shown to meet the ten properties of the ALM
list [BK12,LL11]. This mean is currently the most popular geometric mean, probably due
to its interpretation as a center of mass, similarly to the arithmetic mean in Euclidean
geometry, and to the fact that its computation cost increases more slowly with the number
of matrices than the ALM and BMP means mentioned above.

Various methods have been proposed to compute the least squares mean, most of them
resorting to optimization techniques to solve problem (2), such as gradient descent, con-
jugate gradient, limited-memory BFGS, Newton and trust-region methods [RA11,JVV12,
BI13,YHAG16]. A majorization-minimization algorithm has also been considered in [Zha13].
The sizable computation time of Hessian evaluations results in rather slow second-order
algorithms, and first-order methods are usually more efficient [JVV12]. In [YHAG16], the
condition number of the Hessian of the cost function (2) is showed to be bounded by a
constant related to the logarithm of the largest condition number of the data points, which
explains the good performances of first order methods. Several step length choices have
been investigated for the gradient descent, the most popular being probably the one pro-
vided in the Matrix Means Toolbox developed by Bini & Iannazzo (http://bezout.dm.

2

http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/

unipi.it/software/mmtoolbox/). In this implementation, the step length is dynamically
chosen depending on the condition number of the matrices arising in the expression of the
gradient.

Another approach for computing the least squares mean is based on the Law of Large
Numbers characterizing least squares means on an arbitrary NPC space (M, δ) (i.e., a
complete non-positively curved metric space) as limit points of random walks, see [Stu03].
In the case where (M, δ) is the set Pn endowed with the affine-invariant metric, Hol-
brook [Hol12] proved that the least squares mean can be obtained as the limit point of a
related deterministic sequence, obtained by letting one point take successive steps towards
the N data points, with decreasing step sizes. The data points are then visited according
to the cyclic order 1, 2, . . . , N, 1, 2, This result was extended to general NPC spaces
by Lim, Pálfia and Bačák (see [LP14] and [Bac14]).

There is a direct link between the sequence proposed by Holbrook and the Inductive
mean proposed on Pn by Sagae & Tanabe [ST94] (see Definition 2.2 below). The Inductive
mean is a quasi-geometric matrix mean in the sense that it satisfies all ALM properties
except invariance under permutation: usuallyMInd(Ap1 , Ap2 , . . . , ApN

) 6= MInd(A1, . . . , AN)
for (p1, . . . , pN) an arbitrary permutation of (1, . . . , N). The link is that the kth element of
the sequence proposed by Holbrook corresponds to

MInd(A1, A2, . . . , AN , A1, A2, . . .︸ ︷︷ ︸
k elements

).

Hence, we refer to the sequence proposed by Holbrook as an Inductive sequence. On Pn,
Inductive sequences correspond to the iterates of an incremental gradient descent for prob-
lem (2). On arbitrary NPC spaces, possibly lacking a differentiable structure, Inductive
sequences might be the only available tool for least squares means computation.

In this paper, we show that the Inductive mean tends to overemphasize on Pn the last
data points, and illustrate the resulting negative impact on the convergence rate of Induc-
tive sequences. As a remedy, we propose to replace the cyclic ordering 1, 2, . . . , N, 1, 2, . . .
by other orderings obtained via shuffling algorithms. We prove the convergence of the cor-
responding Inductive sequences (referred to here as shuffled Inductive sequence) towards
the least squares mean of the data under weak assumptions on the shuffling process. Our
proof is presented in the general framework of NPC spaces. We provide a shuffling strategy
and illustrate numerically the gain in convergence speed. We also use some points of our
shuffled sequence as quasi-geometric matrix means and compare them numerically with
other means, regarding the ALM criteria, the proximity to the least squares mean and
the computation time. We illustrate that these points are efficient initializers for steepest
descent algorithms when solving problem (2); none of the other initializers considered in
the literature yields indeed a faster convergence. Finally, we propose a set of parallelizable
algorithms for estimating the least squares mean using Inductive means, and compare them
with the sequential approach.

The paper is organized as follows. The Inductive mean and Inductive sequences are
presented in Section 2. The third section contains the core of our contributions: we mo-
tivate and describe our shuffling strategy, and prove the convergence of shuffled Inductive
sequences. In Section 4, we use our shuffled sequence to generate quasi-geometric ma-
trix means and compare numerically those points with existing means. Finally, Section 5
contains a family of parallelizable algorithms for estimating the least squares mean, while
conclusions are drawn in Section 6.

3

http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/

2 Background on Inductive means and sequences
Inductive sequences can be used to estimate the least squares mean of a set of data points
belonging to an arbitrary NPC space (M, δ). The least squares mean of the points A =
(A1, . . . , AN) ∈MN , with corresponding positive weights ω = (ω1, . . . , ωN), is defined as

Λ(ω; A) = arg min
X∈M

N∑
i=1

ωiδ
2(X,Ai). (3)

Inductive sequences are built by starting from one data point and making successive steps
towards other data points, which can be more formally written as follows.

Definition 2.1. (Inductive sequences) Let A = (A1, . . . , AN) ∈ MN be a tuple of data
points belonging to a NPC space (M, δ). Given a sequence of indexes p := (p1, p2, . . .) and
a sequence of step lengths t := (t1, t2, . . .), we define an Inductive sequence (Xk)k∈N0 (with
N0 the set of strictly positive naturals) as follows:

X1 = Ap1

Xk = Xk−1#tkApk
k ≥ 2.

The notation A#tkB, tk ∈ [0, 1], stands for the unique point located on the minimizing
geodesic between A and B and satisfying δ(A,A#tkB) = tkδ(A,B). IfM = Pn, this point
is the weighted two-variable geometric mean, defined as

A#tB = A
1
2 (A− 1

2BA−
1
2)tA 1

2 . (4)

To the best of our knowledge, convergence of Inductive sequences to the weighted least
squares mean has been proven for two specific choices of p and t:

Theorem 2.1. (Law of Large Numbers [Stu03]) In Definition 2.1, choose p := (p1, p2, . . .)
as a sequence of independent identically distributed random variables taking their value in
the set {1, . . . , N} according to the distribution µ(x) = ∑N

i=1 ωiδ
Dirac
i (x), where δDirac

z (x) is
the Dirac delta located at z, and choose tk = 1/k for all k. Then, the sequence (Xk)k∈N0

converges to the least squares mean (3) almost surely.

Theorem 2.2. (Cyclic Inductive sequence [LP14,Bac14]) In Definition 2.1, choose pk =
k mod N , identifying the nul residual with N , i.e., pmN = N ∀m ∈ N0, and choose
tk = ωpk

/
(∑k

i=1 ωpi

)
(in the case ωk = 1/N for all k, this amounts to choosing tk = 1/k).

Then, the sequence (Xk)k∈N0 converges to the least squares mean (3).

The convergence of the Cyclic Inductive sequence (noted CI-sequence) is typically slow.
We propose in the next section a strategy to improve the convergence rate. We end the
current section with the definition of Inductive means on Pn.

Definition 2.2. (Inductive mean) The Inductive meanMInd(A1, . . . , AN) of a tuple of data
points (A1, . . . , AN) ∈ PNn with corresponding weights ω = (ω1, . . . , ωN) is defined as

MInd(A1, . . . , AN) = XN ,

where XN is generated according to Definition 2.1, for A = (A1, . . . , AN), choosing p =
(1, . . . , N) and tk = ωk/

(∑k
i=1 ωi

)
for k = 1, . . . , N .

The Inductive mean satisfies all the ALM criteria except invariance under permutation,
and can therefore be seen as a quasi-geometric matrix mean.

4

3 Shuffled Inductive sequences
In this section, we illustrate on Pn the suboptimality of the choice pk = k mod N regarding
the convergence rate of the CI-sequence, and we propose an alternative choice based on
a shuffling procedure. We also prove the convergence of shuffled Inductive sequences on
arbitrary NPC spaces to the least squares mean of the data.

3.1 Motivation on Pn

Firstly, we motivate on Pn the shuffling in the specific case of three variables. Consider a
tuple of data points (A1, A2, A3) ∈ P3

n. Remember that the least squares mean is defined
as the solution of an optimization problem:

Λ(A1, A2, A3) = arg min
X∈Pn

(
δ2(X,A1) + δ2(X,A2) + δ2(X,A3)

)
. (5)

The three-variable Inductive mean MInd(A1, A2, A3), defined as

MInd(A1, A2, A3) = (A1#1/2A2)#1/3A3,

can be characterized as the solution of another optimization problem as stated by Theo-
rem 3.1, whose proof is given in Appendix B. In the cost function of this second optimization
problem, the terms δ2(A1, X) and δ2(A2, X) of equation (5) are replaced by lower bounds,
while the term δ2(A3, X) is unchanged. This shows that the Inductive mean tends to be
localized closer to the third matrix A3 than the least squares mean. Numerical experiments
confirm this trend, which is also still visible when considering more matrices (N ≥ 3).

Theorem 3.1. When N = 3, MInd(A1, A2, A3) satisfies

MInd(A1, A2, A3) = arg min
X∈Pn

(
d2
M(A1, X) + d2

M(A2, X) + δ2(A3, X)
)

(6)

withM := A1#A2 and dM(A, ·) : Pn → R+ : X 7→ || log(M −T
2 AM

−1
2)−log(M −T

2 XM
−1
2)||F .

Moreover, for all A,M ∈ Pn, the function X 7→ dM(A,X) is upper bounded by the affine-
invariant distance between A and X:

dM(A,X) ≤ δ(A,X)

where the equality holds iff A and X commute.

This bias affects the convergence of the CI-sequence (XCI
k)k∈N0 defined in the previous

section. Indeed, Figure 1 illustrates how the ratios δ(XCI
k , Ai)/δ(K,Ai), i = 1, . . . , N ,

evolve as we progress in the sequence (i.e., as k increases), in the three-variable case
(N = 3). The black points correspond to steps k = mN, m ∈ N0, i.e, steps at which each
data point has been visited the same number of times. Intermediary steps are represented
in grey for better readability. The figure indicates that the last data point (matrix A3) is
systematically overemphasized by the algorithm: the distance ratio δ(XCI

k , A3)/δ(K,A3)
remains inferior to 1 at steps k = mN, m ∈ N0. Observe also that the Inductive mean
MInd(A1, . . . , AN) corresponds to the N th point of the CI-sequence, hence to step k = 3 on
Figure 1.

Further numerical experiments confirm this behavior for other numbers, sizes and types
of SPD matrices.

5

k
0 3 6 9 12 15 18

δ
(X

k
,A

i)
δ
(K

,A
i)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

i = 1
i = 2
i = 3

Figure 1: Average ratio between the distance from the points of the CI-sequence to the
data and the distance from the least squares mean to the data, computed over 1000 sets of
N = 3 matrices of size n = 10 generated according to the Wishart distribution Wn(I, n).

3.2 Shuffling algorithm
To avoid the systematic bias appearing with the CI-sequence, we propose to use another
sequence of indices p in Definition 2.1. Among the approaches investigated, the following
shuffling algorithm was found numerically to yield good performances. We split the se-
quence p in frames of size N (with N the number of matrices in the data set): we define
p = (p(1), p(2), . . .), where each frame p(k) := (p(k−1)N+1, . . . pkN), k ∈ N0, is a permuta-
tion of (1, . . . , N) chosen according to Algorithm 1 below. The underlying idea consists in
choosing p(k) to reduce the bias caused by older frames p(j), j < k.

Algorithm 1 Shuffling algorithm
Data: N , the number of data points.

1: p(1) = (1, . . . , N);
2: for i = 1, 2, . . .
3: p(2i) = reverse(p(2i−1)); see (7)
4: p(2i+1) = in-shuffle(p(2i−1)); see (8)
5: end

3.2.1 Reverse method

The reverse procedure invoked in line 3 of Algorithm 1 consists in reversing the sequence
taken as input. Let p := (p1, . . . pN), then :

reverse(p) = (pN , pN−1, ..., p1). (7)

For example, reverse(1, 2, 3) gives the sequence (3, 2, 1). In Algorithm 1, the first data
points of p(2i−1) become the last ones in p(2i), and conversely. The goal is to force the data
points that have been underemphasized in the previous frame to become overemphasized
in the current one.

6

3.2.2 In-shuffle method

The in-shuffle procedure invoked in line 4 of Algorithm 1 refers to a specific type of riffle
shuffle: a shuffling method often used for card shuffling. This method reorders a given
sequence p containing N = 2Ñ elements as:

in-shuffle(p) = [pÑ+1, p1, pÑ+2, p2, . . . , p2Ñ , pÑ]. (8)

In card game terms, the in-shuffle consists in firstly separating the cards in two decks of
equal size: the first half of the cards are placed in the first deck and the second half in
the other one. Then, the cards of the two decks are perfectly interleaved, meaning that
the resulting deck contains a perfect alternance of cards coming from each deck. In the
in-shuffle method, the first card becomes the second one after the shuffling. When the
number N of elements is odd (N = 2Ñ + 1) we alternate between Ñ and Ñ + 1 elements
in the first deck. The motivation behind this second shuffling step is to renew the set of
matrices that will be either underemphasized or overemphasized by the algorithm (i.e.,
those corresponding to the first and last indices of the permutation).

3.3 Convergence proof
We prove the convergence of shuffled Inductive sequences on general NPC spaces towards
the weighted least squares mean of the data. Our proof is valid under weak assumptions
on the shuffling strategy: we only require p to be a sequence of permutations of the set
(1, . . . , N), which forces all data points to be regularly visited by the sequence.

Theorem 3.2. Let (M, δ) be a NPC space, A = (A1, . . . , AN) ∈ MN a tuple of data
points and ω = (ω1, . . . , ωN) their respective weights. Let (Xk)k∈N0 be defined as in Defi-
nition 2.1, choosing p as a sequence of permutations of (1, . . . , N), i.e., p = (p(1), p(2), . . .)
where each p(k) := (p(k−1)N+1, . . . , pkN) is a permutation of (1, . . . , N). Choose also tk =
ωpk

/
(∑k

i=1 ωpi

)
. Then,

lim
k→∞

Xk = Λ(ω; A)

where Λ(ω; A) is the weighted least squares mean defined by equation (3).

Proof. Our proof consists of two steps. We first prove the convergence of the subsequence
(XkN)k∈N0 to the least squares mean. In the second step, we prove that, for j = 1, . . . , N−1,
δ(XkN+j, XkN)→ 0. The conclusion directly follows.

Step 1: We prove the following inequality for all k ∈ N0:

δ2(Λ(ω; A), XkN) ≤ 1
k

[
3∆(A)2 +

N∑
i=1

ωiδ
2(Λ(ω; A), Ai)

]
, (9)

where ∆(A)2 stands for the squared diameter of the data points: ∆(A)2 = maxi,j δ(Ai, Aj)2.
Since the interior of the brackets is constant, this implies convergence of (XkN)k∈N0 to
the least squares mean Λ(ω; A). Inequality (9) can be seen as a particular case of the
convergence theorem in [LP14], asserting that the elements of the CI-sequence (XCI

j)j∈N0

(obtained by choosing tj = ωpj
/
(∑j

i=1 ωpi

)
and pj = j mod N , see Theorem (2.2)) satisfy

the inequality

δ2(Λ(ω; A), XCI
j) ≤ 1∑j

i=1 ωpi

[
3∆(A)2 +

N∑
i=1

ωiδ
2(Λ(ω; A), Ai)

]
(10)

7

for any j ∈ N0. Indeed, if j = kN , ∑j
i=1 ωpi

= k since p is chosen as a sequence of
permutations of (1, . . . , N). To prove inequality (9), we show that the tools required in the
proof of inequality (10) are still valid in the case of shuffled sequences when j = kN .

The proof of inequality (10) presented in [LP14] works by induction on j. The inequality
is verified for j ≤ N , since

δ2(Λ(ω; A), XCI
j) ≤ ∆(A)2 ≤ 3∆(A)2 +

N∑
i=1

ωiδ
2(Λ(ω; A), Ai), j ≤ N. (11)

Indeed, on an NPC space, Inductive sequences stay inside the geodesic convex hull of the
data points (A1, . . . , AN), which is a subset of a metric ball of diameter ∆(A). Assuming
that inequality (10) is verified for j, its validity is proven for j + N , which completes the
proof. The main tools required by the induction are the semi-parallelogram law and the
variance inequality.

To prove inequality (9), we observe that it is satisfied for j = N :

δ2(Λ(ω; A), XN) ≤ ∆(A)2 ≤ 3∆(A)2 +
N∑
i=1

ωiδ
2(Λ(ω; A), Ai)

(for the same reason as inequality (11) above) and we prove that it remains true for
j = kN by the same arguments as in [LP14], the two main tools used in the proof
(the semi-parallelogram law and the variance inequality) being still available since all the
data points are visited when computing XkN from X(k−1)N (i.e., {Apk(N−1)+1 , . . . , ApkN

} =
{A1, . . . , AN}), for all k ∈ N0.

Step 2: We prove here that the following bound holds for all k:

δ(XkN+j, XkN) ≤ 1
k

∆(A), j = 1, . . . , N − 1. (12)

Applying the triangle inequality yields:

δ(XkN+j, XkN) ≤
j∑
i=1

δ(XkN+i, XkN+i−1), j = 1, . . . , N − 1. (13)

Since
tkN+i =

ωpkN+i∑kN+i
l=1 ωpl

=
ωpkN+i

k +∑i
l=1 ωpkN+l

≤
ωpkN+i

k
,

inequality (13) becomes, by definition of XkN+i:

δ(XkN+j, XkN) ≤
j∑
i=1

δ(XkN+i, XkN+i−1)

=
j∑
i=1

δ(XkN+i−1#tkN+i
ApkN+i

, XkN+i−1)

=
j∑
i=1

tkN+iδ(ApkN+i
, XkN+i−1)

≤ 1
k

∆(A).

Now, because of inequalities (9) and (12), the whole sequence converges to the least
squares mean as k increases:

δ(Λ(ω; A), XkN+j) ≤ δ(Λ(ω; A), XkN) + δ(XkN , XkN+j)→k→∞ 0.

8

This proof can be easily generalized to shuffled sequences in which all data points are
visited the same number of times every j frames, with 1 ≤ j <∞, i.e., if:

(p(k−1)N+1, . . . , p(k−1+j)N) is a permutation of (1, . . . , N, 1, . . . , N, . . . , 1, . . . , N)︸ ︷︷ ︸
jN elements

for all k ∈ N0 and for some j ∈ [1,∞), with j fixed, independent on k.

3.4 Convergence speed comparison on Pn

We illustrate on the cone of positive definite matrices the benefit of the shuffling method
regarding the convergence speed of the sequence. We note (XS

k)k∈N0 the Inductive sequence
(Definition 2.1) associated to the sequence of indices p built according to the proposed
shuffling algorithm (Algorithm 1). We compare on Figure 2 the sequence (XS

k)k∈N0 with
other Inductive sequences, including the CI-sequence of Theorem 2.2 and two random
sequences. In the first one, each frame p(j) is made of N numbers pk chosen randomly with
replacement in the set {1, . . . , N} while in the second one the N indices pk of each frame
p(j) are chosen randomly among {1, . . . , N}, without replacement. In our experiments, we
use the following error definition:

Erel(X,A) = δ(X,Λ(A))
1
N

∑N
i=1 δ(Ai,Λ(A))

(14)

with δ(A,B) the affine-invariant distance, X ∈ Pn the estimate of the least squares mean
and Λ(A) the least squares mean, estimated here by a Steepest Descent algorithm taking as
initial guess the arithmetic mean of the matrices and stopped when the following stopping
criterion is reached:

||X(k+1) −X(k)||F
||X(k)||F

≤ 10−12.

We resort to the state-of-the-art implementation available as the karcher.m function in the
Matrix Means Toolbox (http://bezout.dm.unipi.it/software/mmtoolbox/). Given
parameters (N, n, κ), we generate a dataset of N matrices of size n and of condition number
approximately κ using the following lines of code:
f o r i = 1 , . . . , N

[Q, ~] = qr (randn (n)) ;
D = diag ([rand (1 , f l o o r (n/2))+1 ,(rand (1 , n−f l o o r (n/2))+1)/ kappa]) ;
A{ i } = Q∗D∗Q’ ;

end

All the error measures given in this paper were averaged over a large number of datasets.
The first row of Figure 2 illustrates the convergence of the sequences towards the least

squares mean, for several values of (N, n, κ): the horizontal axis corresponds to the posi-
tion in the sequence while the vertical axis gives the estimation error (see equation (14)),
averaged over the datasets. For each combination of parameters considered, the shuffled
Inductive sequence (XS

k)k∈N0 converges faster. The second row gives the average evolu-
tion of the error after passing 10 times on the data points (i.e., Erel(X10N ,A)) with the
parameters N , n and κ. For all the sets of parameters considered, the shuffled Inductive
sequence (XS

k)k∈N0 achieves the best performance. Conversely, choosing the indices of each
frame p(j) randomly with replacement among the set {1, . . . , N} leads to a particularly
slow convergence compared to the other shuffling methods investigated.

9

http://bezout.dm.unipi.it/software/mmtoolbox/

k

0 5 10

E
re
l(
X

k
N
)

10-4

10-2

100
N = 3, n = 3, κ = 10

k

0 5 10

N = 50, n = 3, κ = 10

k

0 5 10

N = 10, n = 100, κ = 10

k

0 5 10

N = 10, n = 3, κ = 106

N

0 20 40

E
re
l(
X

10
N
)

10-2

100
n = 3, κ = 10

n

0 50 100

N = 10, κ = 10

κ

102 104 106

N = 10, n = 3

Circular
Rand. without repl.
Rand. with repl.
Shuffled

Figure 2: Comparison of the convergence rates of different Inductive sequences.

4 Quasi-geometric matrix means
In this section, we motivate the use of the points XS

kN , with k finite, as means on Pn. We
first prove that those points are quasi-geometric matrix means: they satisfy most of the
properties expected from geometric means.

Theorem 4.1. For k <∞, XS
kN satisfies all the ALM properties except invariance under

permutation.

Proof. This result is well known for k = 1 since XS
N is the Inductive mean [AKL07]. The

case k > 1 can be obtained by induction on k, for example, for the monotonicity property,
see the proof of Lemma 1 in [LL11]. The proof is similar for the other properties.

Secondly, we illustrate on Figures 3 and 4 that the points XS
kN , with k small, are already

good estimates of the least squares mean: they outperform most other quasi-geometric
matrix means regarding the proximity to the least squares mean versus computation time
criterion. The means considered here include the Arithmetic, Cheap, Log-Euclidean and
Arithmetic-Harmonic means (see the definitions below and [BI11, JV13]). All the experi-
ments are performed with Matlab on a Windows 7 platform with 8 cores at 3.60 GHz and
16 GB ram.

The Cheap mean is a quasi-geometric matrix mean computed iteratively. The initial
iterates are the N input matrices: Ã0

i = Ai, i = 1, . . . , N , and subsequent iterates are
defined as:

Ãk+1
i = Ãki exp

 1
N

N∑
l=1,l 6=i

log((Ãki)−1Ãkl)
 . (15)

Each iteration of the Cheap mean has the cost of N gradient steps, which makes this
method rather costly. However, it usually converges within numerical precision after only
a few iterations (typically less than five). In our experiments, we used the implementation
available in the Matrix Mean Toolbox, and we interrupted it after a fixed number of

10

iterations kCh, with kCh ∈ {1, 2, . . . , 5}. After kCh iteration, we aggregate the iterates
ÃkCh
i , i = 1, . . . , N , according to:

MCheap(A, kCh) = 1
N

N∑
i=1

ÃkCh
i . (16)

The Arithmetic-Harmonic mean is defined as the geometric mean of the arithmetic and
harmonic means:

MAH(A) = G

 1
N

N∑
i=1

Ai,

(
1
N

N∑
i=1

A−1
i

)−1 . (17)

Finally, the Log-Euclidean mean is the result of a gradient step, taking as initial point I:

MLogEucl(A) = exp
(

1
N

N∑
i=1

log(Ai)
)
. (18)

As illustrated on Figure 3, the Arithmetic, Arithmetic-Harmonic and Log-Euclidean
means are rather far away from the least squares mean. Better performance can be achieved
by running one iteration of the Cheap algorithm. However, Figure 4 indicates that this
mean becomes particularly costly when the number of data points increases and seems to
be strongly sensitive to the condition number of the data. The points XS

kN of the Shuffled
Inductive sequence reach a comparable accuracy without suffering from this drawback.

Time [s]
0 0.005 0.01

E
re
l(
X
)

10-6

10-5

10-4

10-3

10-2

10-1

100
N = 3, n = 3, κ = 101

Time [s]
0 0.1 0.2

10-6

10-5

10-4

10-3

10-2

10-1

100
N = 50, n = 3, κ = 101

Arithmetic
Arithm-Harmo

Time [s]
0 0.5 1

10-6

10-5

10-4

10-3

10-2

10-1

100
N = 10, n = 100, κ = 101

Log-Euclidean
Cheap

Time [s]
0 0.01 0.02

10-6

10-5

10-4

10-3

10-2

10-1

100
N = 10, n = 3, κ = 105

Shuffled Inductive

Figure 3: Comparison of several means as estimates of the least squares mean. For the
Cheap mean, the triangles correspond to values of kCh ranging from 1 to 5, and for the
Shuffled Inductive sequence the dots correspond to the points XS

kN with k = 1, . . . , 100
(the case k = 1 corresponding to MInd).

In the rest of this section, we use the points XS
kN as initializers for optimization algo-

rithms to compute the least squares mean. Since second-order algorithms have been showed
to result in poor performance due to the sizable computation time of Hessian evaluations,
we focus on lower order methods. We consider the Steepest Descent (SD) implementation
provided in the Matrix Mean Toolbox, in which the step length is dynamically chosen de-
pending on the condition number of the matrices arising in the expression of the gradient.
We also consider the limited memory BFGS (LRBFGS) method: a Quasi-Newton algo-
rithm in which an estimate of the Hessian is maintained in memory in the form of rank-two
updates. In the limited memory variant, the spatial complexity is reduced by maintain-
ing only the m most recent updates in memory. In [YHAG16], the authors showed that
this algorithm outperforms the SD algorithm mentioned above for several problem settings

11

N

0 20 40

E
re
l(
X
)

10-3

10-2

10-1

100

n = 3, κ = 10

N

0 20 40

T
im

e[
s]

10-5

10-3

10-1

n

0 50 100
10-3

10-2

10-1

100

N = 10, κ = 10

n

0 50 100
10-5

10-3

10-1

Arithmetic
Arithm-Harmo
Log-Euclidean
Cheap: k

Ch
 = 1

Shuff. Inductive: k = 1 (= M
Ind

)

Shuff. Inductive: k = 4

κ

101 103 105
10-3

10-2

10-1

100

N = 10, n = 3

κ

101 103 105
10-5

10-3

10-1

Figure 4: Comparison of several means as estimates of the least squares mean: evolution
with the parameters (N, n, κ).

(e.g., when working with a large number of ill-conditioned matrices). We resort to their
Matlab implementation of the LRBFGS method.

We investigate several sets of parameters, resulting respectively in Figures 5, 6 and 7.
The first column of these figures illustrates the convergence of the SD and LRBFGS meth-
ods and compares it with the (sublinear) convergence of the Shuffled Inductive sequence
XS
kN . The graphs in this column also illustrate the gain obtained by choosing the Inductive

mean as initial point for the methods. The second column is devoted to the SD algorithm.
It illustrates the first iterates of the algorithm, for different initial points, chosen here as
the points XS

kN , for several choices of k. Finally, the third column presents the analogous
graph for the LRBFGS method.

The three figures illustrate the nice behavior of the LRBFGS method when working with
big or ill-conditioned matrices. Observe also that when the data are badly conditioned, it
becomes less efficient to use the Inductive mean as initial point for optimization algorithms,
and that points located further in the sequence (e.g., XS

2N or XS
4N) are better choices.

Finally, we illustrate on Figures 8 and 9 the evolution with the parameters of the
problem of the CPU time required by respectively the SD and LRBFGS algorithms to reach
a given accuracy. Inductive sequences provide good initial points for those algorithms. For
example, the point XS

4N results in a faster convergence of those optimization algorithms
than other quasi-geometric means, in particular when the data matrices are ill-conditioned.

We end this section with a word of caution. When the matrix size n is large, the
computation times are dominated by the BLAS calls, but for small values of n, the timings
should be taken with a pinch of salt, since another programming language may lead to
very different timings and possibly alter the conclusions.

12

Time [s]
0 0.005 0.01

E
re
l(
X
)

10-8

10-6

10-4

10-2

100
Algorithms comparison

Shuffled Inductive seq
S.D., X

0
 = M

AH

S.D., X
0
 = XS

N

Time [s]
0 0.005 0.01

10-8

10-6

10-4

10-2

100
Initialization SD

Time [s]
0 0.005 0.01

10-8

10-6

10-4

10-2

100
Initialization LRBFGS

Time [s]
0 0.005 0.01

E
re
l(
X
)

10-8

10-6

10-4

10-2

100

LRBFGS, X
0
 = M

AH

LRBFGS, X
0
 = XS

N

Time [s]
0 0.005 0.01

10-8

10-6

10-4

10-2

100

Shuffled

Inductive seq

k =1
k =2

Time [s]
0 0.005 0.01

10-8

10-6

10-4

10-2

100

k =4
k =6
k =8
k =10

Figure 5: Algorithm comparison for approximating the least squares mean, for the param-
eters sets (N, n, κ) = (3, 3, 10) (top row) and (N, n, κ) = (3, 3, 105) (bottom row).

Time [s]
0 0.05 0.1 0.15

E
re
l(
X
)

10-8

10-6

10-4

10-2

100
Algorithms comparison

Shuffled Inductive seq
S.D., X

0
 = M

AH

S.D., X
0
 = XS

N

Time [s]
0 0.02 0.04 0.06

10-8

10-6

10-4

10-2

100
Initialization SD

Time [s]
0 0.02 0.04 0.06

10-8

10-6

10-4

10-2

100
Initialization LRBFGS

Time [s]
0 0.05 0.1 0.15

E
re
l(
X
)

10-8

10-6

10-4

10-2

100

LRBFGS, X
0
 = M

AH

LRBFGS, X
0
 = XS

N

Time [s]
0 0.02 0.04 0.06

10-8

10-6

10-4

10-2

100

Shuffled

Inductive seq

k =1
k =2

Time [s]
0 0.02 0.04 0.06

10-8

10-6

10-4

10-2

100

k =4
k =6
k =8
k =10

Figure 6: Algorithm comparison for approximating the least squares mean, for the param-
eters sets (N, n, κ) = (100, 3, 10) (top row) and (N, n, κ) = (100, 3, 105) (bottom row).

13

Time [s]
0 1 2 3

E
re
l(
X
)

10-8

10-6

10-4

10-2

100
Algorithms comparison

Shuffled Inductive seq
S.D., X

0
 = M

AH

S.D., X
0
 = XS

N

Time [s]
0 0.5 1 1.5

10-8

10-6

10-4

10-2

100
Initialization SD

Time [s]
0 0.5 1 1.5

10-8

10-6

10-4

10-2

100
Initialization LRBFGS

Time [s]
0 1 2 3

E
re
l(
X
)

10-8

10-6

10-4

10-2

100

LRBFGS, X
0
 = M

AH

LRBFGS, X
0
 = XS

N

Time [s]
0 0.5 1 1.5

10-8

10-6

10-4

10-2

100

Shuffled

Inductive seq

k =1
k =2

Time [s]
0 0.5 1 1.5

10-8

10-6

10-4

10-2

100

k =4
k =6
k =8
k =10

Figure 7: Algorithm comparison for approximating the least squares mean, for the pa-
rameters sets (N, n, κ) = (30, 100, 10) (top row) and (N, n, κ) = (30, 100, 105) (bottom
row).

N

0 20 40

tim
e

[s
]

10-3

10-2

10-1

n = 3, κ = 10

n

0 50 100
10-3

10-2

10-1

N = 10, κ = 10

κ

101 103 105
10-3

10-2

10-1

N = 10, n = 3

Arithmetic
Arithm-Harmo
Log-Euclidean
Cheap: k = 1
Shuffled Inductive: k = 1
Shuffled Inductive: k = 4

Figure 8: Computation time required by the SD algorithm to achieve a relative error
Erel = 10−6, for various initial points.

N

0 20 40

tim
e

[s
]

10-3

10-2

10-1

n = 3, κ = 10

n

0 50 100
10-3

10-2

10-1

N = 10, κ = 10

κ

101 103 105
10-3

10-2

10-1

N = 10, n = 3

Arithmetic
Arithm-Harmo
Log-Euclidean
Cheap: k = 1
Shuffled Inductive: k = 1
Shuffled Inductive: k = 4

Figure 9: Computation time required by the LRBFGS algorithm to achieve a relative error
Erel = 10−6, for various initial points.

14

5 Parallelizable variants
A commonly used approach for reducing the computation time of a program consists in
resorting to parallelization techniques: the program is split in a collection of tasks that
can be performed simultaneously by different processors. The values computed on each
processor are then aggregated to deduce the final solution of the program. We propose
here a parallelizable algorithm to estimate the least squares mean using Inductive means.
Instead of taking sequentially steps towards data points, as required by Inductive sequences
(Definition 2.1), we compute independently k inductive means (Definition 2.2), each one
along a different permutation, and we aggregate the results to obtain an estimate of the
least squares mean. These k inductive means can be computed simultaneously if a sufficient
number of processors are available. Aggregating the means returned by each processor can
be performed using a cheap matrix mean, e.g., the Arithmetic, Arithmetic-Harmonic or
Inductive means defined above. We refer to the algorithm described here as the Aggregate
Inductive mean, and note it Agg-Ind-<M>, where <M> stands for the mean used to
average the k inductive means computed, i.e., <M> is the Arithmetic (MAr), Arithmetic-
harmonic (MAH) or Inductive (MInd) mean. For a detailed presentation, see Algorithm 2.

Algorithm 2 Aggregated Inductive means (Agg-Ind-<M>).
Data: A1, ..., AN ∈ Pn, k ∈ N0 and <M> a cheap quasi-geometric mean:
<M> ∈ {MAr,MAH,MInd}.

1: Generate a list p = (p(1), . . . , p(k)) of permutations of (1, . . . , N) according to Algo-
rithm 1;

2: M = 0, if <M> = MAH: Agga = 0 = Aggh;
3: for i = 1, ..., k;
4: Bi = MInd(Ap1 , ..., ApN

);
5: if <M> = MInd
6: M ←M# 1

i
Bi;

7: else if <M> = MAH
8: Agga ← i−1

i
Agga + 1

i
Bi;

9: Aggh ← i−1
i
Aggh + 1

i
B−1
i ;

10: M = Agga#Agg−1
h ;

11: else if <M> = MAr
12: M ← i−1

i
M + 1

i
Bi;

13: end
14: end
15: return M ;

We suggest to choose k = 2(dlog2 Ne − 1), which ensures that all the permutations
generated in line 1 of Algorithm 2 are distinct. This follows from [DGK83]. The Agg-Ind-
<M> algorithm satisfies part of the ALM properties:

Theorem 5.1.
1. The Agg-Ind-MAr algorithm returns a matrix satisfying seven of the ten ALM properties,
the violated properties being the invariance under permutation, under inversion and the
determinant equality.
2. The Agg-Ind-MAH algorithm returns a matrix satisfying eight of the ten ALM properties,
the violated properties being the invariance under permutation and the determinant equality.
3. The Agg-Ind-MInd algorithm returns a matrix satisfying the same ALM properties as

15

the Inductive mean, namely, the ten properties except invariance under permutation.
4. If in line 1 of Algorithm 2, the list p is chosen to be all the permutations of (1, . . . , N)
(hence k = N !), the Agg-Ind-<M> algorithm recovers invariance under permutation if
<M> ∈ {MAr, MAH}.

Proof. The proof is similar to the one of Theorem 4.1, combined with the invariance prop-
erties of the Arithmetic and Arithmetic-Harmonic means.

We compare on Figure 10 the aggregated means, for various choices of k and <M>,
with the points XS

kN , as estimates of the least squares mean. The parallelizable variants
are slightly less efficient than the sequential approach. However, if enough (at least k)
processors are available, the inductive means evaluated in Algorithm 2 (line 4) can be
computed simultaneously, and the computation time of the Agg-Ind-<M> means would
become comparable with that of XS

N(= MInd). It is also interesting to note that con-
versely to the Shuffled Inductive sequences, the aggregated means do not converge to the
least squares mean as k tends towards infinity in Algorithm 2. Indeed, for large val-
ues of k, the aggregate means are weighted <M>-means of the (at most N !) inductive
means corresponding to the permutations p(j) considered, where <M> is the arithmetic,
arithmetic-harmonic or inductive mean. Finally, the choice of the mean <M> does not
seem to have a significant impact on the performance of the method when the matrices are
well-conditioned. However, the choice <M> = MAr seems to be less efficient than the two
other variants (i.e., <M> ∈ {MAH,MInd}) when the condition number of the data is big.

Number of #
N

0 5 10 15 20

E
re
l(
X
)

10-4

10-3

10-2

10-1

N = 10, n = 3, κ = 10

Number of #
N

0 5 10 15 20
10-4

10-3

10-2

10-1

N = 10, n = 3, κ = 106

Agg-Ind_Arith
Agg-Ind_AH

Agg-Ind_Ind
Shuff-Ind-Seq

Figure 10: Comparison between the parallelizable and sequential variants. The x-axis is
the total number of two-variable geometric means evaluated by the algorithm.

16

6 Conclusions
We have proposed new algorithms for approximating least squares means on NPC spaces
using Inductive sequences. Those sequences are obtained by taking successive steps to-
wards data points, with decreasing step lengths. They might be the only tool available
on arbitrary NPC spaces for estimating least squares means. We first investigated con-
vergence properties of the Cyclic Inductive sequence (XCI

k)k∈N0 proposed in the literature,
which consists in visiting the data points according to the cyclic order 1, 2, . . . , N, 1, 2, . . .
and has been proved to converge to the least squares mean of the data. We have illustrated
on Pn that the subsequence (XCI

kN)k∈N0 is biased towards the last data points AN , AN−1, . . . ,
which has a negative impact on the convergence speed of the main sequence (XCI

k)k∈N0 . As
a remedy, we proposed to shuffle repeatedly the data points: we have defined a so-called
Shuffled Inductive sequence (XS

k)k∈N0 , in which for each j ∈ N0, the points (XS
jN+k)k=1,...,N

are obtained by visiting the data points (A1, . . . , AN) along an order p(j), where p(j) is either
defined as the reverse order of p(j−1) (if j is even) or as the result of another shuffling algo-
rithm (the in-shuffle procedure described in Section 3). The underlying idea is to choose for
points (XS

jN+k)k=1,...,N a permutation p(j) reducing the bias affecting the precedent point
(here, the point (XS

jN)).
We have proved in the general framework of NPC spaces, which include the set Pn,

the convergence of shuffled Inductive sequences to the least squares mean of the data,
under weak assumptions on the shuffling strategy. We have illustrated numerically on
Pn the gain in convergence speed achieved by the shuffled sequence (XS

k)k∈N0 . Numerical
experiments indicate also that the first points of the subsequence (XS

kN)k∈N0 are good
estimates of the least squares mean: they are non-dominated by other quasi-geometric
means regarding the computation time vs distance to the least squares mean criterion, in
particular when working with a large number of data matrices, or when the data are ill-
conditioned. These experiments also show that those points are good initializers for state-
of-the-art optimization algorithms (i.e., the Steepest Descent algorithm with automatic
step length choice proposed in the Matrix Mean Toolbox and the LRBFGS algorithm
proposed in [YHAG16]). Indeed, in several settings, these two algorithms take less time
for reaching a given accuracy when initialized by the points (XS

kN)k∈N0 than when initialized
with other quasi-geometric means. Again, the gain in performance is the most important
when the data matrices are ill-conditioned. In future work, it would be interesting to study
how the proposed Shuffled Inductive sequence performs on other types of synthetic data
and on real-life data. Other types of shuffling methods could also be considered.

17

Appendices
A ALM list of criteria for geometric means
In [ALM04], Ando, Li and Mathias have collected a list of criteria that a mean has to
satisfy to be considered as a geometric mean. These criteria are the followings (where
G(A1, ..., AN) stands for a candidate geometric mean):

P1. Consistency: if the matrices A1, ..., AN commute, then G(A1, ..., AN) = (A1 · · ·AN) 1
N .

P2. Joint homogeneity: G(α1A1, ..., αNAN) = (α1 · · ·αN) 1
N G(A1, ..., AN), ∀α1, ..., αN ∈ R+.

P3. Invariance under permutation: G(Aπ1 , ..., AπN
) = G(A1, ..., AN) with π a permuta-

tion of (1, ..., N).

P4. Monotonicity: if Bi ≤ Ai ∀i = 1, ..., N , then G(B1, ..., BN) ≤ G(A1, ..., AN).

P5. Continuity from above: if A(j)
i denotes a monotonically decreasing sequence that con-

verges towards A∗i for j →∞ , ∀i = 1, ..., N , then G(A(j)
1 , ..., A

(j)
N) converges towards

G(A∗1, ..., A∗N) as j →∞.

P6. Congruence invariance: ∀S ∈ Rm×m invertible, G(SA1S
T , ..., SANS

T) = SG(A1, ..., AN)ST .

P7. Joint concavity: G(λA1 + (1− λ)B1, ..., λAN + (1− λ)BN) ≥ λG(A1, ..., AN) + (1−
λ)G(B1, ..., BN) for 0 ≤ λ ≤ 1.

P8. Invariance under inversion: G(A1, ..., AN) = (G(A−1
1 , ..., A−1

N))−1.

P9. Determinant equality: det G(A1, ..., AN) = (detA1 · · · detAN) 1
N .

P10. Arithmetic-geometric-harmonic inequality: 1
N

∑N
i=1 Ai ≥ G(A1, ..., AN) ≥

(1
N

∑N
i=1 A

−1
i

)−1
.

18

B Proof of Theorem 3.1
We prove here Theorem 3.1 given in Section 3.

Theorem B.1. When N = 3, MInd(A1, A2, A3) satisfies

MInd(A1, A2, A3) = arg min
X∈Pn

(
d2
M(A1, X) + d2

M(A2, X) + δ2(A3, X)
)

(19)

withM := A1#A2 and dM(A, ·) : Pn → R+ : X 7→ || log(M −T
2 AM

−1
2)−log(M −T

2 XM
−1
2))||F .

Moreover, for all A andM ∈ Pn, the function dM(A, ·) is upper bounded by the Riemannian
distance between A and X:

dM(A,X) ≤ δ(A,X) (20)
where the equality holds iff A and X commute.

Proof. We first prove that the Inductive mean is the solution to the optimization prob-
lem (19). LetM := A1#A2. The definition of the Inductive mean givesMInd(A1, A2, A3) =
M#1/3A3. Because of the uniqueness of the weighted 2-variable geometric mean, MInd is
also the weighted least squares mean of matrices M and A3:

MInd(A1, A2, A3) = arg min
X∈Pn

(2
3δ

2(M,X) + 1
3δ

2(A3, X)
)
.

We now rewrite the distance δ(M,X), to introduce a dependency on A1 and A2. The main
tool we will use is the parallelogram equality:
Lemma B.1 (Parallelogram equality, [You88,Bha09]). For a, b, x ∈ Rn×n and c = (a+b)/2,
the parallelogram law gives:

||c− x||2F = 1
2 ||a− x||

2
F + 1

2 ||b− x||
2
F −

1
4 ||a− b||

2
F .

However, this law is only valid on Euclidean spaces. We therefore first map all the matrices
involved on an Euclidean space, and use invariance properties of the Riemannian distance
to rewrite δ(M,X) as an Euclidean distance, which can be summarized by the following
Lemma.

Lemma B.2. Consider the congruence transformation ΓM(A) : Pn → Pn : A 7→M
−T

2 AM
−1
2 ,

and define

X̃ = log (ΓM(X)) = log
(
M

−T
2 XM

−1
2
)

M̃ = log (ΓM(M)) = log (I) = 0

Then, the Euclidean distance between M̃ and X̃ is equal to the Riemannian distance between
M and X:

δ(M,X) = ||M̃ − X̃||F .

Proof. Using the invariance under congruence property of the affine-invariant metric [Bha09],
we obtain:

δ(M,X) = δ (ΓM(M),ΓM(X)) = δ (I,ΓM(X)) = || log(ΓM(X))||F = ||M̃ − X̃||F .

19

Similarly as in Lemma B.2, we define Ãi = log (ΓM(Ai)) = log
(
M

−T
2 AiM

−1
2
)
, i =

1, 2, 3. Remember that M is the geometric mean of A1 and A2. Because of the invariance
under congruence property of the matrix geometric mean, ΓM(M) = I is the geometric
mean of ΓM(A1) and ΓM(A2), and due to Proposition 6.1.8 of [Bha09], M̃ = 0 is the
midpoint of the segment between Ã1 and Ã2. Hence, we can apply the parallelogram
equality to rewrite ||M̃ − X̃||F as:

||M̃ − X̃||2F = 1
2 ||Ã1 − X̃||2F + 1

2 ||Ã2 − X̃||2F − 1
4 ||Ã1 − Ã2||2F .

The last term of the right hand side does not depend on variable X̃. So, we obtain:

MInd = arg min
X∈Pn

(2
3δ

2(M,X) + 1
3δ

2(A3, X)
)

= arg min
X∈Pn

1
3
(
||Ã1 − X̃||2F + ||Ã2 − X̃||2F + δ2(A3, X)

)
= arg min

X∈Pn

1
3
(
d2
M(A1, X) + d2

M(A2, X) + δ2(A3, X)
)
.

We now prove that dM(A,X) ≤ δ(A,X) for any set of matrices A,X,M ∈ Pn. This follows
from the Exponential Metric Increasing property [Bha09]: if matrices A,X ∈ Pn do not
commute, then

d2
M(A,X) = ||Ã− X̃||2F < δ2(Γ(A),Γ(X)) = δ2(A,X) (21)

If instead A and X commute, then the strict inequality in equation (21) becomes an
equality.

References
[AKL07] Eunkyung Ahn, Sejung Kim, and Yongdo Lim. An extended lie–trotter formula

and its applications. Linear Algebra and Its Applications, 427(2):190–196, 2007.

[ALM04] T Ando, Chi-Kwong Li, and Roy Mathias. Geometric means. Linear algebra
and its applications, 385:305–334, 2004.

[Bac14] Miroslav Bacák. Computing medians and means in Hadamard spaces. SIAM
Journal on Optimization, 24(3):1542–1566, 2014.

[Bha09] Rajendra Bhatia. Positive definite matrices. Princeton university press, 2009.

[BI11] Dario Bini and Bruno Iannazzo. A note on computing matrix geometric means.
Advances in Computational Mathematics, 35(2-4):175–192, 2011.

[BI13] Dario Bini and Bruno Iannazzo. Computing the Karcher mean of symmetric
positive definite matrices. Linear Algebra and its Applications, 438(4):1700–
1710, 2013.

[BK12] Rajendra Bhatia and Rajeeva L. Karandikar. Monotonicity of the matrix geo-
metric mean. Mathematische Annalen, 353(4):1453–1467, 2012.

[BMP10] Dario Bini, Beatrice Meini, and Federico Poloni. An effective matrix geometric
mean satisfying the Ando-Li-Mathias properties. Mathematics of Computation,
79(269):437–452, 2010.

20

[CSV12] Guang Cheng, Hesamoddin Salehian, and Baba C Vemuri. Efficient recursive
algorithms for computing the mean diffusion tensor and applications to DTI
segmentation. In Computer Vision–ECCV 2012, pages 390–401. Springer, 2012.

[DGK83] Persi Diaconis, RL Graham, and William M Kantor. The mathematics of
perfect shuffles. Advances in Applied Mathematics, 4(2):175–196, 1983.

[Hol12] John Holbrook. No dice: a deterministic approach to the Cartan centroid.
Journal of the Ramanujan Mathematical Society, 27(4):509–521, 2012.

[JV13] Ben Jeuris and Raf Vandebril. Geometric mean algorithms based on harmonic
and arithmetic iterations. In Geometric Science of Information, pages 785–793.
Springer, 2013.

[JVV12] Ben Jeuris, Raf Vandebril, and Bart Vandereycken. A survey and comparison of
contemporary algorithms for computing the matrix geometric mean. Electronic
Transactions on Numerical Analysis, 39:379–402, 2012.

[Kar77] Hermann Karcher. Riemannian center of mass and mollifier smoothing. Com-
munications on pure and applied mathematics, 30(5):509–541, 1977.

[LL11] Jimmie Lawson and Yongdo Lim. Monotonic properties of the least squares
mean. Mathematische Annalen, 351(2):267–279, 2011.

[LLS10] Yunpeng Liu, Guangwei Li, and Zelin Shi. Covariance tracking via geomet-
ric particle filtering. EURASIP Journal on Advances in Signal Processing,
2010(1):583918, 2010. URL: http://asp.eurasipjournals.com/content/
2010/1/583918, doi:10.1155/2010/583918.

[LP14] Yongdo Lim and Miklós Pálfia. Weighted deterministic walks for the least
squares mean on Hadamard spaces. Bulletin of the London Mathematical So-
ciety, 46(3):561–570, 2014.

[Moa06] Maher Moakher. On the averaging of symmetric positive-definite tensors. Jour-
nal of Elasticity, 82(3):273–296, 2006.

[NB13] Frank Nielsen and Rajendra Bhatia. Matrix information geometry. Springer,
2013.

[Pál11] Miklós Pálfia. A multivariable extension of two-variable matrix means. SIAM
Journal on Matrix Analysis and Applications, 32(2):385–393, 2011.

[PFA06] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework
for tensor computing. International Journal of Computer Vision, 66(1):41–66,
2006.

[RA11] Quentin Rentmeesters and P-A Absil. Algorithm comparison for Karcher mean
computation of rotation matrices and diffusion tensors. In Signal Processing
Conference, 2011 19th European, pages 2229–2233. IEEE, 2011.

[ST94] Masahiko Sagae and Kunio Tanabe. Upper and lower bounds for the arithmetic-
geometric-harmonic means of positive definite matrices. Linear and Multilinear
Algebra, 37(4):279–282, 1994.

21

http://asp.eurasipjournals.com/content/2010/1/583918
http://asp.eurasipjournals.com/content/2010/1/583918
http://dx.doi.org/10.1155/2010/583918

[Stu03] Karl-Theodor Sturm. Probability measures on metric spaces of nonpositive
curvature. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces:
Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and
Analysis on Manifolds and Graphs: April 16-July 13, 2002, Emile Borel Centre
of the Henri Poincaré Institute, Paris, France, 338:357, 2003.

[YHAG16] Xinru Yuan, Wen Huang, P-A Absil, and Kyle A. Gallivan. A Riemannian
limited-memory BFGS algorithm for computing the matrix geometric mean.
Procedia Computer Science, 80:2147–2157, 2016.

[You88] Nicholas Young. An introduction to Hilbert space. Cambridge university press,
1988.

[Zha13] Teng Zhang. A majorization-minimization algorithm for the Karcher mean of
positive definite matrices, 2013. arXiv:1312.4654.

22

http://arxiv.org/abs/1312.4654

	Introduction
	Background on Inductive means and sequences
	Shuffled Inductive sequences
	Motivation on Pn
	Shuffling algorithm
	Reverse method
	In-shuffle method

	Convergence proof
	Convergence speed comparison on Pn

	Quasi-geometric matrix means
	Parallelizable variants
	Conclusions
	ALM list of criteria for geometric means
	Proof of Theorem 3.1

