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Abstract. Merging gene expression datasets is a simple way to increase
the number of samples in an analysis. However experimental and data
processing conditions, which are proper to each dataset, generally influ-
ence the expression values and can hide the biological effect of interest.
It is then important to normalize the bigger merged dataset regarding
those batch effects, as failing to adjust for them may adversely impact
statistical inference. In this context, we propose to use a “spatiotem-
poral” independent component analysis to model the influence of those
unwanted effects and remove them from the data. We show on a real
dataset that our method allows to improve this modeling and helps to
improve sample classification tasks.

Keywords: Batch effect removal, expression data, spatio-temporal in-
dependent component analysis

1 Introduction

Genes hold the information to build proteins, which are the structural compo-
nents of cells and tissues. The translation of gene information into proteins is
known as “gene expression”. Nowadays, the development of sequencing technolo-
gies allows to measure those expression levels at a reasonable cost. The analysis
of the resulting data helps to better understand how genes are working, with the
goal of developing better cures for genetic diseases such as cancer.

Due to the limited number of samples that can be processed at the same time
in an experiment, the size of such datasets is often limited in samples. However,
statistical inferences need a high number of samples to be robust enough and
generalizable to other data. As more and more of those datasets are available on
public repositories such as GEO http://www.ncbi.nlm.nih.gov/geo/, merg-
ing and combining different datasets appears as a simple solution to increase
the number of samples analyzed and potentially improve the relevance of the
biological information extracted.

Expression levels of genes are the result of interactions between different
biological processes, which can increase or decrease the expression level mea-
sured. However, noise may also be added at each step of data acquisition, due
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to imprecisions or differences in experiment conditions. Confounding factors, or
batch effects, that complicate the analysis of genomic data can be for example
differences in dates of experiment, differences in laboratory conditions, or even
the fact that two samples subsets were treated by two different technicians. The
precise effects of the technical artefacts on gene expression levels is often un-
known; however some partial information is usually available, such as the batch
number, the date of experiment,... When merging different datasets, some of
the main confounding factors are typically due to the fact that the samples
were not processed in exactly the same conditions from one experiment/dataset
to another. Those batch effects can be quite large and hide the effects related
to the biological process of interest. Not including those effects in the analysis
process may adversely affect the validity of biological conclusions drawn from
the datasets [8,7,17]. It is then important to be able to combine datasets from
different sources while removing the unwanted variations such as batch effects.
From here, we will call aggregated dataset the bigger dataset resulting of the
concatenation of the smaller datasets, and sub-datasets or batches these smaller
datasets.

An additional difficulty in the process of removing batch effects is that the
biological process (or phenotype) of interest could partially correlate with the
batches. For example, if we want to combine two sub-datasets with respectively
75/25% and 25/75% of cases/controls, we should check that what is removed
during the normalization step is really only the batch effect and does not contain
potential useful information about cases/controls.

Different methods exist to tackle the problem of batch effect removal when
merging different sub-datasets, each having its advantages and weaknesses [6] [2].
They can be classified in two main approaches: location-scale methods and ma-
trix factorization methods. The location-scale methods assume a model for the
distribution of the data within batches, and adjust the data within each batch
to fit this model. The goal is to obtain genes with similar mean and/or variance
for each batch. A main hypothesis is that by adjusting the gene distributions
no biological information is removed. The matrix factorization methods assume
that the variations across the sub-datasets (biological or due to confounding
factors) can be represented by a small set of rank-one components which can
be estimated by means of matrix factorization. The components associated with
the batch effects are then removed to obtain the normalized dataset. With this
approach, the main hypothesis is that the factorization method is able to pick
up the batch effects in some of its resulting components.

In this paper, building on [1] and [12], we propose to use spatio-temporal
Independent Component Analysis (ICA) to remove batch effects when combin-
ing microarray datasets. We compare our method to three other normalization
methods. We show on a real dataset that spatio-temporal ICA allows to better
model the factors influencing gene expression levels, and may improve results in
a sample classification task.

The paper is organized as follows. Section 2 presents the method, which is
validated in Section 3, and conclusions are drawn in Section 4.

13th of June, 2016 2http://sites.uclouvain.be/absil/2016.10

http://sites.uclouvain.be/absil/2016.10


Emilie Renard, Samuel Branders, and P.-A. Absil

2 Proposed method to reduce batch effect

Building on [1] and [12], we propose to use spatio-temporal Independent Com-
ponent Analysis (ICA) to remove batch effects when combining microarray
datasets. After factorization of the aggregated dataset, components showing
some correlation with the sub-datasets are removed in order to obtain a final
dataset, hopefully cleaned from the main batch effects. The advantage of a ma-
trix factorization approach is that the removed components are interpretable: it
is easy to check that they do not correlate with some biological information of
interest. In [1], the authors use singular value decomposition (SVD) to model
batch effects. However ICA was shown to better model the different sources of
variation [17], so we propose here an ICA based approach. We first describe the
spatio-temporal ICA of [12], then we explain how we use it to normalize the
dataset.

2.1 Spatio-temporal Independent Component Analysis

We consider the aggregated dataset as a gene-by-sample matrix X, where Xi,j

indicates the value of gene i in sample j. Applying an ICA method to matrix X
yields a decomposition

X ≈ ABT =

K∑
k=1

A:,kB
T
:,k (1)

where component A:,k can be interpreted as the gene activation pattern of com-
ponent k and component B:,k as the weights of this pattern in the samples.

When computing this decomposition, the question arises whether one should
maximize the independence between the columns of A or those of B. Indepen-
dence across genes means that the activation patterns should be as independent
as possible. Independence across samples means that the weights attributed to
the activation patterns should be as independent as possible. In earlier times,
because of the very vertical shape of matrix X in genetic datasets, independence
across genes has been favored in the literature. However aggregating sub-datasets
allows to have a more reasonable number of samples. Imposing independence
among genes, or samples, or on both was shown to give good results [14]. As
both options are justifiable a priori, we use a spatio-temporal ICA; this method
introduces a trade-off parameter allowing an easy adaptation to the different
options.

We now present the ICA method from [12] that we use to generate matri-
ces A and B from the data matrix X ∈ Rp×n. The algorithm depends on a
spatiotemporal parameter α ∈ [0, 1] that allows it to explore a continuum be-
tween imposing independence solely on A (α = 0) and solely on B (α = 1). The
term “spatiotemporal” comes from the pixel-by-time data in medical imaging
for which the concept was introduced [16].

The first step consists of centering the gene-by-sample data matrix X by
subtracting the row and column means, followed by a dimensionality reduction
by means of a K-truncated SVD, yielding a new matrix X̃ = UKDKV

T
K . All the
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possible decompositions of X̃ are given by X̃ = ABT = AW−1WBT with W a
K ×K invertible matrix. The considered decomposition is then:

X̃ = UKD
α
KW

−1︸ ︷︷ ︸
=:A

WD1−α
K V TK︸ ︷︷ ︸

=:BT

(2)

whereW is restricted to the orthogonal group O(K) = {W ∈ RK×K : WTW = I}.
Consequently, the columns of A, resp. B, are structurally decorrelated when
α = 0, resp. α = 1.

In the spirit of the JADE ICA algorithm [3], the objective function to mini-
mize is of the form:

fα(W ) = α
∑
i

Off(Ci(B
T )) + (1− α)

∑
i

Off(Ci(A
T )), W ∈ O(K)

where A and B depend on W through (2), Off(Y ) returns the sum of squares of
the off-diagonal elements of Y , and the Ci’s are fourth-order cumulant matrices,
satisfying the property Ci(WM) = WCi(M)WT . The minimization of fα is thus
a joint approximate diagonalization problem, which is addressed as in JADE
using Jacobi rotations. The Jacobi algorithm is initialized with W = I, ensuring
that both A and B initially have decorrelated columns.

2.2 Dataset normalization

The normalization process to remove batch effects is detailed in Algorithm 1.
Matrices A and B are first computed (line 1), then we can use the components
B:,k to remove possible batch effects. For this, we select the components B:,k that
correlate with the batch. As batch is a categorical information and the compo-
nents B:,k are continuous, the usual correlation formula (Pearson or Spearman)
can not be used. To estimate which components are related to batch, we com-
pute the R2 value (line 2) that measures how well a variable x can predict a
variable y in a linear model:

R2(x, y) ≡ 1− SSres
SStot

where

– SStot =
∑
i(yi− ȳ)2 is the sum of squares of the prediction errors if we take

the mean ȳ = 1
n

∑n
i=1 yi as predictor or y,

– SSres =
∑
i(yi − ŷi)2 is the sum of squares of the prediction errors if we

use a linear model ŷi = f(xi) as predictor: if x is continuous the prediction
model is a linear regression, if x is categorical we use a class mean.

The R2 value indicates the proportion of the variance in y that can be pre-
dicted from x, and has the advantage to be usable with categorical or continuous
variables. So the higher the R2 value, the better the association between both
variables. As the sub-datasets information is categorical, R2(sub-datasets, B:k)
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compares the prediction of Bik by a general mean
∑
j
Bjk

n or by a sub-dataset

mean
∑
j∈Cj

Bjk

n (where Cj represents all samples in the same sub-datasets as

sample j).
If a component presents some correlation with the sub-datasets (line 3), then

this component is selected. An additional step can be added in the process
to check if the selected components do not correlate with some information of
interest (lines 4-6, optional). The selected components are then removed from
the matrix X to obtain a cleaned dataset (line 7).

Algorithm 1 ICA based normalization

Require: X (p × n) the aggregated dataset to be normalized, c (n) a categorical
variable indicating the sub-datasets, α the spatio-temporal parameter for the ICA
method, t ∈ [0, 1] the threshold to consider a component associated to c, [optional]
c2 categorical/continuous information that we want to preserve

1: A,B ← ICA(X,α)
2: R← R2(c,B)
3: ix← which(R ≥ t)
4: R2 ← R2(c2, B) . optional
5: ix2 ← which(R2 ≥ R) . optional
6: ix← ix \ ix2 . optional
7: Xn ← X −A[:, ix] ∗B[:, ix]T

3 Results

We tested our normalization method on breast cancer expression. We combined
different datasets which can be accessed under GEO numbers GSE2034 [18]
and GSE5327 [11], GSE7390 [4], GSE2990 [15], GSE3494 [10], GSE6532 [9] and
GSE21653 [13]. All datasets were summarized with MAS5 and represented in
log2 scale, except GSE6532 which was already summarized with RMA. With
those datasets come different pieces of information: age of the patient, grade and
size of the tumor, if a lymphatic node is affected, the estrogen receptor status,
the treatment, the subtype, two values estimating the relapse risk (scoreGene76
and scoreODX), and one estimating the proliferation (scoreProlif). The last four
are values computed from a model and the expression values, and so are more
directly dependent on the dataset.

We took estrogen-receptor status (ER) prediction as the classification task.
ER is thus our phenotype of interest, and other pieces of information will be
called external information later in this paper. We removed the samples (or
genes) with missing information which gives an aggregated dataset of 1361 sam-
ples for 22276 genes. The repartition of the ER status is described in Table 1.
Proportion of ER positive samples depends on the dataset but is always in ma-
jority.
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Sub-dataset 1 2 3 4 5 6

ER = 0 135 64 34 34 40 110
ER = 1 209 134 149 213 86 153
% of 1’s 0.61 0.68 0.81 0.86 0.68 0.58

Table 1. Repartition of ER status in the sub-datasets

As can be seen on the first subplot in Fig. 1 the expression values in the
aggregated dataset are clearly associated to the sub-datasets. Many genes have
a strong association with the sub-datasets, but the maximal R2 value between
a gene and the ER status is about 0.25.

3.1 Comparison with centering-scaling, ComBat, and SVD based
methods

Many methods exist that aim to remove the unwanted variation coming from the
batch effects. We compare our method to three different approaches: the very
simple standardization method, the well-used ComBat method and an SVD-
based method that have a similar approach to our proposition.

The simplest way to normalize a dataset in order to remove batch effect
is to standardize each sub-dataset separately. That is, for each gene in each
sub-dataset, the expression values are centered and divided by their standard
deviation.

Another widely used but more complex method is ComBat [5]. The expression
value of gene g for sample j in batch i is modeled as Yijg = αg +Xβg + γig + δigεijg
where αg is the overall gene expression, and X represents the sample condi-
tions. The error term εijg is assumed to follow a normal distribution N(0, σ2

g).
Additive and multiplicative batch effects are represented by parameters γig
and δig. ComBat uses a bayesian approach to model the different parameters,
and then removes the batch effects from the data to obtain the clean data
Y ∗ijg = ε̂ijg + α̂g +Xβ̂g.

The third method, which we term SVD, is similar to [1]. The main difference
is that a singular value decomposition is computed instead of an independent
component analysis. As it is not clear how to systematically infer which compo-
nents to remove in [1], we use our R2 criterion.

Effects of the different normalization methods on the association between
genes and sub-datasets or ER are visible on Fig. 1. Compared to the initial values,
all methods about double the maximum R2 value associated to the ER factor
(from 0.25 to 0.5). Effects on association with sub-datasets are more different.
The centering-scaling approach and ComBat remove all association with the sub-
datasets. The methods based on matrix factorization are less sharp, the SVD
one keeping the higher association with sub-datasets.

In the remaining of this section, we compare all four normalization methods
(centering-scaling, ComBat, SVD and ICA based) and the case without normal-
ization regarding possible batch effects. First we look in Section 3.2 at how the
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Fig. 1. R2 values between the gene expression values and the sub-datasets versus the
ER factor, for different normalizations of aggregated dataset.

method works and can be interpreted regarding the external information we have
access to. This is only possible for the factorization methods. In a second time,
we compare in Section 3.3 the results obtained in the context of a classification
task.

3.2 Spatio-temporal ICA to model sources of variations

As a first step to validate our approach, we computed the ICA factorization
of the unnormalized aggregated dataset for different values of α, yielding the
components A(α) and B(α) as in Equation 1.

The maximal R2 values between components of the matrix B and the exter-
nal information (i.e. maxiR

2(info, B:i)) are represented on Fig. 2. Information
related to the sub-datasets appears to be captured quite well in at least one com-
ponent B:i. The quality of the recovering of the external information depends on
the α value. If we compare with the SVD components, ICA is at least as good as
SVD to recover the external information. For some factors like subType, score-
Gene76, scoreProlif, scoreODX, treatment, and even ER in a smaller measure,
the ICA factorization improves the modeling.

Influence of sub-datasets appears to be captured in the SVD decomposition,
and in all values of α in ICA. However if we examine the relation between compo-
nents and external information the behaviors differ. On Fig. 3 we represented for
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Fig. 2. Maximal R2 values between components of the ICA factorization and the ex-
ternal information depending on α. The isolated dots on the left hand side give the
same information but for the SVD decomposition.

different decompositions the R2 values between all components and the external
information, and the correlation between components themselves.

SVD gives two uncorrelated components highly associated to sub-datasets.
ICA allows to increase the number of components associated to sub-dataset,
especially for α values close to 0. However, some of those components are redun-
dant: for α = 0, components 1,2,4,6,8,9 have high R2 values. But components
4 and 9 are correlated with component 2, and component 8 with component
1. Increasing the value of α imposes more and more independence on B and
so enable to get rid of the redundancy between components. A good trade-off
between recovering external information and avoiding redundancy would be an
intermediate value of α.

3.3 Validation by impact on classification

Classification process description To compare the different methods, we
used them in a whole process of classification task. We predicted the ER status
using an SVM classifier. The whole process is described in Algorithm 2. The first
step is to normalize the aggregated dataset X with the chosen method (here,
centering-scaling, ComBat, SVD or ICA based normalization), then center and
scale it to be sure to treat all features with the same weight (line 2). Training and
testing sets are then separated (line 3). A basic feature selection is performed
by selecting the 10 genes with the best association with the ER label based
on a Wilcoxon test (line 4). A standard SVM model is trained based on those
genes (lines 5 to 8). The labels of testing set are finally predicted using the SVM
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Fig. 3. Top: R2 values between components resulting from different factorizations and
the external information. Bottom: correlation between the different components. Black
implies a null correlation (0), and white a perfect one (1).

model (line 9). To keep the SVM model simple, we used a linear kernel, the cost
parameter is fixed using the heuristic implemented in the LiblineaR package,
and the classes weights are set to [1 − p0, 1 − p1] where pi gives the proportion
of samples in class i. In ICA and SVD based normalizations, we computed the
K = 20 first components and removed the components with an R2 value higher
than t = 0.5.

Algorithm 2 Classification process

Require: X (p×n) aggregated matrix of genes expression, y (n) the label to predict,
c (n) the sub-dataset information

1: ytr, yte ← y
2: Xn ← normalize(X, c, ytr)
3: Xtr, Xte ← Xn;
4: idxbestGenes ←Wilcoxon(ytr, Xtr)
5: XSV M ← Xtr[idxbestGenes, :]
6: c← heuristic(XSV M )
7: w ← 1− []ytr == 1 ]ytr == 0]
8: modelSV M ← SVM(XSV M , ytr, c, w)
9: ŷte ← prediction(modelSV M , Xte[idxbestGenes, :])

Results on dataset We kept each time two sub-datasets out of six for testing,
and trained the SVM model on the four other sub-datasets, for a total of C2

6 = 15
experiments.
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The impact of α in the ICA based normalization on the results are illustrated
on Fig. 4. An α closer to 1 tends to predict more positive labels. As discussed
in Section 3.2, a value of α = 0.5 appears to be a good compromise.
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Fig. 4. Impact of α for the validating sets. On the left, proportion of positives in the
sub-datasets. In the middle, proportion of positive predictions by the algorithm after
applying an ICA based normalization. On the right, proportion of correct predictions.

The results on the testing set for the five methods (with α = 0.5 for the
ICA based) are shown on Fig. 5. The case without normalization appears to
have a larger variance. ComBat has a smaller variance than the case without
normalization, but bigger than the factorization methods. ICA and SVD are
closer, ICA being slightly higher.

4 Conclusion

In the context of merging gene expression datasets to increase the number of
samples analyzed and so the robustness of extracted information, we have pro-
posed a method to remove batch effects. Inspired from existing methods, we have
used a spatio-temporal independent component analysis to model those effects
and remove it from the data. We have tested our method on a real breast cancer
aggregated dataset in a classification task and compared it to other normaliza-
tion methods. We have shown that our method can recover external information
better than using a simple singular value decomposition. The spatio-temporal
parameter α allows to adjust between modeling of external information and re-
dundancy between components. By comparison with ComBat, the factorization
approach enables to better understand what is removed in the cleaning process.
Results on the classification task on the real dataset shows a slight improvement
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Fig. 5. Area under the ROC curve (obtained by varying the bias b in the separating
hyperplane) and balanced classification rate (0.5( TP

TP+FN
+ TN

TN+FP
)) for the validating

sets.

for the ICA based one. The next step would be to test it on a more difficult
dataset where the labels correlate partially with the sub-datasets.
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