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Abstract

We generalize the notion of Bézier surfaces and surface splines to Riemannian man-
ifolds. To this end we put forward and compare three possible alternative definitions
of Bézier surfaces. We furthermore investigate how to achieve C0- and C1-continuity of
Bézier surface splines. Unlike in Euclidean space and for one-dimensional Bézier splines
on manifolds, C1-continuity cannot be ensured by simple conditions on the Bézier con-
trol points: it requires an adaptation of the Bézier spline evaluation scheme. Finally,
we propose an algorithm to optimize the Bézier control points given a set of points to
be interpolated by a Bézier surface spline. We show computational examples on the
sphere, the special orthogonal group and two Riemannian shape spaces.
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Figure 1: Differentiable Bézier spline surface on the Riemannian space of shells (Section 6.4)
interpolating the red shapes. The gray shapes are points on the Bézier surface driven by the control
points in green. Their location indicates where in the R2 domain they are achieved.
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1 Introduction

During recent years, it has become more and more common and important to process data
from non-Euclidean spaces, in particular from Riemannian manifolds. Examples for the use of
manifold-valued data include the exploration of Riemannian shape spaces in computer vision
[9], the interpretation of colors in images as data on the color circle S1 [3], the representation
of fixed rank matrices as a submanifold of all matrices [31], and many more.

This paper concerns multivariate manifold-valued interpolation. More precisely, given
data points pi1,...,id on a manifoldM associated to nodes (i1, . . . , id) ∈ Zd of a Cartesian grid
in Rd, we seek a smooth (i.e., C1) function B : Rd →M such that B(i1, . . . , id) = pi1,...,id .

This problem is motivated by several applications in engineering and the sciences. In
projection-based model order reduction of a dynamical system that depends on d parame-
ters, a possible approach consists in computing a suitable projector (hence, an element of a
Grassmann manifold) for values of the parameters falling on a grid, then resorting to inter-
polation in order to generate a projector for other values of the parameters [21]. In diffusion
tensor imaging, a diffusion tensor (hence, an element of the manifold of 3 × 3 symmetric
positive definite matrices) is acquired for each voxel of the volume of interest (thus d = 3),
and interpolation can be used to infer more finely sampled data [19]. In Cosserat rods [25],
we have d = 1 and M = SE(3)—the group of rigid-body motions in R3—while Cosserat
shells [26] require d = 2. Let us finally mention liquid crystals, which can be described by a
function from R3 into the projective space RP2 [18].

Two special cases of manifold-valued interpolation have been widely considered in the
literature. One of them is when M is a linear manifold, i.e., a Euclidean space. A preferred
way of handling Euclidean interpolation problems is by resorting to piecewise-polynomial (or
spline) interpolation functions. Indeed, polynomial functions are convenient to manipulate
and evaluate, and the piecewise approach makes it possible to keep interpolation errors small
while using polynomial pieces of low degree, avoiding the problem of Runge’s phenomenon
that plagues high-degree polynomial interpolation. Within the realm of piecewise-polynomial
interpolation, countless variations occur according to the sought degree of smoothness, re-
strictions on the admissible classes of polynomial pieces, optimality criteria, and also the
form—one of them being the Bézier form—in which the polynomials are expressed. The
book of Farin [8] is a convenient point of entry to this vast literature.

The other special case of manifold-valued interpolation is when d = 1. The interpolation
problem then reduces to interpolating time-labeled data points on M by a curve that goes
through these points at the prescribed instants. This problem has received a fair amount of
attention in the literature. Recent contributions can be found in [24, 13, 30, 2].

Besides these two special—but important—cases, multivariate manifold-valued interpo-
lation does not appear to have been much researched, in spite of the above-mentioned ap-
plications. Steinke et al. [28] use a thin-plate-spline technique to produce an interpolation
map between two Riemannian manifolds. The approach is generalized in [29] where, given a
set of training pairs (Xi, Yi) with the Xi’s and Yi’s on two manifolds, a mapping is sought
between these two manifolds that minimizes a regularized empirical risk. We also mention a
related technique for volumetric registration presented in [14].

In this paper, we present a technique to perform multivariate manifold-valued interpo-
lation by means of C1 piecewise-cubic-Bézier functions (see Figure 1 for an example). We
thereby extend to manifold codomains the above-mentioned benefits of piecewise-polynomial
interpolation. When d = 1, the proposed method reduces to a strategy very close to the one
developed in [2, 11]. The only difference is that in these articles the two extreme segments are
chosen to be quadratic Bézier curves and not cubic Bézier curves. The proposed method can
thus almost be viewed as a multivariate extension of [2, §2]. For simplicity of the exposition,
we focus on the bivariate case (d = 2), but the transition to higher values of d appears to be
considerably less intricate than the transition from d = 1 to d = 2.

The development of the proposed bivariate manifold-valued technique requires more work
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than one might anticipate. The first task is to propose a bivariate extension of the well-
known [17, 20] manifold-valued Bézier curves that constitute the pieces in [2]. We provide
three possibilities leading in general to different results (see Section 3, Definition 4), in which
the essential component is a weighted geodesic average.

Next comes the question of gluing these Bézier patches together in a smooth (C1) way. The
problem is substantially more difficult than in [2] because the interfaces are no longer isolated
points but instead regions of dimension 1. The conditions for C0-continuity of multiple Bézier
surfaces patched together are the same as in Euclidean space, namely that the control points
of adjacent patches coincide at the interface; however, the classical conditions on the control
points for C1-continuity in Euclidean space exhibit a linear dependence which turns into
an incompatibility on manifolds. As a result, the classical conditions can in general not
be satisfied. In addition, those conditions are not sufficient to ensure C1-continuity on a
manifold. We overcome this difficulty by “discarding” the control points that lie on the
interfaces. We show in Theorem 18 that C1 gluing can then be achieved for two of the three
Bézier surface definitions.

For the interpolation problem, we provide a technique to fix the remaining leeway on
the control points in such a way that the resulting interpolation function has minimal mean
squared second derivative when the codomainM reduces to a Euclidean space. The outcome
is then an advanced method to address the bivariate manifold-valued interpolation problem,
whose sophistication makes it a promising tool towards making the most of expensively
acquired data in applications such as those mentioned above.

The paper is organized as follows. After a reminder in Section 2 on the Euclidean case,
piecewise-Bézier curves and surfaces on manifolds are introduced and analyzed in Section 3.
The interpolation technique is presented in Section 4. We briefly introduce all necessary
numerical tools in Section 5, and in Section 6 we show some numerical applications in the
context of motion modeling and shape exploration in shape spaces. Conclusions are drawn
in Section 7. For the reader’s convenience, a glossary of notations is given at the very end of
the article.

2 Reminder on Euclidean piecewise-Bézier curves and
surfaces

This section is a brief summary of Bézier curves and surfaces in the Euclidean space Rn. A
detailed exposition can be found in [8]. For a sequence of control points b0, . . . , bK ∈ Rn, the
corresponding Bézier curve βK(·; b0, . . . , bK) : [0, 1]→ Rn is defined as

βK(t; b0, . . . , bK) =

K∑
j=0

bjBjK(t) , (1)

where K is called the order of the curve (K = 3 for cubic Bézier curves) and BjK(t) denotes
the jth Bernstein polynomial of degree K,

BjK(t) =

(
K

j

)
tj(1− t)K−j . (2)

The Bézier curve fully lies inside the convex hull of its control points b0, . . . , bK , since for
each fixed t, the BjK(t) form a partition of unity and thus can be interpreted as convex
combination coefficients (Figure 2 left). The curve interpolates the first and last control
points, and its initial and final velocity are tangent to the initial and final line segments
between the control points (Figure 2),

βK(0; b0, . . . , bK) = b0 , β̇K(0; b0, . . . , bK) = K(b1 − b0),

βK(1; b0, . . . , bK) = bK , β̇K(1; b0, . . . , bK) = K(bK − bK−1),
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where β̇ denotes the time-derivative of β.
De Casteljau’s algorithm offers a method to evaluate bK0 = βK(t0; b0, . . . , bK) at a time

t0 ∈ [0, 1],
b0
j = bj , j = 0, . . . ,K,

bkj = t0 bk−1
j+1 + (1− t0) bk−1

j , k = 1, . . . ,K, j = 0, . . . ,K − k.
(3)

Note that the operations employed above are only convex combinations with coefficients t0
and 1− t0 so that the algorithm has a simple geometric interpretation (Figure 2 right).
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Figure 2: Computation of a quadratic (K = 2) Bézier curve via equation (1) as a weighted mean
of all control points (top left) and via de Casteljau’s algorithm (3) as a recursively iterated weighted
mean of point pairs (top right). In Euclidean space both methods are equivalent, but they will
usually not lead to identical results if they are generalized to manifolds as the sphere (bottom,
showing a cubic Bézier curve). The dashed curve is obtained with the weighted mean and the solid
one with de Casteljau’s algorithm. Interpolation and control points are indicated by filled and open
circles, respectively; the Bézier polygon is shown as gray dashed lines.

Several Bézier curves can be joined to form a Bézier spline: for two Bézier curves
βK(t; bl0, . . . , b

l
K), βK(t; br0, . . . , b

r
K) : [0, 1]→ Rn, the composite spline curve

B : [0, 2]→ Rn : t 7→
{
βK(t; bl0, . . . , b

l
K) if t ∈ [0, 1]

βK(t− 1; br0, . . . , b
r
K) if t ∈ (1, 2]

(4)

is continuous if and only if br0 = blK and first order differentiable if and only if blK =
blK−1+br1

2 .
The idea of Bézier curves extends also to higher dimensions; see, e.g., [8, Sec. 5.5]. For a

family of points (bij)i,j=0,...,K ⊂ Rn, the corresponding Bézier surface βK(t1, t2; (bij)i,j=0,...,K) :
[0, 1]2 → Rn is defined by

βK(t1, t2; (bij)i,j=0,...,K) =

K∑
i=0

K∑
j=0

bijBiK(t1)BjK(t2) . (5)

Again, for fixed t1 and t2 this can be interpreted as a convex combination of all control
points bij (Figure 3 left). We directly see that the Bézier surface boundary consists of the
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four Bézier curves with control points b0,j , bK,j , bj,0, bj,K , j = 0, . . . ,K, respectively. We
can also interpret a Bézier surface as a one-parameter family of Bézier curves,

βK(t1, t2; (bij)i,j=0,...,K) =

K∑
j=1

(
K∑
i=1

bijBiK(t1)

)
BjK(t2)

= βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K) , (6)

which allows an evaluation just based on the computation of Bézier curves (Figure 3, mid-
dle). De Casteljau’s algorithm gives an alternative way to compute such Bézier surfaces. In
suggestive matrix notation, it takes the following form

b0
ij = bij , i, j = 0, . . . ,K,

bkij = (1− t1 t1)

(
bk−1
i,j bk−1

i,j+1

bk−1
i+1,j bk−1

i+1,j+1

)(
1− t2
t2

)
, k = 1, . . . ,K, i, j = 0, . . . ,K − k,

(7)

and yields bK00 = βK(t1, t2; (bij)i,j=0,...,K). Here again, points bkij are obtained as convex

combinations of bk−1
ij , bk−1

ij+1, bk−1
i+1j and bk−1

i+1j+1. This combination leads once more to a
simple geometric interpretation (Figure 3 right).
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Figure 3: Computation of a cubic Bézier surface via (5) as a weighted mean of the control points
(left), via (6) through a one-parameter family of Bézier curves (middle), and via de Casteljau’s
algorithm (7) (right).

Two Bézier surfaces βK(t1, t2; (blij)i,j=0,...,K) and βK(t1, t2; (brij)i,j=0,...,K) can be joined

Ck-continuously in t1-direction via

B : [0, 2]× [0, 1]→ Rn : (t1, t2) 7→
{
βK(t1, t2; (blij)i,j=0,...,K) if t1 ∈ [0, 1],

βK(t1 − 1, t2; (brij)i,j=0,...,K) if t1 ∈ (1, 2],
(8)

if for all j = 1, . . . ,K the sequence pairs (blj,0, . . . , b
l
j,K), (brj,0, . . . , b

r
j,K) induce a one-dimensional

Ck-continuous Bézier spline via (4). An analogous condition holds if the two surfaces are to
be matched smoothly in t2-direction (see [8, § 16.1]).

3 Piecewise-Bézier surfaces on manifolds

The generalization of Bézier curves to a manifold setting was previously studied. For instance,
Lin and Walker [17] proposed a manifold version of de Casteljau’s algorithm. The conditions
of continuity and derivability were studied by Popiel and Noakes [20]. Here, we aim to
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generalize the concept of a Bézier surface to a Riemannian manifold M. To this end, we
briefly introduce some standard notions of Riemannian geometry (a more detailed exposition
is found in standard textbooks, e.g., [7]).

The Riemannian metric gy(·, ·) in a point y ∈ M is an inner product on the tangent
space TyM to M in y, and it depends smoothly on y. The length and energy of a path
γ : [0, 1]→M are defined as

L[γ] =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt , (9)

E[γ] =

∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) dt , (10)

where the dot denotes (time) differentiation.
We call geodesics the paths γ that minimize the energy E[γ] for fixed end points γ(0) =

y0 ∈M, γ(1) = y1 ∈M. The length L[γ] is also minimized by those paths [7].
The Riemannian distance d(y0, y1) between any two points y0, y1 is the minimum path

length of a path from y0 to y1. For d(y0, y1) small enough, the connecting geodesic is unique.
We shall assume that M is finite-dimensional, connected, and geodesically complete. By
the Hopf–Rinow theorem this implies that every two points on M can be connected by a
geodesic. The logarithm of y1 with respect to y0 is defined as the initial velocity of the
geodesic γ from y0 to y1,

logy0 (y1) = γ̇(0). (11)

The exponential map of v ∈ Ty0M is the point reached at t = 1 by the geodesic γ starting
from y0 with initial velocity v,

expy0 (v) = γ(1). (12)

Bézier surfaces can be transfered to a manifold setting in different ways, where each
approach generalizes a particular evaluation scheme for Bézier surfaces in Euclidean space.
In this section, we introduce three possible definitions of Bézier surfaces in a Riemannian
manifoldM (in fact, the definitions even extend to arbitrary metric spaces). We also examine
the conditions and techniques to achieve C0 and C1-continuity when patching multiple Bézier
surfaces together. Each approach has its own advantages and disadvantages.

3.1 Bézier surface definitions based on geodesic averaging

To extend Bézier surfaces to metric spaces M, we mainly use the weighted average between
points y1, . . . , yn ∈ M as core concept. This tool can replace naturally not only convex
combinations, but also multilinear interpolations. Thanks to this, we will propose three ways
to compute Bézier surfaces on manifolds and analyze their well-posedness.

Definition 1 (Weighted geodesic average). Let n ∈ N. A weighted geodesic average of
y1, . . . , yn ∈ M for convex combination weights w1, . . . , wn ∈ [0, 1] with

∑n
i=1 wi = 1 is any

point y ∈M solving

min
y∈M

n∑
i=1

wid
2(yi, y) .

If the minimizer exists and is unique, we denote it by av[(y1, . . . , yn), (w1, . . . , wn)].

Note that weighted averages in metric spaces can be traced back to Fréchet [10]. On
Riemannian manifolds, they have been analyzed under various names—Riemannian center
of mass, Riemannian barycenter, Karcher mean, Riemannian average, geodesic average—in
particular by Karcher (see, e.g., [16]).
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Remark 2 (Convex combinations and multilinear interpolation). In Euclidean space, the
weighted geodesic average is the same as a convex combination of the points y1, . . . , yn ∈ Rd.
Indeed, it is straightforward to check that

av[(y1, . . . , yn), (w1, . . . , wn)] =

n∑
i=1

wiyi .

Likewise, the bilinear interpolation of points yij ∈ Rd, i, j ∈ {0, 1}, at coordinates (t1, t2) ∈
[0, 1]2 can be expressed as a weighted geodesic average

(1− t1)(1− t2)y00 + (1− t1)t2y01 + t1(1− t2)y10 + t1t2y11

= av[(y00, y01, y10, y11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)] .

/

Remark 3 (Weighted geodesic average of two points). For two points y1, y2 ∈M with weights
1−w,w ∈ [0, 1] and any y ∈M, the Young-type inequality (1−w)2d2(y1, y) +w2d2(y2, y) ≥
2(1− w)wd(y1, y)d(y2, y) implies

(1− w)d2(y1, y) + wd2(y2, y) ≥ (1− w)w(d(y1, y) + d(y2, y))2

≥ (1− w)wd2(y1, y2)

= (1− w)d2(y1, ŷ) + wd2(y2, ŷ)

for ŷ the point on the connecting geodesic between y1 and y2 with d(y1, ŷ) = wd(y1, y2) and
d(y2, ŷ) = (1− w)d(y1, y2). Thus we obtain the explicit formula

av[(y1, y2), (1− w,w)] = ŷ = expy1
(
wlogy1 (y2)

)
. (13)

/

The definitions of Bézier surfaces on manifolds are generalizations of (5)–(7). Note that
equation (5) represents a convex combination and each iteration step in equation (7) repre-
sents a bilinear interpolation.

Definition 4 (Generalized Bézier surface). Given control points bij ∈ M, i, j = 0, . . . ,K,
we define a corresponding generalized Bézier surface of type I–III via

βI
K(t1, t2; (bij)i,j=0,...,K) = av[(bij)i,j=0,...,K , (BiK(t1)BjK(t2))i,j=0,...,K ] , (14)

βII
K(t1, t2; (bij)i,j=0,...,K) = βK(t1; (βK(t2; (bij)j=0,...,K))i=0,...,K) , (15)

βIII
K (t1, t2; (bij)i,j=0,...,K) = bK00 , (16)

where βK(· ; (bm)m=0,...,K) denotes a Bézier curve in M and where bK00 is defined recursively
via de Casteljau’s algorithm,

b0
ij = bij , i, j = 0, . . . ,K,

bkij = av[(bk−1
ij , bk−1

i,j+1, b
k−1
i+1,j , b

k−1
i+1,j+1), (w00, w01, w10, w11)] , k = 1, . . . ,K, i, j = 0, . . . ,K−k,

with weights

w00 = (1− t1)(1− t2), w01 = (1− t1)t2, w10 = t1(1− t2), w11 = t1t2.

All these three types reduce to the classical Bézier surface if the manifold is the Euclidean
space M = Rd. However, they will generally differ from each other on general manifolds
(Figure 4).
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In the above definition of βII
K we have not yet specified how Bézier curves in M are

defined. Here we can again either employ a generalization of (1),

βK(t; (bj)j=0,...,K) = av[(bj)j=0,...,K , (BjK(t))j=0,...,K ] ,

or use a definition via de Casteljau’s algorithm as in [17, 11], where βK(t; (bj)j=0,...,K) = bK0
for

b0
j = bj , j = 0, . . . ,K,

bkj = av[(bk−1
j , bk−1

j+1 ), (1− t, t)], k = 1, . . . ,K, j = 0, . . . ,K − k.

Figure 4: The Bézier surfaces of type I to III differ from each other. Here this is visualized on the
sphere S2 by mapping a curve (left) or a grid (right) on the parameterization domain onto the Bézier
surface. Type I to III correspond to the solid, dashed, and dotted lines, respectively. Note that
the Bézier surface boundaries coincide, though. The control and interpolation points of the Bézier
surface are displayed in the left picture; the gray dashed lines indicate the control point grid.

All three approaches have their advantages and disadvantages.
The evaluation of βI

K entails solving a rather complex optimization problem. However, it
does not suffer from the drawbacks of the other two approaches.

In comparison to βI
K , an evaluation of βIII

K via de Casteljau’s algorithm only requires the
comparatively simple computation of weighted geodesic averages with four points. Unfortu-
nately there does not seem to be a straightforward way to patch multiple Bézier surfaces of
type III together C1-continuously (this will be discussed in Section 3.4).

Finally, the evaluation of βII
K requires only weighted averages of two points as it is based

on the one-dimensional de Casteljau’s algorithm. When simple analytical formulas exist for
the Riemannian exponential and logarithm (e.g., for M = Sm, see also [22]), this method is
very avantageous since the averaging can be based on (13). However, unlike the surfaces of
type I and III, the definition of βII

K is not symmetric, because it does not satisfy the relation

βK(t1, t2; (bij)i,j=0,...,K) = βK(t2, t1; (bij)
T
i,j=0,...,K) .

In the definition of βII
K , instead of first computing the Bézier curve with respect to t2, one

could alternatively compute first the Bézier curves βK(t1; (bij)i=0,...,K) for each j to obtain
new control points for a Bézier curve which is then evaluated at t2,

βK(t2; (βK(t1; (bij)i=0,...,K))j=0,...,K) . (17)

In general, both approaches will yield different surfaces (Figure 5) so that there is a choice
to be made about along which variable of (t1, t2) to interpolate first.

3.2 Well-posedness and smoothness of Bézier surfaces

In order to analyze the well-posedness of βI
K , βII

K , and βIII
K (Definition 4), we now present

generalizations of standard notions in Riemannian geometry.
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Figure 5: The two possible construction methods (15) and (17) for Bézier surfaces of type II produce
in general different results (their boundaries always coincide, however). Here the difference is shown
on the sphere with the same conventions as in Figure 4: the solid line corresponds to computing
vertical splines first, the dashed line to computing horizontal splines first.

Definition 5 (Multigeodesic convexity). A subset U ⊂M is called multigeodesically convex
if it contains any weighted geodesic average of any of its points. The multigeodesically convex
hull, co(U), of a set U ⊂ M is the smallest multigeodesically convex set C ⊂ M containing
U .

Remark 6. A multigeodesically convex set is a generalization of a geodesically convex set,
i.e., a set in which only weighted geodesic averages of pairs of points are considered. Thus,
by definition, any multigeodesically convex set is also geodesically convex. However, the
opposite inclusion is false in general: consider for instance R3 with the Euclidean metric
gx(v, v) = ‖v‖2, only with the difference that the metric is smaller, say gx(v, v) = α‖v‖2
with some 0 < α < 1, for x in a neighborhood of the three lines connecting the origin with
yi = (cos 2iπ

3 , sin 2iπ
3 , 1), i = 1, 2, 3 (Figure 6). We claim that for α ∈ (

√
3/2 − 1,

√
2 − 1)

the triangle spanned by 2y1, 2y2, and 2y3 is geodesically convex, but not multigeodesically
convex. Indeed, it is straightforward to check that for α <

√
2 − 1 the average of 2y1, 2y2,

and 2y3 is close to the origin,

av[(2y1, 2y2, 2y3), ( 1
3 ,

1
3 ,

1
3 )] ≈ (0, 0, 0) .

Since the triangle does not contain this average, it cannot be multigeodesically convex. How-
ever, the shortest geodesic between any two points of the triangle is fully contained in that
triangle, so it is geodesically convex. In particular the geodesic between two triangle corners,
which is the most critical case, is the straight connecting line as long as α >

√
3/2− 1. /

y2

2y2

y1

2y1

y3

2y3

(0, 0, 0)

Figure 6: Illustration of the counterexample given in Remark 6. The gray color indicates areas
where the metric is smaller than the Euclidean metric.

Remark 7. In our definition of the convex hull, we require every weighted average to be
contained (and not just one of the potentially multiple possibilities). This is different from,
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e.g., [15, Def. 3.3.1]. Thus, the multigeodesically convex hull co(U) always exists as the
intersection of all multigeodesically convex sets containing U . /

Remark 8. The multigeodesically convex hull co(U) can in general not be obtained as the
set of all weighted geodesic averages of points in U : taking U = {y1, y2, y3}, the latter will
contain the origin, but not the point (0, 0, 1), while the former contains both. This differs
from Euclidean space. /

The following theorem ensures that one can always find a weighted geodesic average,
thereby proving part of the well-posedness of geodesic averages (which is necessary to justify
our approach). The remaining issues of uniqueness and smooth data dependence can only
be expected to hold under more restrictive conditions and are treated further below.

Theorem 9 (Existence of weighted geodesic averages). LetM be a smooth finite-dimensional
geodesically complete Riemannian manifold. For any points y1, . . . , yn ∈ M and weights
w1, . . . , wn ∈ [0, 1],

∑n
i=1 wi = 1, a weighted geodesic average exists.

Proof. This is a simple application of the direct method in the calculus of variations. Set
J [y] =

∑n
i=1 wid

2(yi, y) and consider a minimizing sequence yj , j ∈ N, with J [yj ] →
infy∈M J [y] monotonically as j → ∞. Without loss of generality, let w1 6= 0. Due to
d(y1, y

j) ≤ 1
w1
J [yj ] ≤ 1

w1
J [y1], the sequence yj is bounded. Hence the Hopf–Rinow theorem

implies that yj is precompact, i.e., yj converges (up to a subsequence, which we again denote
by yj for simplicity) to some y ∈ M. The limit y is a weighted geodesic average, since by
the continuity of d(·, ·) we have J [y] = limj→∞ J [yj ] = infy∈M J [y].

Remark 10. An analogous result for infinite-dimensional manifolds M is much harder to
obtain and probably requires assumptions similar to the ones in [23] for the existence of
geodesics. There the manifold needs to be modeled over a Hilbert space V which is compactly
embedded in another Banach space Y . The inner product of V needs to be globally equivalent
to the Riemannian metric gy(·, ·), and gy(·, ·) has to depend Lipschitz-continuously on y ∈
Y . /

Definition 11 (Proper subset). We call a subset U ⊂ M proper if the weighted geodesic
averages between any finitely many points in U are unique and smoothly depend on the points
and the weights.

Proposition 12 (Existence of proper neighborhoods). For every y ∈ M there is a proper
multigeodesically convex neighborhood.

Proof. Let us again set J [y] =
∑m
i=1 wid

2(yi, y). For all ρ > 0 small enough the ball Bρ(y)
of radius ρ around y is geodesically convex. By [16, Thm. 1.2], for y1, . . . , yn ∈ Bρ(y) the
energy J has a (local) minimizer in the interior of Bρ(y). Now let ∆ denote an upper bound
on the sectional curvatures of M in a neighborhood of y and let r be the injectivity radius
of expy. If ρ ≤ ρ0 with ρ0 = min(r, π

4
√

∆
) for ∆ > 0 and ρ0 = r else, J is strictly convex on

Bρ(y) by [16, Thm. 1.2] and thus the minimizer unique.
Now take U = Bρ0/3(y), then for any points y1, . . . , yn ∈ U and any convex combina-

tion weights w1, . . . , wn, the energy J has a unique global minimizer which lies inside U .
Indeed, the minimizer cannot lie outside Bρ0(y) since for any ŷ ∈ M \ Bρ0(y) we have
J [ŷ] ≥ n( 2

3ρ0)2 > J [y1], and inside Bρ0(y) the energy J is strictly convex. Thus U is multi-
geodesically convex and every weighted average of points from U is unique.

As for the smoothness of averages in U , note that by [16, Thm. 1.2] the weighted geodesic
average b = av[(y1, . . . , yn), (w1, . . . , wn)] is characterized as that point b̃ ∈ M for which
0 = gradJ [b̃] = −2

∑n
k=1 wk logb̃ yk. For an easier exposition we replace b̃ = expb v for some

v ∈ TbM. Then the above optimality condition turns into

0 =

n∑
k=1

wk logexpb v
yk =: F (v, y1, . . . , yn, w1, . . . , wn) .
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By the implicit function theorem, this condition can be solved for v in a neighborhood of
(0, y1, . . . , yn, w1, . . . , wn), if ∂F

∂v (0, y1, . . . , yn, w1, . . . , wn) is regular, and the resulting func-
tion v(y1, . . . , yn, w1, . . . , wn) is smooth if F is smooth. Since b is unique, in a neighborhood
of b, the function expb v describes the weighted geodesic average for different input points
and weights.

The smoothness of F is clear, based on the smoothness of Riemannian exponential and
logarithm. The regularity of ∂F∂v (0, y1, . . . , yn, w1, . . . , wn) follows directly from [16, Thm. 1.2],

which also states that d2

dt2 J [y(t)] ≥ c‖ẏ‖2 for any geodesic y, where the constant c > 0 depends
on the sectional curvature of the manifold and on ρ0. Thus we have

gb

(
∂F

∂v
(0, y1, . . . , yn, w1, . . . , wn)v, v

)
=

d2

dt2
J [expb(tv)]t=0 ≥ c‖v‖2

so that ∂F
∂v (0, y1, . . . , yn, w1, . . . , wn) is symmetric positive definite and thus invertible by the

Lax–Milgram theorem.

Corollary 13 (Existence of Bézier surfaces). Let control points (bij)i,j=0,...,K ∈M be given.
If co({bij}i,j=0,...,K) is proper, then βI

K , βII
K , and βIII

K in Definition 4 are well-defined and
define smooth surfaces in co({bij}i,j=0,...,K) ⊂M.

Proof. First we note that, if the weighted geodesic averages involved in the computation of
the Bézier surfaces are well-defined (i.e., they exist and are unique), then the Bézier surfaces
are well-defined and lie in the convex hull of their control points by definition. The existence
of all averages follows from Theorem 9, their uniqueness and smoothness from the properness
of co({bij}i,j=0,...,K).

3.3 C0-patching

As in Euclidean space, two generalized Bézier surfaces can be patched together via the
generalization of (8) to a manifold M,

BY : [0, 2]× [0, 1]→M : (t1, t2) 7→
{
βYK(t1, t2; (blij)i,j=0,...,K) if t1 ∈ [0, 1],

βYK(t1 − 1, t2; (brij)i,j=0,...,K) if t1 ∈ (1, 2],
(18)

for Y = I, II, or III (and analogously for patching in the t2-direction). The Bézier spline will
be C0-continuous under the same conditions as in the Euclidean space.

Theorem 14 (C0-continuity). For Y = I, II, and III, the patched Bézier surface BY in M
is continuous if blK,j = br0,j for j = 0, . . . ,K.

Proof. The generalized Bézier surfaces (Definition 4) are smooth (Corollary 13), hence it
remains to consider the continuity at the interface of the two domains, i.e., at t1 = 1.
From the definition of the Bézier surfaces βY , it immediately follows that only the control
points blK,j and br0,j are involved in the corresponding weighted averages. Furthermore,

βYK(1, t2; (blij)i,j=0,...,K) and βYK(0, t2; (brij)i,j=0,...,K) are the Bézier curves in M defined by

the control points (blK,j)j=0,...,K and (br0,j)j=0,...,K , respectively. Thus, if those control points
coincide, the corresponding curves coincide too.

Remark 15. In Riemannian spaces where logarithm and exponential maps are very easy to
compute, one might be tempted to replace the weighted geodesic averages in the definitions
of βI

K and βIII
K by the similar and simpler expression

av[(y1, . . . , yn), (w1, . . . , wn)] ≈ expy
(
w1 logy y1 + . . .+ wn logy yn

)
,

which performs a weighted average in the tangent space at some y ∈M. For instance, in the

definition of βIII
K we might redefine bkij = expbk−1

ij

(∑
(r,s)∈{i,i+1}×{j,j+1} logbk−1

ij
wrsb

k−1
rs

)
, in

which case the following can be observed.

11



• The curve βIII
K (0, t2; (brij)i,j=0,...,K) is still a Bézier curve with control points (br0,j)j=0,...,K .

The involved weighted geodesic averaging reduces to two-point averages at each step
of the recursive process. By (13), the two-point averages computed by the new or the
old formula are identical.

• The curve βIIIK (1, t2; (blij)i,j=0,...,K) is not a Bézier curve with control points (brK,j)j=0,...,K .
Here, the averaging is based on the tangent space at a different point than the two of
which the weighted average is computed.

As a consequence of this second observation, C0-continuous patching of Bézier surfaces is no
longer possible (Figure 7), even in symmetric spaces such as the sphere. /

Figure 7: Two cubic Bézier surfaces computed on the sphere with de Casteljau’s algorithm modified
as in Remark 15. At the interface where control points coincide, the surfaces do not match up
continuously due to the simplification of weighted geodesic averaging.

3.4 C1-patching challenges

In contrast to C0-continuity, which is easily achieved, C1-patching represents a challenge.
Indeed, the corresponding conditions in the Euclidean space [8] cannot be used as we will
see. In the following we will always choose the outmost control points of each Bézier surface

patch such that C0-continuity is ensured. The Euclidean conditions blK,j =
blK−1,j+br1,j

2 for

C1-continuity now generalize to the Riemannian setting as

blK,j = av[(blK−1,j , b
r
1,j), (

1
2 ,

1
2 )] (19)

for all j. However, there are multiple problems with this generalization. Consider four Bézier
surfaces that are patched together as a bidimensional spline B : [0, 2]× [0, 2]→M via

(t1, t2) 7→


βYK(t1, t2; (bbl

ij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [0, 1],

βYK(t1 − 1, t2; (bbr
ij )i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [0, 1],

βYK(t1, t2 − 1; (btlij)i,j=0,...,K) if (t1, t2) ∈ [0, 1]× [1, 2],

βYK(t1 − 1, t2 − 1; (btrij)i,j=0,...,K) if (t1, t2) ∈ [1, 2]× [1, 2],

(20)

where the superscripts bl,br, tl, tr stand for bottom left, bottom right, top left, and top right
respectively. The conditions of type (19) for C1-continuity near the midpoint now read (cf.

12



Figure 8 left)

bbl
K,K−1 = av[(bbl

K−1,K−1, b
br
1,K−1), ( 1

2 ,
1
2 )],

bbl
K−1,K = av[(bbl

K−1,K−1, b
tl
K−1,1), ( 1

2 ,
1
2 )],

bbl
K,K = av[(bbl

K−1,K , b
br
1,K), ( 1

2 ,
1
2 )],

bbl
K,K = av[(bbl

K,K−1, b
tl
K,1), ( 1

2 ,
1
2 )],

btlK,1 = av[(btlK−1,1, b
tr
1,1), ( 1

2 ,
1
2 )],

bbr
1,K = av[(bbr

1,K−1, b
tr
1,1), ( 1

2 ,
1
2 )].

(21)

These are six equations in nine control points. In Euclidean space the equations are linearly
dependent so that there are only five independent equations and one can choose four of the
nine control points as independent variables. In the Riemannian setting, however, the linear
dependence of the six equations turns into an incompatibility: in general it is not possible to
satisfy all six equations (unless several control points collapse to single points in M).

bl

trtl

br
bbl
K−1,K−1 bbl

K,K−1

bbr
1,K−1

bbl
K−1,K bbl

K,K bbr
1,K

btlK,1 btr1,1

btlK−1,1

bbl
K−1,K+1

btr−1,1

bl

trtl

br
a−1,−1

a0,−1

a1,−1

a−1,0 a0,0 a1,0

a−1,1

a0,1
a1,1

a0,0

ã0,0

a−1,1 = a0,1 = a1,1

a−1,0 a1,0

a−1,−1 a1,−1

a0,−1

Figure 8: Left: C1-conditions of equation (21) at the interface of four Bézier surface patches. Along
each dashed line, the middle point should be the average of the end points. Middle: Renaming scheme
for the control points. Right: Illustration of the counterexample from Proposition 16.

A special situation occurs in symmetric spaces (spacesM such that for every ŷ ∈M there
exists an isometry Iŷ :M→M which maps any geodesic y : [0, 1]→M with y( 1

2 ) = ŷ onto
Iŷ(y) : t 7→ y(1− t)). As the following proposition shows, in those spaces one can always find
a nondegenerate set of control points satisfying the above six equations. However, instead of
four one can only choose three of the nine control points freely. In the following propositions,
for simplicity we will write

bbr
i,K+j = btlK+i,j = btrij = bbl

K+i,K+j = aij ,

for i, j ∈ {−1, 0, 1} (see Figure 8, middle). The control points with indices below 0 or beyond
K simply indicate control points in the neighboring Bézier surface patches; aij refers to
control points in a specific area where four patches meet.

Proposition 16. Let M be a symmetric space. Of the nine control points aij, i, j =
{−1, 0, 1}, let a0,0, ai1,j1 , ai2,j2 be given with (i1, j1) 6= −(i2, j2), |i1| = |j1|. One can find
the other six control points such that (21) is satisfied.

If instead four control points are given initially, those can in general not be complemented
with five other control points such that (21) is satisfied.

Proof. To prove the first part, we complement the six equations (21) with the following
additional two equations,

a0,0 = av[(a−1,−1, a1,1), ( 1
2 ,

1
2 )] , a0,0 = av[(a−1,1, a1,−1), ( 1

2 ,
1
2 )] .
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Now we have eight equations for the nine control points, where each equation expresses
one control point as the midpoint on the geodesic between two other control points. The
equations of the form a0,0 = av[(aij , a−i,−j), (

1
2 ,

1
2 )] just establish the relation

aij = Ia0,0(a−i,−j) i, j ∈ {−1, 0, 1}

for the isometry Ia0,0 of the symmetric space. Thus, there are actually only two unknown
control points left, the others being fixed by the above identity. Furthermore, the remaining
four equations,

a−1,0 = av[(a−1,−1, a−1,1), ( 1
2 ,

1
2 )] and a1,0 = av[(a1,−1, a1,1), ( 1

2 ,
1
2 )]

as well as a0,−1 = av[(a−1,−1, a1,−1), ( 1
2 ,

1
2 )] and a0,1 = av[(a−1,1, a1,1), ( 1

2 ,
1
2 )]

are redundant due to the identity stated before. It is therefore straightforward to check that
two of them may be chosen to determine the desired two control points.

For the second part, a simple counterexample suffices. Consider the unit sphere M = S2

with a−1,1 = a1,1 = (0, 0, 1)T , a0,0 = (
√

2
2 , 0,

√
2

2 )T , and a−1,0 = ( 1
2 ,− 1

2 ,
√

2
2 )T (Figure 8

right). Choosing four of the equations in (21), it is straightforward to compute in this order

a0,1 =
(

0
0
1

)
, a0,−1 =

(
1
0
0

)
, a−1,−1 =

( √
2

2

−
√

2
2

0

)
, a1,−1 =

( √
2

2√
2

2
0

)
.

If we now set a1,0 = av[(a1,−1, a1,1), ( 1
2 ,

1
2 )], then the constraint a0,0 = av[(a−1,0, a1,0), ( 1

2 ,
1
2 )] :=

ã0,0 is violated.

Apart from the incompatibility of the equations around a0,0, we do not necessarily achieve
C1-continuity for Bézier surfaces of type I to III even if control points satisfying all above
conditions can be found. This observation is illustrated in the top line of Figure 10.

Proposition 17. The conditions (19) are not sufficient to ensure C1-continuity of the patched
Bézier surface (18) of type I, II, or III.

Proof. Types I and III. We first give a counterexample for types I and III. Consider K = 1
in which case βI

K and βIII
K coincide and each Bézier surface is just obtained by weighted

geodesic averaging between four control points. Let us write blij ≡ bri−1,j ≡ bij and choose

bij = (i, j) in Euclidean space R2. Let the metric be slightly decreased somewhere along the
connecting line between b00 and y = (1, 1

2 ). That way, the geodesic from b00 to y is still a
straight curve in R2 but has a shorter length than in the Euclidean space (Figure 9, left).
Denote the patched Bézier spline surface by B(t1, t2) and consider the point (t1, t2) = (1, 1

2 ).
In the Bézier surface patch defined by b00, b01, b10, b11 and the one defined by b10, b11, b20, b21,
we have respectively

B(t1, t2) = av[(b00, b01, b10, b11), ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1t2)] ,

B(t1, t2) = av[(b10, b11, b20, b21), ((2− t1)(1− t2), (2− t1)t2, (t1 − 1)(1− t2), (t1 − 1)t2)] .

Obviously, b := B(1, 1
2 ) = (1, 1

2 ), and the optimality conditions for both averages are [16,
Thm. 1.2]

0 = (1− t1)(1− t2) logb b00 + (1− t1)t2 logb b01 + t1(1− t2) logb b10 + t1t2 logb b11 =: F (t1, t2, b) ,

0 = (2− t1)(1− t2) logb b10 + (2− t1)t2 logb b11 + (t1 − 1)(1− t2) logb b20 + (t1 − 1)t2 logb b21 ,

where logb bi,j = bi,j − b except for logb b0,0 = ζ(b0,0 − b) with some ζ ∈ (0, 1). The latter
equation can be solved to yield b = B(t1, t2) = (2 − t1)(1 − t2)b1,0 + (2 − t1)t2b1,1 + (t1 −
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1)(1− t2)b2,0 + (t1 − 1)t2b2,1 so that the right derivative ∂B
∂t1

at (t1, t2) = (1, 1
2 ) equals (1, 0).

The left derivative can be obtained via the implicit function theorem as

∂B

∂t1
= −(DbF (1, 1

2 , b))
−1Dt1F (1, 1

2 , b) = Dt1F (1, 1
2 , b)

= − logb b00 + logb b01 − logb b10 − logb b11

2
= ζ

( 1
2
1
4

)
+

( 1
2

− 1
4

)
6=
(

1

0

)
.

Here we have used that around b = (1, 1
2 ) the function F is given by F (1, 1

2 , b) = 1
2 logb b10 +

1
2 logb b11 = 1

2 (b10−b)+ 1
2 (b11−b). Thus, the Bézier surfaces are not patched C1-continuously,

even though all conditions (19) are satisfied.
Type II. For a counterexample in case of Bézier surfaces of type II, we take again K = 1

and the same control points as before. This time we consider the Euclidean metric with the
modification that it is slightly decreased somewhere in between b00 and (b00 + b01)/2: the
connecting geodesic from b00 to b01 is given by t 7→ (0, f(t)) with f(t) > t in the interval ( 1

2 , 1)
(Figure 9 right). We have β1(t2; bi0, bi1) = (i, t2) for i 6= 0 and β1(t2; b00, b01) = (0, f(t2)).
Obviously, for t1 ≥ 1 we obtain B(t1, t2) = (t1, t2), while for t1 ∈ [0, 1] and t2 ∈ ( 1

2 , 1) we have
B(t1, t2) = (t1, (1− t1)f(t2) + t1t2), yielding a discontinuous first derivative at t1 = 1.

b00 b10 b20

b01 b11 b21

y

b00 b10 b20

b01 b11 b21

Figure 9: Illustration of the two manifolds from the counterexamples in Proposition 17. A gray
region indicates a deviation from the Euclidean metric.

Unfortunately, in case of βIII
K , no straightforward remedy can be found to modify de

Casteljau’s algorithm in a way that is consistent with Bézier surfaces in Euclidean space and,
at the same time, allows to have C1-continuity. For Bézier surfaces of types I and II, however,
one can find such a remedy, as described next.

3.5 C1-patching solution

We propose now a way to overcome the different problems presented in the previous section.
For notational simplicity, let bmnij ∈ M be the ijth control point of the mnth Bézier surface,
where i, j ∈ {0, ...,K} and (m,n) ∈ {0, ...,M} × {0, ..., N}. We intend to patch the Bézier
surfaces together to a C1-continuous spline surface according to

BY : [0,M ]× [0, N ]→M :

(t1, t2) 7→ βYK(t1 −m, t2 − n; (bmnij )i,j=0,...,K) on (t1, t2) ∈ [m,m+ 1]× [n, n+ 1] (22)

for Y = I, II. As before, we will also allow indices outside the usual range, using the
identification

bmn−1,j = bm−1,n
K−1,j , bmnK+1,j = bm+1,n

1,j , bmnj,−1 = bm,n−1
j,K−1 , bmnj,K+1 = bm,n+1

j,1 .
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Let us additionally define fictional points beyond the domain boundary as

b0,n−1,j = expb0,n0,j

(
−logb0,n0,j

(
b0,n1,j

))
, bM,n

K+1,j = expbM,n
K,j

(
−logbM,n

K,j

(
bM,n
K−1,j

))
,

j = 0, . . . ,K, n = 0, . . . , N,

bm,0j,−1 = expbm,0
j,0

(
−logbm,0

j,0

(
bm,0j,1

))
, bm,Nj,K+1 = expbm,N

j,K

(
−logbm,N

j,K

(
bm,Nj,K−1

))
,

j = −1, . . . ,K + 1, m = 0, . . . ,M.

In fact, in Euclidean space the conditions

bmnK,j =
bmnK−1,j + bmnK+1,j

2

imply that the control points bmnK,j can be ignored altogether; indeed, in (5) one may simply

replace any bmnK,j by
bmn
K−1,j+bmn

K+1,j

2 . The analogous holds true for the control points bmni,K , bmni,0 ,

and bmn0,j . Note that this trick will restore C1-continuity in the Riemannian setting as detailed
below, but it may also be interesting in the Euclidean setting since it allows one to neglect
conditions (19) and obtain a differentiable piecewise-Bézier surface nevertheless. Following
this idea we obtain a generalized Bézier surface as a weighted average of bmnij , i, j ∈ I, with
I = {−1, 1, 2, . . . ,K − 1,K + 1} as

βI
K(t1, t2; (bmnij )i,j=0,...,K) = av

[
(bmnij )i,j∈I , (wi(t1)wj(t2))i,j∈I

]
(23)

with weights

wi(t) =



1
2B0K(t) if i = −1,

B1K(t) + 1
2B0K(t) if i = 1,

BiK(t) if i = 2, . . . ,K − 2,

BK−1,K(t) + 1
2BKK(t) if i = K − 1,

1
2BKK(t) if i = K + 1,

0 if i ∈ {0,K}.
Under the same conditions as earlier, every Bézier surface patch is a smooth function into
the multigeodesically convex hull of the control points.

Similarly, in (6) the one-dimensional Bézier curves can be computed just based on bmnij ,
i, j ∈ I, i.e., we define

βII
K(t1, t2; (bmnij )i,j=0,...,K) = βK(t1; (βK(t2; (bmnij )j=0,...,K))i=0,...,K) , (24)

where the one-dimensional Bézier curves are either computed as

βK(t; (bj)j=0,...,K) = av[(bj)j=I , (wj(t))j=0,...,K ] ,

or via the alternative modification of de Casteljau’s algorithm where βK(t; (bk)k=0,...,K) = bK0
with

b0
0 = av[(b−1, b1), ( 1

2 ,
1
2 )],

b0
j = bj , j = 1, . . . ,K − 1,

b0
K = av[(bK−1, bK+1), ( 1

2 ,
1
2 )],

bkj = av[(bk−1
j , bk−1

j+1 ), (1− t, t)], k = 1, . . . ,K, j = 0, . . . ,K − k.
In Euclidean space, all definitions are equivalent to the original Bézier surface as long

as the control points satisfy the conditions for C1-continuity. In the manifold case, where
the conditions (21) can at most approximately be satisfied, the above definitions lead to
C1-continuity as shown in Figure 10 and the following theorem. Let us emphasize once more
that the C1-smoothness holds regardless of whether or how well any conditions of type (19)
are satisfied.
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Theorem 18. The patched Bézier surface spline (22) with βI
K or βII

K defined as above is
C1-continuous.

Proof. Each single patch is C1-continuous by the proof of Corollary 13. Also, C0-continuity
follows as before, so it remains to show that the normal derivatives at all interfaces between
two adjacent Bézier patches coincide.

Consider the interface between patch (0, 0) and (1, 0) at t1 = 1, t2 ∈ [0, 1]. The proof for
the other interfaces works analogously.

In case of type I Bézier patches, we have

b := BI(t1 = 1, t2) = av
[
(b0,0ij )i,j∈I , (wi(1)wj(t2))i,j∈I

]
= av

[
(b1,0ij )i,j∈I , (wi(0)wj(t2))i,j∈I

]
.

The optimality conditions for both averages read [16, Thm. 1.2]

0 =
∑
i,j∈I

wi(t1)wj(t2) logb b
0,0
ij =: F1(t1, t2, b),

0 =
∑
i,j∈I

wi(t1 − 1)wj(t2) logb b
1,0
ij =: F2(t1, t2, b).

By the implicit function theorem, the left and right derivatives of BI with respect to t1 at
(1, t2) are given as

∂BI

∂t1

∣∣∣∣
(1−,t2)

= −(DbF1(1, t2, b))
−1Dt1F1(1, t2, b)

= −(DbF1(1, t2, b))
−1

K
2

∑
j∈I

wj(t2)(logb b
0,0
K+1,j − logb b

0,0
K−1,j)

 ,

∂BI

∂t1

∣∣∣∣
(1+,t2)

= −(DbF2(1, t2, b))
−1Dt1F2(1, t2, b)

= −(DbF2(1, t2, b))
−1

K
2

∑
j∈I

wj(t2)(logb b
1,0
1,j − logb b

1,0
−1,j)

 .

Noting that F1(1, t2, b) = F2(1, t2, b) for all b ∈ M and the definition of the b0,0ij for i /∈
{0, . . . ,K} we see that ∂BI

∂t1

∣∣∣
(1−,t2)

= ∂BI

∂t1

∣∣∣
(1+,t2)

.

In case of type II Bézier patches we note that

∂
∂tβ

II
K(t = 0; (bj)j=0,...,K) = logb b1 for b = av[(b−1, b1), ( 1

2 ,
1
2 )] ,

∂
∂tβ

II
K(t = 1; (bj)j=0,...,K) = logb bK+1 for b = av[(bK−1, bK+1), ( 1

2 ,
1
2 )] .

Thus we have

∂BII

∂t1

∣∣∣∣
(1−,t2)

= logb(t2) β
II
K(t2; (b0,0K+1,j)j=0,...,K) ,

∂BII

∂t1

∣∣∣∣
(1+,t2)

= logb(t2) β
II
K(t2; (b1,01,j )j=0,...,K)

for b(t2) = av[(βII
K(t2; (b0,0K−1,j)j=0,...,K), βII

K(t2; (b0,0K+1,j)j=0,...,K)), ( 1
2 ,

1
2 )]. Again, the deriva-

tives from either side coincide.

In the next section we propose a way to choose the control points such that the interpo-
lating surface has the least squared acceleration when the manifold reduces to the Euclidean
space.
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×
(a) type I (b) type II (c) type III×

(a) type I (b) type II (c) type III

Figure 10: The conditions (19) do not suffice to ensure differentiability (top, visualized using a
piecewise Bézier surface composed of two patches) while the remedy from Theorem 18 permits to
construct C1 surfaces of type I and type II (bottom). The visualiszation is analogous to Figure 4
left; the dotted lines show tangents to the curve from either side of the interface between the two
Bézier patches.

4 Control point generation for 2D piecewise cubic Bézier
interpolation on manifolds

Given data points
pmn ∈M, (m,n) ∈ {0, . . . ,M} × {0, . . . , N},

we would like to interpolate those by a smooth surface B : [0,M ] × [0, N ] → M with
B(m,n) = pmn, which consists of C1-continuously patched cubic Bézier surfaces on each
domain [m,m+ 1]× [n, n+ 1] as in (22). To this end we need to generate appropriate control
points

bmnij for m,n ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} and i, j = 0, . . . , 3.

The control points must respect the interpolation constraints for m = 0, . . . ,M − 1, n =
0, . . . , N − 1,

bmn0,0 = pm,n, bmn3,0 = pm+1,n, bmn0,3 = pm,n+1, bmn3,3 = pm+1,n+1. (25)

as well as the C0-patching constraints of Theorem 14,

bm,n3,j = bm+1,n
0,j and bm,nj,3 = bm,n+1

j,0 (26)

for j = 0, . . . , 3. Furthermore, the resulting spline surface shall be C1-smooth and must thus
be generated by the approach of Theorem 18.

To make the interpolating surface as nice as possible, we would like to optimize the posi-
tion of the control points such that the mean squared second derivative of the parameterized
spline surface is minimized. This, however, is a highly complicated nonlinear optimization
problem. Instead, we consider a much simpler approximation: we formulate the problem of
finding the optimal control points in Euclidean space (similarly to [11]), in which case the
optimization problem reduces to the solution of a linear system. We then transfer this linear
system to the manifold case. The following subsections elaborate this idea.
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4.1 Variational formulation of control point generation in Rn

In the Euclidean space Rn, we would like to minimize the objective function

F [B] =

∫
[0,M ]×[0,N ]

∥∥∥∥ ∂2B

∂(t1, t2)

∥∥∥∥2

F

d(t1, t2) =

M−1∑
m=0

N−1∑
n=0

∫
[0,1]×[0,1]

∥∥∥∥ ∂2βmn3

∂(t1, t2)

∥∥∥∥2

F

d(t1, t2), (27)

where ‖ · ‖F is the Frobenius norm on (2 × 2 × n)-tensors, ∂2·
∂(t1,t2) is the Hessian operator

for any bivariate function and βmn3 is the cubic Bézier surface defined on the patch (m,n)
and based on the control points bmnij . For notational simplicity, we will just denote it by β
when no confusion is possible. Note that the constraints (25) will automatically ensure the
interpolation of the data points.

Expressing each single Bézier surface patch with the help of Bernstein polynomials ac-
cording to (5), the objective function turns into a quadratic function in the control points
bmnij ,

F [B] =

M−1∑
m=0

N−1∑
n=0

F̂ [βmn], (28)

where the energy F̂ for a Bézier surface with control points bmnij , i, j ∈ {0, . . . , 3}, is defined
as

F̂ [βmn] =

3∑
i,j,o,p=0

αijopb
mn
ij · bmnop (29)

with · indicating the Euclidean dot product. Denoting the Frobenius inner product on 2× 2-
matrices by A : B =

∑2
i,j=1AijBij , the coefficients αijop in the above energy are given

by

αijop =

∫
[0,1]2

[
∂2Bi3(t1)Bj3(t2)

∂(t1, t2)

]
:

[
∂2Bo3(t1)Bp3(t2)

∂(t1, t2)

]
d(t1, t2) , (30)

where the explicit Hessian of the Bernstein polynomial products can be expressed as

∂2Bi3(t1)Bj3(t2)

∂(t1, t2)
=

(
∂2Bi3(t1)
∂2t1

Bj3(t2) ∂Bi3(t1)
∂t1

∂Bj3(t2)
∂t2

∂Bi3(t1)
∂t1

∂Bj3(t2)
∂t2

Bi3(t1)
∂2Bj3(t1)
∂2t2

)
. (31)

Note that the coefficients αijop can be readily computed analytically and are independent of
the configuration.

To later be able to transfer this formulation to the manifold setting, we would like to
express every control point of a given patch as its difference with the four interpolation
points of the patch. These differences will be later translated into Riemannian logarithms.
Since the objective function F [B] only contains derivatives, the contributions F̂ [β] of its
single Bézier patches are invariant under a uniform translation of the control points. Hence

F̂ [βmn] =
1

4

∑
r,s∈{0,1}

3∑
i,j,o,p=0

αijopv
mn
ij (r, s) · vmnop (r, s), (32)

where we introduced the auxiliary variables for the differences (see Figure 11)

vmnij (r, s) = bmnij − pm+r,n+s (33)

for i, j = 0, . . . , 3, r, s = 0, 1, m = 0, . . . ,M−1 and n = 0, . . . , N−1. Note that for symmetry
reasons we shifted the control points by each corner of the corresponding patch and then took
the average of the four energy values resulting from those four shifts.
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bmn2,1

pmn pm+1,n

pm,n+1 pm+1,n+1

vmn2,1 (0, 0) vmn2,1 (1, 0)

vmn2,1 (0, 1)
vmn2,1 (1, 1)

Figure 11: Geometric interpretation of variables vmn
ij (r, s).

To summarize, the total energy can be represented as

F [B] =

M−1∑
m=0

N−1∑
n=0

∑
r,s∈{0,1}

3∑
i,j=0

(L(V ))mnij,rs · vmnij (r, s) (34)

with V = (vmnij (r, s))
(m,n)∈{0,...,M−1}×{0,...,N−1}
i,j∈{0,...,3}, r,s∈{0,1} and the linear operator L

(L(V ))mnij,rs =
1

4

3∑
o,p=0

αijopv
mn
op (r, s). (35)

This energy has to be minimized for the control points bmnij or equivalently the vmnij (r, s)
under interpolation, continuity, and smoothness constraints (25), (26), and (21).

4.2 System reduction by constraint elimination

Before minimizing (34), we would like to eliminate all constraints (25), (26), and (21) in
order to reduce the number of degrees of freedom and to reach a simpler unconstrained
minimization problem. To this end, without loss of generality, we consider as independent
the control points

bmnkl with (k, l) ∈ Q = {(1, 0), (0, 1), (1, 1)}, (m,n) ∈ D = {0, . . . ,M} × {0, . . . , N}.

Conditions (25), (26), and (21) then uniquely determine all the remaining control points,
e.g., bmn−1,1 = 2bmn0,1 − bmn1,1 . In the above, we again extended our notation to allow control
point indices outside {0, . . . , 3} (cf. Figure 8 left), with the interpretation

bmnkl = bm,n−1
k,3+l = bm−1,n

3+k,l = bm−1,n−1
3+k,3+l

for k, l ∈ {−1, 0, 1}, where points bmnij with (m,n) /∈ {0, . . . ,M − 1}×{0, . . . , N − 1} are just
ficticious additional control points.

Equivalently to the bmnkl , (k, l) ∈ Q, (m,n) ∈ D, we consider the translated control points

umnkl = bmnkl − pmn, (k, l) ∈ Q, (m,n) ∈ D, (36)

as our independent arguments. Those will be the arguments we optimize. In the following, we
will express the energy variables vmnij (r, s) in terms of these umnkl . This requires two operators:

1. The linear operator S generates umnkl for (k, l) ∈ {−1, 0, 1}2 \Q from the conditions of
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C1-continuity (21) (cf. Figure 12),

S : (umnkl )
(m,n)∈D
(k,l)∈Q 7→ (umnkl )

(m,n)∈D
k,l∈{−1,0,1} :



umn−1,1 = 2umn0,1 − umn1,1 ,

umn0,0 = 0,

umn−1,0 = −umn1,0 ,

umn−1,−1 = −umn1,1 ,

umn0,−1 = −umn0,1 ,

umn1,−1 = 2umn1,0 − umn1,1 ,

umnkl = umnkl for (k, l) ∈ Q.

(37)

patch m− 1, n− 1

patch m,npatch m− 1, n

patch m,n− 1

pmn

umn1,0

umn1,1
umn0,1

2umn1,0

−umn1,1

bmn1,−1

Figure 12: Geometric interpretation of operator S.

2. The operator T̃ maps the set of vectors umnkl onto the set of vectors vmnij (r, s) by ex-
ploiting the relation

vmnij (r, s) = um̃ñkl + (pm̃ñ − pm+r,n+s),

where m̃, ñ, k, and l satisfy

(m̃, ñ) = (m+ai, n+aj) and (k, l) = (i−3ai, j−3aj) for ai =

{
0 if i ∈ {0, 1},
1 if i ∈ {2, 3}.

To this end we first introduce the notation

wmnij (r, s) = um̃ñkl , (38)

zmnij (r, s) = pm̃ñ − pm+r,n+s, (39)

which seems cumbersome at first but is needed for an easy transfer to the manifold
setting. Abbreviating

U ≡
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
, V ≡

(
vmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

,

W ≡
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

, Z ≡
(
zmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

,

and introducing the linear operator

T : U 7→W (40)
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we finally obtain
T̃ : U 7→ V = T (U) + Z. (41)

Note that the operator T can be interpreted to operate on each patch (m,n) separately
as follows (this interpretation forms the basis for the transfer to the manifold setting):
T translates any vector um̃ñkl , which belongs to a control point of the patch, from its
base point pm̃ñ to all four patch corners pm+r,n+s, (r, s) ∈ {0, 1}2, resulting in the four
new vectors wmnij (r, s), r, s ∈ {0, 1}. Of course, in Euclidean space this translation is
trivial, however, it will turn into a nontrivial parallel transport in the manifold setting.

The map T̃ is illustrated in Figure 13.

pmn

pm+1,n

pm,n+1
Ppm+1,n→pm,n+1u

m+1,n
−1,1

um+1,n
−1,1

wmn2,1 (0, 1)

v m
n2,1 (0, 1)z m

n2,1 (0, 1)

Figure 13: Geometric interpretation of operator T̃ . The variables vmn
ij (r, s) (cf. Figure 11) are

constructed as follow: (i) a vector umn
kl in pmn is transported to another interpolation point p, and

(ii) to this vector one adds the difference between p and pmn.

The total energy (34) of Bézier curves in Euclidean space can thus be rewritten as

F [B] =
1

4

M−1∑
m=0

N−1∑
n=0

∑
r,s∈{0,1}

3∑
i,j=0

(LT̃SŨ)mnij,rs · (T̃ SŨ)mnij,rs for Ũ = (umnkl )
(m,n)∈D
(k,l)∈Q

and is minimized by
Ũopt = −(S∗T ∗LTS)−1(S∗T ∗LZ) , (42)

where a superscript asterisk denotes the adjoint operator (note that L is self-adjoint). Indeed,
letting (·; ·) denote the natural inner product on Cartesian products of vector spaces (such
that for instance F [B] = (LT̃SŨ ; T̃ SŨ) = (L(TSŨ +Z);TSŨ +Z)), this is easily seen from
the first-order optimality condition

0 = (LTSΦ;TSŨopt + Z) + (LTSŨopt + LZ;TSΦ)

= 2(LTSŨopt + LZ;TSΦ) = 2(S∗T ∗LTSŨopt + S∗T ∗LZ; Φ)

for all variations Φ of Ũopt.

4.3 Transfer to the manifold setting

It remains to transfer the different operators and the final formula (42) for control point
generation to a Riemannian manifold setting.
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• The umnkl were defined in (36) as the difference between two Euclidean points. Their
generalization to the Riemannian setting is given by

umnkl = logpmn
(bmnkl ) ,

for k, l ∈ Q, m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. This means that we will actually
optimize over tangent vectors umnkl to the manifold and only afterwards convert them
into control points bmnkl .

• The operator L defined in (35) can now be interpreted as an operator from B into itself,
where B is the Cartesian product of tangent spaces

B =
¡

i,j=0,...,3
r,s∈{0,1}

m=0,...,M−1
n=0,...,N−1

Tpm+r,n+sM.

• The operator S in (37) is now considered as an operator on tangent spaces.

• Formula (39), which defines the components of Z, is generalized to the manifold setting
as

zmnij (r, s) = logpm+r,n+s
(pm̃ñ) . (43)

• Operator T from (40) is redefined as the parallel transport of the variables umnkl to the
corners of the corresponding patch,

T :
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
7→
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

, wmnij (r, s) = Ppm̃ñ→pm+r,n+s
um̃ñkl ,

where Px→y denotes the Riemannian parallel transport from x ∈ M to y ∈ M. We
used the same notation as in (38).

• The operator T̃ from (41) is transferred to the manifold setting using the manifold
versions of T and Z.

• The adjoint operators S∗ and T ∗ are given by

S∗ :(umnkl )
(m,n)∈D
k,l∈{−1,0,1} 7→ (umnkl )

(m,n)∈D
(k,l)∈Q :


umn1,0 = umn1,0 − umn−1,0 + 2umn1,−1,

umn1,1 = umn1,1 − umn−1,1 − umn−1,−1 − umn1,−1,

umn0,1 = umn0,1 − umn0,−1 + 2umn−1,1,

T ∗ :
(
wmnij (r, s)

)(m,n)∈D
i,j=0,...,3
r,s∈{0,1}

7→
(
umnkl

)(m,n)∈D

k,l∈{−1,0,1}
,

um̂n̂kl =
∑

r,s∈{0,1}
m∈m̂+Ak
n∈n̂+Al

Ppm+r,n+s→pm̂n̂
wmnk+3(m̂−m),l+3(n̂−n)(r, s),

where A−1 = {−1}, A0 = {−1, 0}, and A1 = {0}.

The algorithm for generating the control points on a Riemannian manifoldM now proceeds
as follows.

1. Compute Z = (zmnij (r, s))ijmnrs via (43).

2. Compute S∗T ∗LZ and solve (42) for Uopt by a conjugate gradient iteration.

3. Compute all umnkl for k, l ∈ {−1, 0, 1} and (m,n) ∈ D via SUopt.
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4. Compute all control points bmnkl ∈ M for k, l ∈ {−1, 1} and (m,n) ∈ D. Note that all
other control points are not used in the Bézier spline evaluation (23) or (24) and are
thus irrelevant.

In the last step of the algorithm, the computation of the control points has to be performed
in a way that ensures B(m,n) = pmn. This requires a different procedure for Bézier splines
of type I or II.

• For Bézier splines of type I we simply use

bmnkl = exppmn
(umnkl ) , k, l ∈ {−1, 1}, (m,n) ∈ D,

since this automatically satisfies BI(m,n) = av[(bmn−1,−1, b
mn
−1,1, b

mn
1,−1, b

mn
1,1 ), ( 1

4 ,
1
4 ,

1
4 ,

1
4 )] =

pmn.

• For Bézier splines of type II we set

bmnk0 = exppmn
(umnk0 ) ,

bmnkl = expbmn
k0

(
Ppmn→bmn

k0
umn0l

)
, k, l ∈ {−1, 1}, (m,n) ∈ D.

Then,

BII(m,n) = av[(av[(bmn−1,−1, b
mn
−1,1), (

1

2
,

1

2
)], av[(bmn1,−1, b

mn
1,1 ), (

1

2
,

1

2
)]), (

1

2
,

1

2
)]

= av[(bmn−1,0, b
mn
1,0 ), (

1

2
,

1

2
)]

= pmn.

An example is provided in Figure 14.

initial control points, F [B] = 8.185 optimised control points, F [B] = 4.932

Figure 14: Optimal placement of control points (circles) for given interpolation points (dots) on
the sphere obtained by the algorithm described in Section 4. The left graphs show the configuration
before optimization (control points bmn

kl for (k, l) ∈ Q, m,n ∈ {0, 1} obtained by geodesic averaging
between the interpolation points), the right graphs after optimization.

5 Numerical implementation on Riemannian manifolds

A numerical implementation of the approaches from Sections 3 and 4 requires to compute
weighted geodesic averages (av[·, ·]), exponential maps (exp), logarithms (log) and parallel
transports (P·→·) on a Riemannian manifoldM. In this section we state how those operations
are performed in our numerical examples. First we consider the case of simple manifoldsM in
which there are closed formulae for exp, log and P·→·; then we briefly recall the discretization
and numerical procedures from [23] for manifolds where this is not the case.
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F [B] = 22.16 F [B] = 15.96

Figure 15: Instead of transporting the vectors to all four corners of a patch, vectors could also be
transported to a single corner in each patch. However, such a modification to the algorithm described
in Section 4 will in general yield configurations with a higher energy. The two figures on the left
show the result of a modified version of the algorithm, in which all vectors are transported to the
bottom left vertex in each patch. The other two figures show the result obtained by the unmodified
algorithm.

5.1 Weighted geodesic averaging on manifolds with explicit loga-
rithm

According to Definition 4, Bézier surfaces of type I are obtained as a weighted averaging of
the control points of the patch. This weighted geodesic average (cf. Definition 1) corresponds
to the minimization problem of the form

βI(t1, t2) = argmin
x∈M

J(x), J(x) =

K∑
i=0

K∑
j=0

wij(t1, t2)d2(bij , x).

On manifolds embedded in the Euclidean space without constraints, this problem can be
solved using a Quasi-Newton approach. For other matrix manifolds, different solutions are
available, like the iterative Riemannian optimization procedures described in Absil et al. [1]
(with the exponential map as retraction). These algorithms are implemented in the toolbox
Manopt [6]. Equivalently, one could also use standard tools for constrained optimization.

These methods require the evaluation of the objective function J(x) as well as its deriva-
tive, which by [16, §1.2.] can be calculated as

dJ

dx
(x) = −

K∑
i=0

K∑
j=0

wij(t1, t2) logx bij ∈ TxM .

5.2 Discrete approximation of Riemannian operators

In many interesting manifolds the standard Riemannian operators can be expressed as closed
formulas [1, 5, 22] or can be estimated via retractions as in [6]. However, more complicated
manifolds (like the manifold of triangulated shells, cf. Figure 16) require a numerical approx-
imation of these operators. To this end we make use of the discrete geodesic calculus from
[23]. We briefly recall it in this section.

Discrete distance. Let M be a smooth Riemannian manifold. Consider a smooth appli-
cation W :M×M→ R which approximates the squared Riemannian distance as

d2(y1, y2) = W [y1, y2] +O(d3(y1, y2)), y1, y2 ∈M. (44)

To ensure the efficiency of the numerical methods, it is important to choose W easy to
evaluate. Note also that equation (44) implies straightforwardly that the second derivative
of W coincides with the Riemannian metric gy = ∂2

1W [y, y].
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Discrete geodesic. Consider now a (k+1)-tuple (y0, . . . , yk) with yj ∈M for j = 0, . . . , k.
This tuple is called discrete k-path between y0 and yk. Its length L and energy E are defined
as

L[y0, . . . , yk] =

k∑
j=1

√
W [yj−1, yj ], (45)

E[y0, . . . , yk] = k

k∑
j=1

W [yj−1, yj ]. (46)

The (k+ 1)-tuple minimizing the energy of the discrete k-path is called a discrete k-geodesic:

min
y1,...,yk−1∈M

E[y0, y1, . . . , yk−1, yk]. (47)

In [23] it is shown that discrete geodesics approximate the true continuous geodesics as
k →∞. A discrete k-geodesic is represented in Figure 16.

Discrete weighted average. Now that the discrete k-geodesic is defined, it is possible to
express the discrete analog of the weighted geodesic average av[(y1, . . . , yn), (w1, . . . , wn)] as
the point y ∈M solving

min
y∈M

min
yij∈M

j=1,...,k−1,
i=1,...,n

n∑
i=1

wiE[y, yi1, . . . , y
i
k−1, y

i]. (48)

At optimality, (y, yi1, . . . , y
i
k−1, y

i) is the discrete k-geodesic from y to yi, and E[y, yi1, . . . , y
i
k−1, y

i]

is the discrete approximation of the squared Riemannian distance d2(y, yi).

Discrete logarithm. In the following, we requireM to be identified with a subset of some
embedding Banach space B such that, for a discrete k-geodesic (y0, . . . , yk) with y0 = yA and
yk = yB , the difference y1 − y0 is well-defined. We define the discrete logarithm

(
1
kLOG

)
as(

1
kLOG

)
yA

(yB) = y1 − y0, (49)

where 1
k is to be interpreted as part of the symbol

(
1
kLOG

)
. Under certain regularity assump-

tions on the Riemannian metric and the functional W , it can be shown that k
(

1
kLOG

)
yA

(yB)

tends to logyA(yB) when k tends to infinity [23].

Discrete exponential. We now aim at defining a discrete analog EXPk of the exponential
map. For a discrete k-geodesic (y0, . . . , yk), we expect EXPk to reflect the properties of its

Figure 16: Discrete 4-geodesic between two triangulated shells (cf. Section 6). The mesh data used
in this figure was made available by Robert Sumner and Jovan Popovic, MIT Computer Graphics
Group.

26



continuous counterpart, i.e., to satisfy EXPky0(v) = yk where v =
(

1
kLOG

)
y0

(yk). To achieve

this, let v ∈ B. Let also

EXP1
y(v) = (1

1LOG)−1
y (v) = y + v,

EXP2
y(v) = (1

2LOG)−1
y (v).

The discrete exponential map is defined recursively as

EXPky(v) = EXP2
EXPk−2

y (v)
(ṽ) with ṽ = EXPk−1

y (v)− EXPk−2
y (v). (50)

Note that EXP2 is non-trivial and is here simply expressed as the inverse of the discrete
logarithm. It remains then to determine a way to compute this object. It follows from the
definition of ( 1

2LOG) that y2 = EXP2
y0(v) satisfies

y0 + v = argminy∈M (W [y0, y] +W [y, y2]) .

Followingly, y2 can be obtained by solving the corresponding Euler-Lagrange equation

y2 ∈M : ∂2W [y0, y0 + v] + ∂1W [y0 + v, y2] = 0. (51)

Discrete parallel transport. To transport a vector along a discrete curve, we use a first
order approximation of the parallel transport called Schild’s ladder. Let (y0, . . . , yn) be a
discrete curve inM and v0 ∈ Ty0M, the vector to transport from y0 to yn. The transported
tangent vector vk at a point yk, k ∈ {1, . . . , n}, can be computed recursively following the
algorithm illustrated in Figure 17:

ypk−1 = EXP1
yk−1

(vk−1),

ymid
k = EXP1

ypk−1

(
( 1

2LOG)ypk−1
(yk)

)
,

ypk = EXP2
yk−1

(
( 1

1LOG)yk−1
(ymid
k )

)
,

vk = ( 1
1LOG)yk(ypk).

yk−1

yk

vk−1

ypk−1

ypk
vk

ymid
k

Figure 17: Illustration of one iteration of Schild’s ladder, approximating the parallel transport of
a vector along a discrete curve (y0, . . . , yn).

To find a numerical solution to the problems of the discrete geodesic (47), the discrete
averaging (48) and the discrete exponential (51) (all other equations are trivial to solve), we
use a Newton’s method. These discrete Riemannian operators are used in Sections 6.3 and
6.4. Note that as these objects require to solve an optimization problem, they are usually
long to compute.
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6 Numerical examples

We finally present here some examples of Bézier spline surfaces computed on specific mani-
folds such as the sphere, the special orthogonal group or the space of shells. For reasons of
computational efficiency (especially on manifolds for which no closed formulae of Riemannian
operators are available), the shown examples all represent a Bézier surface of type II.

6.1 The sphere Sd−1

Table 1 recalls the explicit formulas of the Riemannian operators needed to optimize the
control points and evaluate a Bézier spline on the sphere Sd−1. A first computational example
on the sphere S2 has already been shown in Figure 14.

As a second example we consider image transfer from the plane onto the sphere. Figure 18
shows a rectangular map of the world, which serves as the parameterization domain of a
smooth Bézier spline surface on the sphere. The surface parameterization then provides a
one-to-one map between points on the rectangle and points on the sphere, which can be used
to map the world image onto the sphere.

Set Sd−1 = {x ∈ Rd : x>x = 1}
Tangent space TxSd−1 = {v ∈ Rd : x>v = 0}

Inner product 〈v1, v2〉x = v>1 v2

Distance d(x, y) = arccos(x>y)

Exponential expx (v) = x cos(‖v‖) + v
‖v‖ sin(‖v‖)

Logarithm logx (y) = (Id−xx>)y√
1−(x>y)2

arccos(x>y)

Parallel transport Px→y(v) = −x sin(‖ξ‖) + ξ
‖ξ‖ cos(‖ξ‖)ξ>v +

(
Id − ξξ>

‖ξ‖2

)
v, ξ = logx (y)

Table 1: Riemannian operators for Sd−1, cf. [22].

Figure 18: A rectangular map of the world is smoothly mapped onto the sphere via a Bézier spline
surface, only fixing a few interpolation points.

6.2 The special orthogonal group SO(d)

Table 2 summarizes the analytic formulas for the necessary Riemannian operators. Figure 19
displays a cubic Bézier spline surface in SO(3) interpolating a random set of interpolation
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points (red) based on the methods presented in Sections 3.4 and 4 (the optimized control
points are shown in green). Note that the spline surface is smooth and roughly follows the
control points, but it does not go through them, as expected.

A second example is given in Figure 20, which shows a closed Bézier surface of genus
one. Here, the first line is composed of a SO(3) point rotated of t1 × 90 degrees around the
z-axis. In the direction t2, the data points of the first line are rotated of t2 × 90 degrees
around the x-axis, which gives a torus effect to the figure. The control points have also
been optimized, but the method from Section 4 was slightly adapted to account for the
periodic boundary: we imposed u0,n

k,l = uM,n
k,l and um,0k,l = um,Nk,l for k, l ∈ {−1, 0, 1} and

(m,n) ∈ {0, . . . ,M} × {0, . . . , N}.

Set SO(d) = {X ∈ Rd×d : X>X = I, det(X) = 1}
Tangent space TXSO(n) = {H ∈ Rd×d : X>H +H>X = 0}

Inner product 〈H1, H2〉 = trace
(
H>1 H2

)
Distance d(X,Y ) = ‖ log

(
X>Y

)
‖F

Exponential expX (H) = X exp
(
X>H

)
Logarithm logX (Y ) = X log

(
X>Y

)
Parallel transport PX→Y (H) = Y X>H

Table 2: Riemannian operators for SO(d), cf. [5].

Figure 19: Cubic Bézier spline surface in SO(3) visualized as rotations of an object. Interpolation
points in red, optimized control points in green, points on the surface in gray.
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Figure 20: Smooth torus in SO(3) given by a cubic Bézier spline surface (visualization as in
Figure 19).

6.3 The space of open polygonal curves P
We consider two shape spaces as further examples. The first is the shape space P of all
polygonal curves in the plane with a fixed number n of segments. Here, two shapes are
considered equal if they differ only by a rigid motion. A shape γ ∈ P can therefore be
identified with its segment length and angle representation (`1, . . . , `n, α1, . . . , αn−1) ∈ R2n−1,
where `j denotes the length of the jth polygon segment and αj the angle between segment j
and j + 1. The tangent space TγP = R2n−1 can be seen as the space of all length and angle
variations.

Instead of a Riemannian metric and with regard to Section 5.2, we directly specify an
energy functional W acting on two shapes γ1, γ2 ∈ P, γi = (`i1, . . . , `

i
n, α

i
1, . . . , α

i
n−1), i = 1, 2,

by

W [γ1, γ2] =

n∑
j=1

(`1j − `2j )2

`1j
+ 2

n−1∑
j=1

(α1
j − α2

j )
2

`1j + `1j+1

.

The Riemannian metric, for which this W is supposed to approximate the squared Rieman-
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nian distance, can be obtained as the second derivative,

gy(v, w) =
d

dt1

d

dt2
W (y, y + t1v + t2w)

∣∣∣
t1=t2=0

,

and it has a physical interpretation of energy dissipation during shape deformation [23]. Our
calculations are now based on the discrete approximations from Section 5.2.

Figure 21 shows a Bézier spline surface in the space of polygonal curves with opti-
mized control points. The interplation points are segments of silhouettes from the Kimia
database [27].

Figure 21: Smooth interpolation on the space of open polygonal curves P. Interpolation points
in red, optimized control points in green, points on the surface in gray (shapes are from the Kimia
database [27]).

6.4 The space of discrete shells Sh

As a second example, we consider the space of shells Sh, as described in [12]. In the continuous
case, a shell Sh is given by an oriented C2 surface S in R3, called the midplane of Sh, and is
defined as the set

Sh = {p+ λν(p) | p ∈ S, λ ∈
(
−h2 , h2

)
⊂ R}

where ν(p) denotes the normal at a point p ∈ S. The space of shells Sh comprises all images
φ(Sref

h ) of a reference shell Sref
h under orientation preserving diffeomorphisms φ. The tangent

space at S ∈ S consists of smooth displacement fields ψ : S→ R3, and it can be equipped with
a Riemannian metric that describes the physical energy dissipation during the deformation
of Sh; for details we refer to [12].

The discretized analog, also described in [12], is a discrete shell Mh, by which we mean
a triangulated surface in R3, represented by a tuple (Nh, Th) ∈ (R3)m × ({1, . . . ,m}3)n,
m,n ∈ N. Here, Nh represents the vertex positions and Th encodes the triangulation (each
component (Th)l = (i, j, k) indicates that (Nh)i, (Nh)j and (Nh)k form a triangle). The
space of discrete shells can be equipped with a discrete analog of the Riemannian metric on
S. Given a triangle T , we assign to each vertex a local index ranging from 0 to 2. This allows
us to define the edge set ET of T as the set of directed edges connecting the nodes i− 1 and
i (counted modulo 3). Eh is defined to be the union of the edge sets ET over all triangles T .
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A deformation of a discrete shell Mh can now be viewed as a mapping φ : Nh → R3. We
define the discrete deformation energy W̃ [φ] of φ by

W̃ [φ] = h
∑
T∈Th

Wmem(QTmem[φ])AT + h3
∑
E∈Eh

Wbend(QEbend[φ])AE

for some physical energy densities Wmem and Wbend (specific examples are given in [12]).
Here, AT denotes the area of the (undeformed) triangle T , while for a given edge E ∈ Eh,
AE = 1

3 (AT1
+ AT2

) denotes an area fraction of the two adjacent triangles T1 and T2. The
operators QTmem[φ] and QEbend[φ] describe in-plane strain and bending and are given by

QTmem[φ] = Bmem
φ,T −Bmem

id,T , Bmem
φ,T =

1

8A2
T

2∑
i=0

(Iφj + Iφk + Iφi )ei ⊗ ei, j=i+1(mod 3),

k=i+2(mod 3),

QEbend[φ] = Bbend
φ,E −Bbend

id,E , Bbend
φ,E =

θφ(E)

AE

e⊗ e
‖E‖ .

Here, ei denotes the result of a clockwise rotation of Ei by π/2 in the plane induced by T .
Similarly e is the result of a clockwise rotation of E by π/2 in the plane induced by one of
the adjacent triangles. By Iϕk we denote the squared length of the deformed edge Ek, and
θφ(E) stands for the dihedral angle at the deformed edge φ(E).

The discrete geodesic calculus from Section 5.2 can now be employed with the energy

W [S1,S2] = W̃ [φ] for that φ with φ(S1) = S2,

which approximates the squared Riemannian distance in the space of discrete shells [12].
Figure 1 already showed a differentiable piecewise-Bézier surface interpolating between six

given hand shapes (mesh data made available by Yeh et al. [32]). Similarly, Figure 22 shows
a piecewise-Bézier interpolation surface between 3× 3 interpolation points (the interpolation
points in this figure are meshes made available by Bergou et al. [4]). The control points in
Figure 22 have been optimized using the algorithm from Section 4.

7 Conclusions

We have proposed different generalizations of piecewise-Bézier surfaces in Euclidean space
to Riemannian manifolds, all based on geodesic averaging. For those generalizations it is
non-trivial to ensure differentiability across the different Bézier patches. We have achieved
differentiability by interpreting control points on the boundary of Bézier patches as weighted
averages of interior control points. We have furthermore put forward an approach to opti-
mize the control point positions in the Riemannian manifold as to obtain a Bézier surface
with small second derivative. Future work might address methods to achieve higher order
smoothness of Bézier splines (in principle, similar concepts as in the current work can be
expected to apply) or alternative definitions of smooth curves and surfaces in Riemannian
manifolds such as curves and surfaces with minimal curvature.

Notations

M : Manifold.

Rd : Euclidean space of dimension d.

Ck : Continuous derivability up to derivative k.
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γ : Curve on a manifold M.

L[γ] : Length of a curve on a manifold M.

E[γ] : Energy of a curve on a manifold M.

TxM : Tangent space at a point x ∈M.

expa (b) : Exponential map. a ∈M, b ∈ TaM.

loga (b) : Inverse exponential map. a, b ∈M.

Pa→bv : Parallel transport of a vector v from TaM to TbM. a, b ∈M.

EXPa(b) : Discrete exponential map. a ∈M, b ∈ TaM.

LOGa(b) : Discrete inverse exponential map. a, b ∈M.

〈a, b〉 : Scalar product between a, b ∈ TxM.

d(a, b) : Distance between a, b ∈M.

b : Control point of a Bézier function. For curves, it is indexed as
bj and for surfaces bij . b

mn
ij is the ijth control point of the patch

m,n.

βK : Bézier function of order K (curve or surface).

βI : Bézier function of type I (average over all control points).

βII : Bézier function of type II (average as 1D curves in one direction,
and then in another).

βIII : Bézier function of type III (de Casteljau’s algorithm).

BjK : jth Berstein polynomial of order K.

b : Intermediate point in de Casteljau’s algorithm.

B : Bézier spline composed of several Bézier functions.

w : Weight.

av[(x1, . . . , xn), (w1, . . . , wn)] : Geodesic average of points xi ∈M with weights wi ∈ R.

vm,ni,j (r, s) : Mapping of a point i, j in the patch m,n to the tangent space of
the control point bm+r,n+s

0,0 .

33



Figure 22: Differentiable piecewise-Bézier interpolation in the space of triangulated shells. Inter-
polation points in red, optimized control points in green, points on the surface in gray.
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[20] T. Popiel and L. Noakes. Bézier curves and C2 interpolation in Riemannian manifolds.
J. Approx. Theory, pages 148(2):111–127, 2007.

[21] Lorenz Pyta and Dirk Abel. Model based control of the incompressible Navier-Stokes-
equations using interpolatory model reduction, 2015. To appear in the proceedings of
the 54th IEEE Conference on Decision and Control.

[22] Q. Rentmeesters. A gradient method for geodesic data fitting on some symmetric Rie-
mannian manifolds. In Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on, pages 7141–7146, 2011.

[23] Martin Rumpf and Benedikt Wirth. Variational time discretization of geodesic calculus.
IMA Journal of Numerical Analysis, 2014. doi:10.1093/imanum/dru027.

[24] C. Samir, P.-A. Absil, A. Srivastava, and E. Klassen. A gradient-descent method for
curve fitting on Riemannian manifolds. Foundations of Computational Mathematics,
12:49–73, 2012.

[25] Oliver Sander. Geodesic finite elements for Cosserat rods. International Journal for
Numerical Methods in Engineering, 82(13):1645–1670, 2010.

[26] Oliver Sander, Patrizio Neff, and Mircea Brsan. Numerical treatment of a geometrically
nonlinear planar Cosserat shell model, 2015.

[27] T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition of shapes by editing their shock
graphs. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(5):550–
571, 2004.

[28] F. Steinke, M. Hein, J. Peters, and B. Schölkopf. Manifold-valued thin-plate splines
with applications in computer graphics. Computer Graphics Forum, 27(2):437–448, apr
2008.

[29] Florian Steinke, Matthias Hein, and Bernhard Schölkopf. Nonparametric regression
between general Riemannian manifolds. SIAM Journal on Imaging Sciences, 3(3):527–
563, 2010.

[30] J. Su, I.L. Dryden, E. Klassen, H. Le, and A. Srivastava. Fitting smoothing splines
to time-indexed, noisy points on nonlinear manifolds. Image and Vision Computing,
30(67):428 – 442, 2012.

[31] Bart Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM
J. Optim., 23(2):1214–1236, 2013.

[32] I-Cheng Yeh, Chao-Hung Lin, Olga Sorkine, and Tong-Yee Lee. Template-based 3d
model fitting using dual-domain relaxation. IEEE Transactions on Visualization and
Computer Graphics, 99(RapidPosts), 2010.

36


	Introduction
	Reminder on Euclidean piecewise-Bézier curves and surfaces
	Piecewise-Bézier surfaces on manifolds
	Bézier surface definitions based on geodesic averaging
	Well-posedness and smoothness of Bézier surfaces
	bold0mu mumu C0C0Rentmeesters2011C0C0C0C0-patching
	bold0mu mumu C1C1Rentmeesters2011C1C1C1C1-patching challenges
	bold0mu mumu C1C1Farin2002C1C1C1C1-patching solution

	Control point generation for 2D piecewise cubic Bézier interpolation on manifolds
	Variational formulation of control point generation in bold0mu mumu RnRnGousenbourger2014RnRnRnRn
	System reduction by constraint elimination
	Transfer to the manifold setting

	Numerical implementation on Riemannian manifolds
	Weighted geodesic averaging on manifolds with explicit logarithm
	Discrete approximation of Riemannian operators

	Numerical examples
	The sphere bold0mu mumu Sd-1Sd-1Rumpf2014Sd-1Sd-1Sd-1Sd-1
	The special orthogonal group bold0mu mumu SO(d)SO(d)Rumpf2014SO(d)SO(d)SO(d)SO(d)
	The space of open polygonal curves bold0mu mumu PPRumpf2014PPPP
	The space of discrete shells bold0mu mumu ShShSebastian2004ShShShSh

	Conclusions
	References

