
http://sites.uclouvain.be/absil/2015.09 Tech. report UCL-INMA-2015.09

Approximate matrix geometric means based on the
inductive mean ∗

Estelle M. Massart† Julien M. Hendrickx† P.-A. Absil†

October 13, 2015

Abstract
We propose a new algorithm to approximate the Karcher mean of N symmetric positive
definite (SDP) matrices. By "Karcher mean", we refer to the Riemannian center of mass
with respect to the natural metric (also known as the trace metric or affine-invariant
metric) on the space Pn of n× n SDP matrices. The approximation we propose compares
favorably with state-of-the-art methods according to the accuracy vs computation time
criterion. It has also the advantage of relying only on the geometric mean of two matrices
and requires therefore fewer tools than most of the algorithms presently used to compute
the Karcher mean (e.g., optimization algorithms). We study numerically the evolution
of the computation time and accuracy of the proposed approximation with respect to
some key parameters of the problem such as the number of matrices, their size, and their
condition number.

1 Introduction
We consider the problem of efficiently computing an approximate geometric mean of a
set of N symmetric positive definite (SPD) matrices. This is motivated by the sizeable
computation cost of existing methods for computing an exact geometric mean of SPD
matrices.

Averaging SPD matrices is important in various applications. In medical imaging for
example, image segmentation techniques applied to diffusion tensor imaging require averag-
ing diffusion tensors, which are specific instances of SPD matrices [CSV12]. In mechanics,
the elasticity tensor of a material, which can be rewritten as a SPD matrix, is usually
estimated on an experimental basis; repeating the experiment and averaging the results
usually yields a better estimate of the actual tensor [Moa06]. Averaging covariance ma-
trices, which are also SDP, arises as a subtask in techniques proposed to solve problems
such as video-tracking and radar detection (see e.g [NB13], [LLS10] and [PTM06]); fast
averaging methods are particularly useful for these two real-time applications.
∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control,

and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office.
†ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

1

http://sites.uclouvain.be/absil/2015.09

Geometric means are preferable to the arithmetic mean for averaging SPD matrices.
For example, it has been shown in [PFA06] that the determinant of the arithmetic mean of
two matrices can be bigger than the determinants of the two matrices themselves, which is
usually not desirable. Indeed, let A = [1 0; 0 5] and B = [5 0; 0 1], then det(A) = det(B) =
5 while det(A/2 + B/2) = 9. When the SPD matrices are represented as ellipsoids (the
volume of an ellipsoid corresponding to the determinant of the matrix), this behavior can
translate in a swelling effect.

We use the term geometric mean to refer to a function G : PNn → Pn that satisfies all
10 properties of the well-known ALM list (see [ALM04] or Appendix A). When N = 2,
G(A,B) is

A#B = A
1
2 (A− 1

2B
1
2A−

1
2) 1

2A
1
2 , (1)

but several geometric means are known for N ≥ 3.
First generalizations of the geometric mean of two matrices to many matrices consisted

in building a geometric mean recursively, starting from expression (1). This approach led
among others to the ALM and NBMP means, see [ALM04] and [BMP10]. These means
were shown to meet all the properties of the ALM list. However, their recursive character
makes them particulary expensive to compute when the number of matrices becomes large.
To solve this problem, other matrix means were proposed, such as the CHEAP mean [BI11],
the Circular mean [Pál11] and the Arithmetic-Harmonic mean [JV13]. These new means
have the main advantage of being cheaper to evaluate that the ALM and NBMP means, but
no longer satisfy the ten properties of the ALM list. They can thus be seen as approximate
geometric means.

Another well-known mean on Pn is the Riemannian center of mass, often termed Karcher
mean in view of the seminal work [Kar77], defined by

K(A1, . . . , AN) = arg min
X∈Pn

N∑
i=1

δ(X,Ai) (2)

where δ(A,B) is the affine-invariant distance: δ(A,B) = || log(A− 1
2BA−

1
2)||F . The Karcher

mean (2) has recently been shown to meet the ten properties of the ALM list [BK12,LL11].
The interpretation of the Karcher mean as a center of mass, similarly to the arithmetic
mean in Euclidian geometry, and the fact that its computation cost increases more slowly
with the number of matrices than the ALM and NBMP means mentionned above, explain
that this mean is currently the most popular geometric mean. The optimization problem
appearing in (2) is convex, and can be addressed using, e.g., steepest descent methods.
Different methods have been considered to solve (2); see, e.g., [JVV12] and [Zha13]. They
produce sequences of iterates on Pn that converge (possibly under some conditions) to the
Karcher mean.

In this paper, we propose approximate geometric means that fit in the following scheme.
Given data matrices A1, . . . , AN in Pn:

1. Consider a list p = (p1, . . . , pk) of permutations of 1, . . . , N .

2. Compute Bi = PM(A1, . . . , AN , pi), i = 1, . . . , k, where PM is the inductive mean
defined in Section 2.

3. Return M(B1, . . . , Bk) where M is some matrix mean.

The various algorithms are named according to the pattern <p>-PM-<M>, where <p>
indicates the permutation generation mechanism and <M> refers to the choice of M . We

2

show that, for various simple choices of p andM , most of the ALM properties are preserved.
We compare <p>-PM-<M> algorithms with state-of-the-art methods according to two
criteria: distance to the Karcher mean and computation time. It turns out that some
of the new algorithms are nondominated, i.e., none of the other algorithms achieve both
higher precision and lower computation time. We also observe that the advantage of
the new algorithms becomes stronger when the size or the condition number of the data
matrices gets large. It is also interesting to note that the <p>-PM-PM methods solely rely
on the two-variable weighted geometric mean, a favorable situation towards an extension
to sets other than Pn.

The paper is organized as follows. In Section 3, we investigate algorithms of type F-PM-
<M>, where the list p of permutations consists of the N! permutations of 1, . . . , N . These
algorithms are practical only when N is very small. In Section 4, the list of permutations
is restricted to a small subset generated by a shuffle method. Numerical experiments are
presented in Section 5 and conclusions are drawn in Section 6.

2 The Progressive Merging algorithm
All the approximate geometric means introduced in this paper rely on the Progressive
Merging method described in Algorithm 1. This method is also known in the literature
as the inductive mean. It gives a basic process to generalize the geometric mean of two
matrices to an approximate geometric mean of several matrices. This process computes
successively the weighted geometric mean of two matrices, defined for A,B ∈ Sn+ and
t ∈ [0, 1] by

A#tB = A
1
2 (A− 1

2BA−
1
2)tA 1

2 . (3)

Algorithm 1 PM
Data: A1, ..., AN ∈ Sn+ and a permutation p of the sequence 1, 2, . . . , N .

1: Let X1 = A1;
2: for i = 2, ..., N
3: Xi = Xi−1#1/iAp(i), defined as in (3)
4: end
5: return XN =: PM(A1, . . . , AN , p)

The PM algorithm consists in taking successively one step towards each input matrix, with
a progressively decreasing step-length. An illustration of this process is given in Figure 1.
A variant of the sequence of matrices generated in Algorithm 1 has already been used in
the literature to prove the monotonicity of the Karcher mean [LL11].

The PM algorithm returns a matrix containing information from all the initial matrices.
Moreover, it lacks only one of the ten ALM properties:

Theorem 2.1. PM(A1, . . . , AN , p) fulfills nine of the ten criteria of the ALM list (see
Appendix A), the violated criterion being the invariance under permutation.

Proof. The weighted mean of two matrices, defined by (3), fulfills the weighted version of
the ten ALM properties [ALM04]. Applying these properties by recurrence to the sequence
of matrices (Xj)j=1,...,N generated by Algorithm 1, we obtain that the ALM properties are
satisfied by PM(A1, . . . , AN , p) except for P3 (invariance under permutation). We give here
the detail of the proof for P7 (joint concavity), which is a bit less direct.

3

A
1

A
2

A
3

A
4

A
5

X
1

X
2

X
3

X
4

Figure 1: Illustration of the PM algorithm

Let λ ∈ [0, 1] , let Aj = λÃj + (1 − λ) ��Aj, j = 1, . . . , N and let p be a permutation of
1, . . . , N . Let also (Xj)j=1,...,N , (X̃j)j=1,...,N and (��Xj)j=1,...,N be the sequences of matrices
generated by respectively PM(A1, . . . , AN , p), PM(Ã1, . . . , ÃN , p), and PM(��A1, . . . ,

�

�AN , p).
We want to show that P7 (Appendix A) is satisfied for G(A1, . . . , AN) = PM(A1, . . . , AN , p).
The proof is by recurrence on the position j in the sequences of matrices (Xj)j=1,...,N , (X̃j)j=1,...,N

and (��Xj)j=1,...,N . We first observe that P7 is trivially satisfied for X1, X̃1 and �

�X1:

X1 = λÃ1 + (1− λ) ��A1 = λX̃1 + (1− λ) ��X1

We now suppose that P7 is satisfied for Xj, X̃j and �

�Xj, and we show that it is then also
satisfied for Xj+1, X̃j+1 and �

�Xj+1. Using the recurrence assumption and the monotonicity
property (which is also part of the ALM list and can be proved in a similar way) we get:

Xj+1 = Xj#1/(j+1)Aj+1 ≥ (λX̃j + (1− λ) ��Xj)#1/(j+1)Aj+1.

We conclude by using the joint concavity property for the weighted geometric mean of two
matrices:

Xj+1 ≥ λX̃j#1/(j+1)Ãj+1 + (1− λ) ��Xj#1/(j+1)
�

�Aj+1 = λX̃j+1 + (1− λ) ��Xj+1.

Because of the (usual) non commutativity of the matrices A1, ..., AN , the result of
Algorithm 1 depends on the order p in which the matrices are merged, hence the PM
algorithm does not satisfy the property of invariance under permutation.

Numerical simulations reported on Figure 2 indicate that, on average, PM(A1, . . . , AN , p)
is further than K(A1, . . . , AN) from the first matrices (Ap(1), Ap(2), ...) and closer to the last
ones (Ap(N), Ap(N−1), ...). This finding will motivate Algorithm 3.

Algorithm 1 has the advantage of being really cheap to run: its computation time is
driven by the N − 1 computations of the two-variable weighted geometric means. Because
the result of the PM algorithm satisfies nine of the ten properties of the ALM list, we see
PM(A1, A2, . . . , AN , p) as approximate geometric mean.

4

1 2 3 4 5 6 7 8 9 10
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

i

r(
p(

i))

Figure 2: Evolution of the average ratio r(p(i)) = δ(PM(A1, . . . , AN , p), Ap(i))
δ(K(A1, . . . , AN), Ap(i))

as a function

of i. The average is over 1000 sets of N = 10 matrices of size n = 10. The input matrices
were generated according to a Wishart distribution Wn(I, n). The figure is zoomed around
the value r(p(i)) = 1.

3 The Full - Progressive Merging (F-PM) algorithm
In the proposed F-PM-<M> class of algorithms described in Algorithm 2, the PM algo-
rithm is run on all possible permutations of 1, . . . , N , resulting in N ! estimates B1, . . . , BN !
of geometric means. An approximate geometric mean of B1, . . . , BN ! is then returned. We
expect these estimates B1, . . . , BN ! to be located closer to each other than the initial ma-
trices, allowing approximate geometric means to be used to combine the estimates without
introducing large errors (see lines 2 to 14 in Algorithm 2). The choice of the algorithm
<M> to evaluate the approximate geometric mean of B1, . . . , BN ! leads to different variants
of F-PM-<M>.

3.1 The F-PM-PM algorithm
In this first variant, the averaging of B1, . . . , BN ! is performed using the PM algorithm
itself. We show the following theorem:

Theorem 3.1. The F-PM-PM algorithm returns a matrix satisfying the same ALM prop-
erties as the PM algorithm (Algorithm 1), namely, the ten properties except invariance
under permutation.

Proof. The proof is similar to the one proposed for Theorem 2.1. The F-PM-PM algo-
rithm is not invariant under permutation because the order in which the estimates Bi are
computed and then merged in Algorithm 2 has an impact on the solution, as explained in
Section 2.

5

Algorithm 2 F-PM-<M> with <M> = PM, Cr or Ar
Data: A1, ..., AN ∈ Pn

1: Generate a list p = (p1, . . . , pN !) of the permutations of 1, . . . , N ; k = N !
2: M = 0, if <M> = Cr: Ma = 0 = Mh

3: for i = 1, ..., k;
4: Bi = PM(A1, ..., AN , pi);
5: if <M> = PM
6: M ←M# i−1

i
Bi;

7: else if <M> = Cr
8: Ma ← i−1

i
Ma + 1

i
Bi;

9: Mh ← i−1
i
Mh + 1

i
B−1
i ;

10: M = Ma#M−1
h ;

11: else if <M> = Ar
12: M ← i−1

i
M + 1

i
Bi;

13: end
14: end
15: return M ;

3.2 The F-PM-Cr algorithm
In this second variant, we use the Crude algorithm [JV13], approximating a geometric
mean by combining arithmetic and harmonic means, to average the estimates B1, . . . , BN !.
The Crude mean of matrices B1, . . . , BN ! is defined as

GCr(B1, . . . , BN !) =
(∑N !

i=1 Bi

N !

)
#1/2

(∑N !
i=1 B

−1
i

N !

)−1

Theorem 3.2. The F-PM-Cr algorithm returns a matrix satisfying nine of the ten ALM
properties, the violated property being the determinant equality.

Proof. We showed in Section 2 that the PM algorithm satisfies all the ALM properties
except the invariance under permutation. We show that most of these properties are
conserved when using the Crude mean, and that the invariance under permutation is
recovered as soon as the PM algorithm is run on the N ! permutations of 1, . . . , N . We give
here the detail of the proof for properties P2, P3, P4 and P7.

P2 (Joint homogenity): Because the PM algorithm satisfies the joint homogeneity prop-
erty, we know that for each permutation p, the following equality holds:

PM(α1A1, . . . , αNAN , p) = (α1 . . . αN) 1
N PM(A1, . . . , AN , p).

Observing then that the Crude means fulfills the following equality ends the proof for P2:

GCr

(
(α1 . . . αN) 1

N PM(A1, . . . , AN , p1), . . . , (α1 . . . αN) 1
N PM(A1, . . . , AN , pN !

)
= (α1 . . . αN) 1

N GCr (PM(A1, . . . , AN , p1), . . . ,PM(A1, . . . , AN , pN !)) .

P3 (Invariance under permutation): The estimates Bi, i = 1 . . . , N!, are obtained by
running the PM algorithm on all possible permutations. Therefore, the set of matrices
Bi appearing in line 4 of Algorithm 2 will be the same regardless the initial order of the
matrices. We can conclude by observing that the Crude mean is itself invariant under
permutation.

6

P4 (Monotonicity): Let Ai ≤ Ãi ∀i = 1, . . . , N , let Bj = PM(A1, . . . , AN , pj), j =
1, . . . , N ! and finally let B̃j = PM(Ã1, . . . , ÃN , pj), j = 1, . . . , N !. Theorem 2.1 tells us:

Bj ≤ B̃j ∀j = 1, . . . , N !.

Using the monotonicity property for the arithmetic, harmonic and two-variable geometric
means [Cha12], we finally obtain

GCr(B1, . . . , BN !) ≤ GCr(B̃1, . . . , B̃N !).

P7 (Joint concavity) Let λ ∈ [0, 1] , let Ai = λÃi + (1 − λ) ��Ai, i = 1, . . . , N and let
Bj = PM(A1, . . . , AN , pj), j = 1, . . . , N !, B̃j = PM(Ã1, . . . , ÃN , pj), j = 1, . . . , N ! and
finally let �

�Bj = PM(��A1, . . . ,
�

�AN , pj), j = 1, . . . , N !. Theorem 2.1 gives:

Bj ≥ λB̃j + (1− λ) ��Bj ∀j = 1, . . . , N.

Summing the two sides of this inequality, we obtain:

1
N !

N !∑
j=1

Bj ≥
λ

N !

N !∑
j=1

B̃j + (1− λ)
N !

N !∑
j=1

�

�Bj

and because of the monotonicity and joint concavity properties for the harmonic mean [Cha12],
we get successively: 1

N !

N !∑
j=1

B−1
j

−1

≥

 1
N !

N !∑
j=1

(
λB̃j + (1− λ) ��Bj

)−1
−1

≥ λ

 1
N !

N !∑
j=1

B̃−1
j

−1

+ (1− λ)
 1
N !

N !∑
j=1

�

�B
−1
j

−1

We finally conclude by using the monotonicity and joint concavity properties for the two-
variable geometric mean:

GCr(B1, . . . , BN !) =
 1
N !

N !∑
j=1

Bj

#1/2

 1
N !

N !∑
j=1

B−1
j

−1

≥ λGCr(B̃1, . . . , B̃N !) + (1− λ)GCr(��B1, . . . ,
�

�BN !)

3.3 The F-PM-Ar algorithm
Finally, we consider a third variant: the F-PM-Ar algorithm, in which the average of the
estimates is defined as their arithmetic mean. We show the following result:

Theorem 3.3. The F-PM-Ar algorithm returns a matrix satisfying eight of the ten ALM
properties, the violated properties being the invariance under inversion and the determinant
equality.

Proof. The proof is similar to the one for the F-PM-Cr algorithm.

7

4 The In Shuffle - Progressive Merging (IS-PM) al-
gorithm

The F-PM-<M> algorithms require computing N ! matrices B1, . . . , BN !, which is imprac-
tical unless N is very small. In this section, we propose a class of methods, termed IS-PM-
<M> (Algorithm 3), where the PM algorithm is run on a few well-chosen permutations.

Algorithm 3 IS-PM-<M>, with <M> = PM, Cr or Ar
1: Replace line 1 of Algorithm 2 by the following:
2: k̄ = dlog2(N)e − 1
3: for i = 2 : k̄
4: p2i−1 = in− shuffle(p2i−3); see (5)
5: p2i = reverse(p2i−1); see (4)
6: end
7: Continue as in Algorithm 2, from line 2.

The IS-PM-<M> algorithms have the same ALM properties as their F-PM-<M> coun-
terpart, except for the invariance by permutation which is lost. In view of Theorem 3.1,
the next results follow:

Theorem 4.1. The IS-PM-PM algorithm returns a matrix satisfying the same ALM prop-
erties as the PM algorithm (Algorithm 1), namely, the ten properties except invariance
under permutation.

Theorem 4.2. The IS-PM-Cr algorithm returns a matrix satisfying eight of the ten ALM
properties, the violated properties being the invariance under permutation and the determi-
nant equality.

Theorem 4.3. The IS-PM-PM algorithm returns a matrix satisfying seven of the ten ALM
properties, the violated properties being the invariance under permutation, under inversion
and the determinant equality.

4.1 Reverse method
Let p = [p(1), p(2), . . . , p(N)] be a permutation of 1, 2, . . . , N . The reverse procedure
invoked in line 5 of Algorithm 3 consists in reversing the sequence taken as input:

reverse(p) = [p(N), p(N − 1), ..., p(1)] (4)

For example, reverse(1, 2, 3) gives the sequence 3, 2, 1. The motivation behind line 1 of
Algorithm 3 is to address the bias documented in Figure 2.

4.2 In Shuffle method
The in shuffle (IS) is a specific type of riffle shuffle, a shuffling method often used for card
shuffling. This method reorders a given sequence containing N = 2Ñ elements as:

in− shuffle(p) = [p(Ñ + 1), p(1), p(Ñ + 2), p(2), . . . , p(2Ñ), p(Ñ)] (5)

In card game terms, the in-shuffle consists in firstly separating the cards in two decks of
equal size: the first half of the cards are placed in the first deck and the second half in

8

the other one. Then, the cards of the two decks are perfectly interleaved, meaning that
the resulting deck contains a perfect alternance of cards coming from each deck. In the in
shuffle method, the first card becomes the second one after the shuffling.

When the number N of elements is odd, N = 2Ñ + 1, we alternate between Ñ and
Ñ + 1 elements in the first deck.

The choice of k̄ in line 2 of Algorithm 3 ensures that all the generated permutations
are distinct. This follows from [DGK83].

5 Numerical results
We compare here the performances achieved by our algorithms to those obtained with two
other ways of approximating the Karcher mean, namely, the Cheap mean and a prematurely
stopped iterative optimization algorithm.

The Cheap mean [BI11] is an approximate geometric mean computed according to an
iterative scheme. The initial iterates are the N input matrices: Ã0

i = Ai, i = 1, . . . , N , and
subsequent iterates are defined by:

Ãk+1
i = Ãki exp

 1
N

N∑
l=1,l 6=i

log((Ãki)−1Ãkl)
 (6)

In the numerical experiments described here, we stopped the algorithm when maxi,j d(Ãki , Ãkj) ≤
10−8 with d(A,B) = ||A− B||F . The Cheap mean is then defined as the arithmetic mean
of the iterates Ak1, . . . , AkN .

A steepest descent algorithm with automatic step-length choice (SD-Auto) has been
proposed in [BI13] to solve (2). We resort to the state-of-the-art implementation available
as the karcher.m function in the Matrix Means Toolbox (http://bezout.dm.unipi.it/
software/mmtoolbox/). Running only a few iterations of this algorithm gives us another
estimate of the Karcher mean.

We compare here the accuracy of the estimates and the computation time required
by the methods with some key parameters of the problem. We measure a normalized
approximation error, defined as:

Erel = δ(G̃(A1, . . . , AN), K(A1, . . . , AN))
δ(A1, K(A1, . . . , AN))

with δ(A,B) the affine-invariant distance, G̃(A1, . . . , AN) the estimate of the Karcher mean
and K(A1, . . . , AN) a high precision value for the Karcher mean, computed with the SD-
Auto algorithm mentioned above taking as initial guess the arithmetic mean of the matrices
and stopped after a large number of iterations. Each column in Figure 3 gives the evolution
of the performances with respect to a specific parameter of the problem generator.

The first column of Figure 3 illustrates the performances as a function of the number
of matrices N . The test was run on 100 sets of N matrices of size n = 20 and distributed
according to the Wishart distribution Wn(n, I). The three algorithms IS-PM-PM, IS-PM-
Cr and IS-PM-Ar are compared to the Cheap algorithm (iteration (6)) and the SD-Auto
algorithm stopped after 10 or 15 iterations (taking as initial guess the arithmetic mean of
the matrices A1, . . . , AN). The Cheap mean is globally a little more costly than the other
methods considered.

The second column gives the performances achived by the different methods, run on
sets of N = 10 matrices of varying size n, again distributed according to the Wn(n, I)

9

http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/

0 10 20 30 40 50
0

0.02
0.04
0.06
0.08

0.1

Number of matrices

E
rr

or
 E

re
l

n = 20

0 20 40 60 80 100
0

0.02
0.04
0.06
0.08

0.1

Size

E
rr

or
 E

re
l

N = 10

0 2 4 6 8
0

0.02
0.04
0.06
0.08

0.1

Logarithm of the condition number

E
rr

or
 E

re
l

N = 10, n = 20

0 10 20 30 40 50

10
0

Number of matrices

C
P

U
 ti

m
e

n = 20

0 20 40 60 80 100

10
0

Size

C
P

U
 ti

m
e

N = 10

0 2 4 6 8

10
0

Logarithm of the condition number

C
P

U
 ti

m
e

N = 10, n = 20

10
0

0

0.05

CPU time

E
rr

or
 E

re
l

N = 25, n = 20

Cheap
IS−PM−Ar

10
0

0

0.05

CPU time

E
rr

or
 E

re
l

N = 10, n = 50

IS−PM−Cr
IS−PM−PM

10
0

0

0.05

CPU time
E

rr
or

 E
re

l

N = 10, n = 20, c = 104

SD−Auto−10
SD−Auto−15

Figure 3: Evolution of the (normalized) approximation error and of the computation cost
of the methods with several key parameters of the problem

distribution. As indicated by the first graph of this columns, the accuracy of our methods
does not seem to be sensitive to the size of the matrices, unlike the prematurely stopped
SD-Auto methods.

Finally, the third column illustrates the performances achieved by the methods on sets
of N = 10 matrices of size n = 20 and with a varying condition number. To impose the
condition number of our matrices, we used the following lines of code:
[Q, ~] = qr (rand (n)) ;
D = diag ([rand (1 , n−1)+1,10^(−n)]) ;
A = Q∗D∗Q’ ;

Figure 3 indicates that our methods are not sensitive to the condition number of the input
matrices, unlike the Cheap and prematurely stopped SD-Auto methods.

6 Conclusion
We have proposed and analyzed a class of approximate geometric means on the space of
SPD matrices. All the methods of the class rely on the inductive mean (PM) combined
upstream with a permutation generator <P> and downstream with a matrix average <M>
that aggregates (preferably on the fly, as in the proposed algorithms) the outcomes of the

10

inductive mean. We have proposed a <P> inspired from card-shuffling techniques, for
which numerical experiments indicate that the proposed method compares favorably with
the state of the art according to the accuracy-vs-time criterion (where “accuracy” refers to
the distance to the Karcher mean, i.e., the Riemannian center of mass with respect to the
trace metric). Further work may aim at obtaining even better performances with other
choice of <P> and <M>.

11

Appendices
A ALM list of criteria for geometric means
In [ALM04], Ando, Li and Mathias have collected a list of criteria that a mean has to
satisfy to be considered as a geometric mean. These criteria are the followings (where
G(A1, ..., An) stands for a candidate geometric mean):

P1. Consistency: if the matrices A1, ..., An commute, then G(A1, ..., An) = (A1 · · ·An) 1
n

P2. Joint homogeneity: G(α1A1, ..., αnAn) = (α1 · · ·αn) 1
n G(A1, ..., An), ∀α1, ..., αn ∈ R+

P3. Invariance under permutation: G(Aπ1 , ..., Aπn) = G(A1, ..., An) with π a permutation
of (1, ..., n).

P4. Monotonicity: if Bi ≤ Ai∀ i = 1, ..., n then G(B1, ..., Bn) ≤ G(A1, ..., An)

P5. Continuity from above: if A(j)
i denotes a monotonically decreasing sequence that con-

verges towards A∗i for j →∞ , ∀i = 1, ..., n, then G(A(j)
1 , ..., A(j)

n) converges towards
G(A∗1, ..., A∗n) as j →∞.

P6. Congruence invariance: ∀S ∈ Rm×m invertible, G(SA1S
T , ..., SAnS

T) = SG(A1, ..., An)ST

P7. Joint concavity: G(λA1 + (1 − λ)B1, ..., λAn + (1 − λ)Bn) ≥ λG(A1, ..., An) + (1 −
λ)G(B1, ..., Bn) for 0 ≤ λ ≤ 1.

P8. Invariance under inversion: G(A1, ..., An) = (G(A−1
1 , ..., A−1

n))−1

P9. Determinant equality: det G(A1, ..., An) = (detA1 · · · detAn) 1
n

P10. Arithmetic-geometric-harmonic inequality: 1
n

∑n
i=1 Ai ≥ G(A1, ..., An) ≥ (1

n

∑n
i=1 A

−1
i)−1

12

References
[ALM04] T Ando, Chi-Kwong Li, and Roy Mathias. Geometric means. Linear algebra and

its applications, 385:305–334, 2004.

[BI11] Dario Andrea Bini and Bruno Iannazzo. A note on computing matrix geometric
means. Advances in Computational Mathematics, 35(2-4):175–192, 2011.

[BI13] Dario A Bini and Bruno Iannazzo. Computing the karcher mean of symmetric
positive definite matrices. Linear Algebra and its Applications, 438(4):1700–1710,
2013.

[BK12] Rajendra Bhatia and Rajeeva L Karandikar. Monotonicity of the matrix geo-
metric mean. Mathematische Annalen, 353(4):1453–1467, 2012.

[BMP10] Dario Bini, Beatrice Meini, and Federico Poloni. An effective matrix geometric
mean satisfying the ando-li-mathias properties. Mathematics of Computation,
79(269):437–452, 2010.

[Cha12] Pattrawut Chansangiam. Operator means and applications. LINEAR
ALGEBRA–THEOREMS AND APPLICATIONS, page 163, 2012.

[CSV12] Guang Cheng, Hesamoddin Salehian, and Baba C Vemuri. Efficient recursive
algorithms for computing the mean diffusion tensor and applications to dti seg-
mentation. In Computer Vision–ECCV 2012, pages 390–401. Springer, 2012.

[DGK83] Persi Diaconis, RL Graham, and William M Kantor. The mathematics of perfect
shuffles. Advances in Applied Mathematics, 4(2):175–196, 1983.

[JV13] Ben Jeuris and Raf Vandebril. Geometric mean algorithms based on harmonic
and arithmetic iterations. In Geometric Science of Information, pages 785–793.
Springer, 2013.

[JVV12] Ben Jeuris, Raf Vandebril, and Bart Vandereycken. A survey and comparison of
contemporary algorithms for computing the matrix geometric mean. Electronic
Transactions on Numerical Analysis, 39:379–402, 2012.

[Kar77] Hermann Karcher. Riemannian center of mass and mollifier smoothing. Com-
munications on pure and applied mathematics, 30(5):509–541, 1977.

[LL11] Jimmie Lawson and Yongdo Lim. Monotonic properties of the least squares
mean. Mathematische Annalen, 351(2):267–279, 2011.

[LLS10] Yunpeng Liu, Guangwei Li, and Zelin Shi. Covariance tracking via geo-
metric particle filtering. EURASIP Journal on Advances in Signal Process-
ing, 2010(1):583918, 2010. URL: http://asp.eurasipjournals.com/content/
2010/1/583918, doi:10.1155/2010/583918.

[Moa06] Maher Moakher. On the averaging of symmetric positive-definite tensors. Journal
of Elasticity, 82(3):273–296, 2006.

[NB13] Frank Nielsen and Rajendra Bhatia. Matrix information geometry. Springer,
2013.

13

http://asp.eurasipjournals.com/content/2010/1/583918
http://asp.eurasipjournals.com/content/2010/1/583918
http://dx.doi.org/10.1155/2010/583918

[Pál11] Miklós Pálfia. A multivariable extension of two-variable matrix means. SIAM
Journal on Matrix Analysis and Applications, 32(2):385–393, 2011.

[PFA06] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework
for tensor computing. International Journal of Computer Vision, 66(1):41–66,
2006.

[PTM06] Fatih Porikli, Oncel Tuzel, and Peter Meer. Covariance tracking using model
update based on lie algebra. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 1, pages 728–735. IEEE, 2006.

[Zha13] Teng Zhang. A majorization-minimization algorithm for the karcher mean of
positive definite matrices, 2013. arXiv:1312.4654.

14

http://arxiv.org/abs/1312.4654

	Introduction
	The Progressive Merging algorithm
	The Full - Progressive Merging (F-PM) algorithm
	The F-PM-PM algorithm
	The F-PM-Cr algorithm
	The F-PM-Ar algorithm

	The In Shuffle - Progressive Merging (IS-PM) algorithm
	Reverse method
	In Shuffle method

	Numerical results
	Conclusion
	ALM list of criteria for geometric means

