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Abstract
In the conventional least squares solution of an overdetermined system of
linear equations, independently distributed (i.d.) errors are assumed to affect
the known terms. However, in most metrological applications, both matrix
elements and known terms can be affected by errors with zero averages and
different variances because they represent, in general, various physical
quantities and therefore they can be measured with different accuracy. This
paper reviews the least squares formulation with element-wise weighting,
hereafter called element-wise weighted least squares (EWLS), applied to
metrology. Formulations take into account i.d. errors in both matrix
elements and known terms but relax the assumption of identical variances of
element errors peculiar to the total least squares approach, while preserving
their statistical independence. The variances of matrix elements and known
terms are statistically independent or linked, for elements of single rows, by
a generic covariance matrix. The latter statistical dependence can be
accounted for successfully. Some examples compare the performances of
the EWLS formulation with the more popular weighted least squares and
total least squares approaches. Then, EWLS is applied for calibrating
colorimeters as the devoted least-squares approach allows the uncertainties
to be taken into proper account. Experimental results show the capabilities
of the proposed method for accurate calibrations.

1. Introduction

In measurement science some unknown (output) quantity is
estimated on the basis of quantitative data about a set of
measured (input) quantities. The relationship between input
and output quantities can be modelled mathematically. Quite
often this model consists of as many relationships as the
unknowns. However, in practice a relatively large number of
measurements is used to infer a smaller number of measurands.
In these cases, the model is inconsistent unless the data of
the problem are assumed to be noisy; the model is said to be
overdetermined and an adjustment procedure finds measurand
values such that they are in good agreement as much as possible
with the model and the experimental input data.

In metrology, the model takes the analytical form of a
calibration curve. When the analytical model is not known, it
consists of its approximation by combining properly chosen

parametric functions. This paper deals with linear fitting
problems where the uncertainty in the input quantities is not
negligible.

We consider linear models described by a linear algebraic
system of equations AX = B. Here D := [A, B] contains
the measured data and X ∈ �n×l is the parameter matrix to
be estimated. With fewer parameters than equations and with
noisy data the model equations cannot be exactly satisfied, the
residual matrix R = AX−B is considered, and an approximate
solution for X is sought.

The classical least squares (LS) approach minimizes
the Frobenius norm of the residual matrix, by applying the
correction �B with the smallest Frobenius norm to the right-
hand side B in order to make the corrected system exactly
solvable. The LS method is the best linear unbiased estimator
when A is noise-free and B is corrupted by independent and
identically distributed (i.i.d.) errors.
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More general models are known in the literature
as measurement error (also called errors-in-variables)
models [1]. Here the assumption is that there is a true but
unknown value D0 = [A0 B0] of the measured data and a true
value X0 of the parameter that satisfy the theoretical equation
A0X0 = B0. The measured data D are obtained from the true
value with an additive noise D̃ := [Ã B̃], i.e. D = D0 + D̃.

The total least squares (TLS) technique [2–8] is a
parameter estimation technique for the linear measurement
error model when all elements of D are perturbed by i.i.d.
errors. In this case, a correction �D = [�A �B] is
applied to D, so that the corrected system of equations
(A0 + �A)X = B0 + �B becomes exactly solvable. Again
the smallest correction, according to the Frobenius norm,
is sought. Indeed, the properties of the estimator are well
understood, and robust and efficient methods exist for its
solution, based on the singular value decomposition (SVD).
The TLS solution is given analytically in terms of the l smallest
right singular vectors of the data matrix D and it provides a
consistent estimator for the true parameter value X0 under mild
additional assumptions. The TLS approach requires that all
variances are coincident, so in some sense TLS requirements
are stricter than the weighted least squares (WLS) ones, where
the variances of each known term can be chosen independently
and consequently fitted with more difficulty to the statistics of
the actual data.

The TLS method has also been extended to more general
noise situations as the errors on the elements of D are of
different sizes. This extension of the TLS method relaxes the
i.i.d. assumption for the errors. In the so-called generalized
total least squares (GTLS) estimator, the errors D̃ are assumed
row-wise independent and correlated within the rows with
identical covariance matrix V . The method presented in [9]
allows a reliable computation of the GTLS estimator. The
GTLS method is still restrictive for some applications because
of the assumption that all rows of D̃ have equal covariance
matrix.

A further generalization for the case when the elements of
D̃ are independent but not identically distributed with element-
wise different error variances is proposed in [10]. The problem
is called element-wise weighted total least squares. This
formulation is a generalization of the TLS method.

Let the linear model be A0X0 = B0, where A0, B0 are
the true but unobservable values of the measured data A, B

and X0 ∈ �n×l the true value of the output quantity X of
interest. The measurement model will be AX ≈ B, where
A = A0 + Ã, A ∈ �m×n and B = B0 + B̃, B ∈ �m×l , with
Ã, B̃ zero mean additive noise (measurement errors, random
matrices), respectively. Every row of D := [A, B] ∈ �m×(n+l)

corresponds to a measurement. Let rows be independent but
non-identically distributed. These problems are called EWLS
problems [11, 12] and turn out to be of wide interest in many
measurement applications, as evidenced in [13].

2. Problem formulation

As stated in the introduction, every measurement corresponds
to a single row of the augmented matrix D := [A, B] ∈
�m×(n+l). With this notation, the measurement model becomes

DY = 0 (1)

with measured data D = D0 + D̃, D ∈ �m×(n+l), where D0 are
the true but unknown data, and

Y :=
[

X

−I

]
, Y ∈ �(n+l)×l (2)

is the augmented matrix, associated with the true value Y0 =
[XT

0 I ]T satisfying D0Y0 = 0; D̃ are the measurement errors,
random matrices defined as D̃ = [Ã B̃], with zero mean and

independent rows d̃i with known (n + l) × (n + l) covariance
matrices

V d
i := cov(d̃i) =

[
cov(ãi) cov(ãi , b̃i)

cov(b̃i , ãi) cov(b̃i)

]

=
[

V a
i V

a,b
i

V
b,a
i V b

i

]
; i = 1, . . . , m. (3)

Hereafter, column vector di groups the elements of the ith row
of D.

Solving the EWLS problem consists in finding the optimal
values of the problem variables X and �D minimizing the cost
function

min
X,�D

m∑
i=1

�dT
i [V d

i ]−1�di subject to

(D + �D)

[
X

−I

]
= 0, (4)

where �D ≡ [�d1 �d2 · · · �dm]T are the correction on
measured data to compensate for the measurement error D̃.
Let (X̂, �D̂) denote the optimal solution of this minimization
problem: X̂ will represent the EWLS estimate of X0 whereas
D + �D̂ will be the EWLS estimate of true data D0. Note
that the exact covariances V d

i are not needed. Knowledge up
to a constant factor is sufficient, as the cost function can be
proved proportional to this factor and the minimum point is
not affected.

If V d
i = I , the EWLS problem reduces to a conventional

TLS problem, where errors are element-wise independent and
equally sized [7]. If V d

i = V ∀i then we have a GTLS [9],
where errors are row-wise independent and correlated within
rows with identical covariance matrix V .

A more general formulation can be obtained by allowing
all elements of some rows of D to be free of errors. The
presence of noise-free rows can be used to reduce the size
of the estimation problem. The resulting new problem is of
smaller dimension, both in terms of constraints and number of
variables. For the solution of this general case, see [12].

Note that the correction matrix �D is an estimate of −D̃.
In general, the TLS cost function is a measure of the estimated
absolute error. The relative error TLS problem can be shown
to be an EWLS problem with V d

i = diag(d2
i1, . . . , d

2
i,n+1).

3. Problem solution: minimization

The solution of the EWLS problem defined in section 2 is
obtained in two stages.

The first stage analytically minimizes the cost function
with respect to the correction �D by keeping the value of
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X ∈ �n×l constant, i.e. we find a function f0(X) : �n×l → �

f0(X) = min
�D

m∑
i=1

�dT
i [V d

i ]−1�di subject to

[D + �D]Y = 0 ∀X ∈ �n×l . (5)

For a fixed X ∈ �n×l , the constraint is a linear equation in
the optimization variable �D. Problem (5) is separable in m

sub-problems, each for each vector �di . Therefore, one has
to solve m independent optimization problems

fi(X) = min
�di

�dT
i [V d

i ]−1�di subject to

Y T�di = −ri i = 1, . . . , m, (6)

where ri is the column vector grouping the ith row of the
residual matrix, R ≡ AX − B. The generic ith problem is a
smooth convex optimization problem with analytical solution

�d̂i = −V d
i Y (Qi)

−1ri, (7)

where for convenience we set Qi(X) := Y (X)TV d
i Y (X). The

minimizer of the original problem (5) is given by

�D̂ = −




rT
1 (Q1)

−1Y TV d
1

...

rT
m (Qm)−1 Y TV d

m


 (8)

and the objective function assumes the value

f0(X) =
m∑

i=1

fi(X) =
m∑

i=1

rT
i (Qi)

−1
ri . (9)

In the second stage, the EWLS problem is solved as the
unconstrained optimization problem

min
X

f0(X), (10)

In general, f0(X) is not convex. Therefore, EWLS is a non-
convex optimization problem with no analytical solution, and
it requires some iterative algorithms.

4. Iterative procedure

The iterative algorithm is based on an approximation of the
first order optimality condition of (10):

f ′
0(X) = 0. (11)

The derivative of f0 with respect to X is given by

f ′
0(X) = 2

m∑
i=1

{airi(X)TQ−1
i (X) − [V a

i , V
a,b
i ]Y (X)

× Q−1
i (X)ri(X)ri(X)TQ−1

i (X)}. (12)

Equation (11) is a necessary condition for a minimum of (10);
i.e. a solution of (11) corresponds to the global minimum of
(10). Solving (11) is, however, a difficult non-linear problem
and we approach the solution by an iterative procedure. Let
X(k) be the approximation on the kth step: the approximation
X(k+1) on the next step is defined as the solution of equation

F(X(k+1), X(k)) = 0, (13)

where F is a linear approximation of f ′
0(X

k+1)), evaluated in
X(k), given by

F(X(k+1), X(k)) = 2
m∑

i=1

{ai(X
(k+1)T

ai − bi)
TQ−1

i (X(k))

−(V a
i X(k+1) − V

a,b
i )Q−1

i (X(k))ri(X
(k))rT

i (X(k))

×Q−1
i (X(k))}. (14)

On the kth step of the iterative algorithm, we solve equation
(13). The iteration is repeated until the weighted Frobenius
norm (WFN) of the relative difference between the new
estimate and the previous one is smaller than a given tolerance.
The algorithm is a successive approximation-type algorithm. It
is heuristic because equation (11) is only a necessary condition
for optimality of (10), and the iteration of the solution of
equation (13) does not guarantee the global convergence to
a solution of (11). Note that the proposed algorithm is not
a Gauss–Newton type algorithm for solving equation (13)
because the proposed approximation is not the first-order
truncated Taylor series of f ′

0.
As for local convergence, if the initial approximation

is sufficiently close to the EWLS estimator, the algorithm
based on linear approximation almost surely converges to the
estimator. Moreover, for a fixed sample size, the convergence
is linear.

The EWLS estimator generalizes the TLS estimator and
improves its statistical accuracy under more general noise
assumptions but makes the problem computationally more
difficult. Indeed, while the TLS problem has one closed form
analytical solution and can be computed reliably via the SVD,
a solution in a closed form is not known for generic EWLS
problems. This paper proposes a robust iterative algorithm
solving this class of problems. It is based on the minimization
of the WFN of residual matrix [11, 12]. WFN turns out to be
equal to the sum of ratios of suitable quadratic forms versus
X. This objective function is convex-constrained to a finite
sub-region including the expected minimum and requires an
iterative algorithm to find the solution. In principle, there can
be multiple solutions; essentially they are due to the covariance
matrix V depending on the row, as it affects the denominator
of any ratio appearing in the objective function. The choice of
a good starting point may be critical because the boundary of
the convexity sub-region of �n×l cannot be easily determined.
Anyway, the user’s experience helps this choice. In many
EWLS problems of practical interest the objective function
appears to exhibit a unique minimum and so the convergence
to this minimum is assured. This non-linearity does not appear
in TLS and GTLS because denominators in the ratios are
coincident.

5. Algorithm

In detail, the algorithm steps are as follows.

(i) Read the data matrix D̃, the covariance matrix V d̃ and the
maximum allowed number of iterations K .

(ii) Set the iteration counter k = 0 and choose the starting
value X(0).

(iii) Increase k = k + 1.
(iv) Set X1 = X(0).
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(v) If k = K , the algorithm does not converge. End.
(vi) Calculate Qi(X

(k)).
(vii) Calculate R(X(k)).

(viii) Solve F(X(k+1), X(k)) = 0.
(ix) If ‖X(k+1) − X(k)‖ � εX(0), go to step (iii).
(x) The value X(k+1) in step (viii) approximates the minimizer

X̂ with a relative accuracy less than ε. End.

Note that the numerical convergence is controlled by the
distance between two successive values in step (ix).

For the initial approximation X0 one can use the
GTLS estimate with weighting matrix V = ∑m

1=1 Vi/m.
Alternatively, one can use the computationally cheaper WLS
estimate. The choice between them depends on the noise
covariance information. If errors in B are larger than errors in
A then WLS should be used.

If the elements of any row of D̃ are uncorrelated, i.e. if
V d

i = diag(σ 2
i1, . . . , σ

2
i,n, σ

2
i,n+1, . . . , σ

2
i,n+l) for any i, one can

simplify Qi = ∑n
j=1 σ 2

ij xj +
∑n+l

j=n+1 σ 2
ij .

6. Consistency of the estimator

In this section some simulation results illustrate the consistency
of the EWLS estimator. Consistency is indicated by the
convergence of the relative error of the estimation to zero
for increasing number m of rows. The simulated example
corresponds to the measurement error model (1) with n = 3,
l = 1 and m ∈ [10, 1000]. The elements of random matrix
D̃ are statistically normal and independent, with variances
var(D̃ii) = σ 2

i and var(D̃ij ) = 0 for i 	= j .
We generated a noiseless matrix vector A0 and determined

the corresponding B0 so that the overdetermined system (1)
admits the exact solution X0 = [1 2 3]. Then we added to
each element of matrix D0 an independently distributed (i.d.)
error with a variance depending on a given scenario.

Four noise scenarios are considered. Each scenario is
characterized by the matrix of the error variances � = σ 2

ij ,
specified element by element. We generate N = 500
different noise realizations (but with the same statistics) for
each fixed m ∈ [10, 1000] and compute the EWLS estimates
x̂(m, N) and the relative error of estimation e(m, N) :=
‖x̂(m, N) − x0‖/‖x0‖. Figure 1 shows the behaviour of the
average e(m) := ∑N

i=1 e(m, i)/N for three of the considered
scenarios.

In the first EWLS scenario, the variances of errors in D

are independently and uniformly chosen in [0.01, 0.26] for A

and in [0.01, 0.035] for B. Figure 1(a) shows the behaviour
of the EWLS solution, obtained by choosing all the variances
coincident with those of the scenario, and the behaviour of the
WLS solution, obtained by setting the variances of A to zero
and the variances of B coincident with the scenario. Table 1
shows the true value X0 in the first column, the starting point
(WLS) in the second column and the EWLS solution in the last
column in the case m = 1000.

In the second EWLS scenario, the variances of errors in
D are independently and uniformly chosen in [0.01, 0.026]
for A and in [0.01, 0.35] for B. In this case, the behaviour
of the EWLS solution, obtained by choosing all the variances
coincident with those of the scenario, and the behaviour of the
WLS solution, obtained by setting the variances of A to zero

10 100 1000

1E-4

1E-3

0.01

e(
m

)

m

 EWLS
 WLS

10 100 1000

1E-5

1E-4

1E-3

e(
m

)

m

WLS = EWLS

10 100 1000

1E-5

1E-4

1E-3

e(
m

)

m

 TLS=EWLS
 WLS

(a)

(b)

(c)

Figure 1. (a) Behaviour of e(m) versus m for the first EWLS
scenario: WLS solution (——) and EWLS solution (- - - -).
(b) Behaviour of e(m) versus m for the WLS scenario: WLS and
EWLS solutions. (c) Behaviour of e(m) versus m for the TLS
scenario: WLS solution (- - - -) and EWLS solution (——),
coincident with TLS solution.

Table 1. True value, starting point and EWLS solution for the first
EWLS scenario and m = 1000.

Scenario X0 WLS solution EWLS solution

EWLS 1.000 000 00 0.984 744 963 94 1.000 234 998 63
2.000 000 00 1.961 338 205 16 1.998 773 507 39
3.000 000 00 2.946 968 668 02 3.000 638 171 99
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Table 2. True value, starting point and EWLS solution for the TLS
scenario and m = 1000.

Scenario X0 WLS solution EWLS solution

TLS 1.000 000 00 0.991 894 589 76 1.000 391 581 93
2.000 000 00 1.978 951 403 17 1.998 912 329 90
3.000 000 00 2.971 276 945 36 3.000 692 025 62

and the variances of B coincident with the scenario, are almost
coincident.

In the WLS scenario, the variances of errors in D are
independently and uniformly in the interval [0.01, 0.51] for B,
whereas those of A are chosen equal to zero. Figure 1(b) shows
the behaviour of the EWLS solution, obtained by choosing all
the variances coincident with those of the scenario, and the
behaviour of the WLS solution. The two curves are completely
superposed, as expected.

The last scenario is TLS: here σij = 0.1 for all i and j .
Results are shown in figure 1(c), where the EWLS solution
coincides with the TLS one, as expected. Table 2 shows the
true value X0 in the first column, the starting point (WLS) in
the second column and the EWLS solution, coincident with
the TLS solution, in the last column in the case m = 1000 for
the TLS.

Simulation results confirm the consistency of the EWLS
estimator, as in [12,14]. Moreover, for WLS and TLS set-ups,
EWLS coincides with the corresponding estimators, which are
known to be consistent. As a consequence, the EWLS is a
generalization of these well-known methods.

7. Linear transformations in colorimetry

In colorimetry, when we wish to define colour coordinates
with respect to some arbitrary visual systems with N photo-
sensors, we assume that the spectral responsivity of the visual
photosensor is known up to a linear transformation. If T is an
N×Nλ matrix whose entries are the sensitivities of each sensor
at each sample wavelength, we can compute the response of
these sensors to any colour stimulus, defined by the Nλ vector
w whose entries are the spectral characteristics of the stimulus,
as t = Tw, where t is the vector containing the response of each
sensor type to the stimulus. Then we can use t as the device
colour coordinates of w.

Suppose now that we have two different visual systems
and we wish to transform between the colour coordinates of
each. Let Ns be the number of source sensors, with sensitivities
specified by Ts. Similarly let Nd be the number of destination
sensors, with sensitivities specified by Td. For any w, the
source device colour coordinates are given by ts = Tsw and the
destination device colour coordinates are given by td = Tdw.
To transform between ts and td without direct knowledge of
w, we have to find a Nd × Ns matrix M such that Td = MTs.
Then it is easy to show that the matrix M may be used to
compute the destination device colour coordinates from the
source device colour coordinates through td = Mts. When a
linear transformation between Td and Ts exists, it can be found
by standard regression techniques. When there is no exact
linear transformation, it is not in general possible to transform
between the two sets of coordinates. The reason for this is that
a pair of lights that have the same colour coordinates for the

source device and different colour coordinates for the source
device will always exist. The transformation will therefore
be incorrect for at least one member of this pair. When
no exact linear transformation exists, it is still possible to
make an approximated transformation M in a LS sense. This
transformation is then applied to the source colour coordinates
as if it were exact.

A typical example is trying to compute the CIE 1931
XYZ tristimulus values of a colour stimulus from the RGB
response of a colour camera. For any colour stimulus, the
corresponding camera response r, g, b can be represented by
a 1 × 3 vector and their corresponding XYZ tristimulus values
can be represented by a 1 × 3 vector. If only r, g, b values are
used, the transformation between RGB and XYZ is a simple
linear transform.

Now, let us consider two different colorimetric devices and
try to calibrate one with respect to the other. Let subscript R
denote the reference device and D the device under test, and let
M be the number of sensors in both devices. Let us suppose to
have N > M test colours as input to both devices. The output
signals from the devices will be denoted by �R ≡ {�Ri,n}
and �D ≡ {�Di,n}, respectively, with i = 1, 2, . . . , M and
n = 1, 2, . . . , N . Taking into account that both �D and �R are
affected by errors �̃D and �̃R with zero averages and different
variances, we have more generally

�Ri,n → �Ri,n + �̃Ri,n i = 1, 2, . . . , M n = 1, 2, . . . , N,

�Di,n → �Di,n + �̃Di,n i = 1, 2, . . . , M n = 1, 2, . . . , N.

To calibrate the device D, we determine a linear transformation
C such that

�D · C = �R. (15)

The conventional WLS techniques cannot be applied to solve
the overdetermined system of linear equations (15), as they
assume that i.d. errors affect only the known terms �R. So, we
apply the LS formulation with element-wise weighing, EWLS,
to solve the problem in an appropriate way. In the following,
we focus on the particular case of tristimulus colorimeters.

8. The EWLS calibration method for tristimulus
colorimeters

Traditionally, for the calibration of a tristimulus head, the
CIE illuminant A is recommended, as it is characterized by
a spectral power distribution and chromaticity coordinates
{xA, yA, zA} = {0.44758, 0.40745, 0.14497} known a priori.
The CIE-A illuminant is realized experimentally by a CIE-A
source, i.e. an incandescent source operating at a given current
intensity.

When a tristimulus head with M = 3 channels,
called x, y, z, is illuminated with the CIE-A source, the
output photocurrents VxA, VyA, VzA are measured and, when
multiplied by the appropriate calibration factors cx, cy, cz, give
the tristimulus values XA, YA, ZA. As a consequence, the
values to be assigned to the calibration factors are found from
the solution of the exact equation system defined by

γD · c = γR,

S264 Metrologia, 43 (2006) S260–S267
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with

γD =

Vx 0 0

0 Vy 0
0 0 Vz


 ,

c =

cx

cy

cz




and

γR =

XA

YA

ZA


 =


xA

yA

zA


 · QA

yA
,

where QA is the luminance in candela per square metre of the
CIE-A source. In other words, calibration factors are simply
given by c = γ −1

D · γR. If the device under test is only to
be used for measurements on tungsten based sources then the
traditional method for calibration gives good results. If this is
not the case, you can get odd results.

To overcome these drawbacks, the EWLS method allows
one to make use of i = 1, . . . , N > M test colours and
solve the overdetermined equation system (15) in a EWLS
environment, where

�D =

· · · · · · · · ·

Vxi Vyi Vzi

· · · · · · · · ·


 , C =


cxx cxy cxz

cyx cyy cyz

czx czy czz


 ,

�R =

· · · · · · · · ·

Xi Yi Zi

· · · · · · · · ·


 ,

and covariance matrices are taken into account appropriately.
With the formalisms of section 2, EWLS considers the

linear model described by the linear algebraic system of
equations �DC = �R. Here G := [�D �R] contains the
measured data and C is the parameter matrix to be estimated.
With fewer parameters than equations and with noisy data
the model equations cannot be exactly satisfied; the residual
matrix R = �DC − �R is considered and an approximate
solution for X is sought. Solving the EWLS problem consists
in finding the optimal values of the problem variables C and
�G = [

��D ��R
]

minimizing the cost function

min
C,�G

m∑
i=1

�gT
i [V g

i ]−1�gi

subject to

(G + �G)

[
C

−I

]
= 0,

where �G is the correction on measured data to compensate
for the measurement error G̃, random matrices defined as
G̃ = [�̃D �̃R], with zero mean and independent rows g̃i with
known covariance matrices V

g

i .

9. Experimental results

To test the capabilities of the proposed method for accurate
calibrations, the tristimulus colorimeter described in [15] has
been calibrated according to the method proposed here and
results have been compared with the results obtained by the
traditional method for calibration.
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Figure 2. Chromaticity coordinates (x, y) of the CIE-A source
(star) used by the classical method, the colour stimuli (squares) used
by the EWLS method and colour tiles (circles, solid line) used to
test the EWLS solution with respect to the classical solution.

To perform the test, a CIE-A source has been realized
by means of a luminance standard source, characterized by a
double-sphere arrangement to achieve a better uniformity over
the exit aperture, and a distribution temperature of (2856 ±
20) K.

According to the traditional method, the M = 3
tristimulus heads have been illuminated with the CIE-A source,
the output photocurrents VxA, VyA, VzA were measured and the
following calibration vector has been obtained:

c =

cx = 0.127 15

cy = 0.043 93
cz = 0.163 60


 . (16)

Then, according to the EWLS method, the CIE-A source
has been filtered in turn by N = 19 Schott glasses to get
red, orange, yellow, green and blue colour stimuli. Their
chromaticity coordinates are represented by squares in figure 2,
where the star represents the chromaticity coordinates of CIE-
A. Their distribution around the CIE-A point in figure 2
suggests that important improvements should be expected for
stimuli in the blue region, whereas almost no improvement will
be expected in the green region.

The tristimulus values of these colour stimuli were first
measured by the reference spectroradiometer and the related
uncertainties evaluated according to [16]. Then the output
photocurrents of the colorimeter under test were recorded and
uncertainties evaluated in the same manner. By solving the
EWLS problem, we obtained the calibration matrix below:

C =

cxx = 0.120 35 cxy = 0.001 15 cxz = 0.013 46

cyx = 0.002 69 cyy = 0.042 72 cyz = 0.003 29
czx = −0.005 85 czy = 0.002 98 czz = 0.154 65




Note how the diagonal elements of the 3 × 3 matrix C are
similar to the elements of the 1 × 3 vector c.

Finally, the following ceramic colour standards: white,
pale grey, mid-grey, difference grey, deep grey, deep pink, red,
orange, cyan, green, yellow and deep blue, were illuminated by
an incandescent light source with a distribution temperature of
2890 K. Their resulting chromaticity coordinates, as measured
by the reference spectroradiometer, are represented in figure 2
by circles connected by solid lines. As you can understand
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Table 3. Reference tristimulus values, Xref , Yref , Zref , tristimulus values Xc, Yc, Zc, obtained by the traditional method, and tristimulus
values XC , YC , ZC , obtained by the EWLS method. Data are reported tile by tile.

Colour Xref Yref Zref Xc Yc Zc XC YC ZC

White 198.0 184.6 69.1 198.0 184.6 69.1 197.9 185.0 68.7
Blue 16.2 15.1 9.0 17.5 16.4 10.2 17.8 16.5 9.9
Cyan 40.3 45.6 35.0 38.3 45.3 35.9 40.4 45.6 35.3
Green 45.3 52.0 17.4 46.5 52.2 17.4 46.8 52.0 17.8
Yellow 165.7 147.9 13.2 170.0 147.8 11.7 165.7 147.6 13.3
Orange 140.3 99.4 10.6 144.0 99.8 11.3 139.8 100.3 10.8
Red 73.1 46.9 9.7 76.4 45.0 10.7 74.3 45.6 9.7
Pink 54.5 39.9 12.0 56.7 39.6 12.9 55.8 39.9 12.3
Mid-grey 67.9 63.5 23.8 67.7 63.4 24.3 67.7 63.5 24.2
Pale grey 147.1 137.3 51.2 145.5 136.2 51.1 145.5 136.6 50.8

Table 4. Reference values, Xref , Yref , Zref , values Yc, xc, yc by the traditional method, and values YC , xC , yrC by the EWLS method. Data are
reported tile by tile.

Colour Yref xref yref Yc xc yc YC xC yrC

White 184.6 0.4383 0.4087 184.6 0.4383 0.4087 185.0 0.4382 0.4094
Blue 15.1 0.4027 0.3732 16.4 0.3963 0.3729 16.5 0.4020 0.3738
Cyan 45.6 0.3331 0.3778 45.3 0.3203 0.3791 45.6 0.3330 0.3762
Dif green 53.0 0.4005 0.4564 53.2 0.4065 0.4529 53.0 0.4062 0.4496
Green 52.0 0.3950 0.4530 52.2 0.4007 0.4497 52.0 0.4011 0.4467
Yellow 147.9 0.5070 0.4525 147.8 0.5159 0.4486 147.6 0.5076 0.4518
Orange 99.4 0.5605 0.3970 99.8 0.5643 0.3914 100.3 0.5578 0.3998
Red 46.9 0.5636 0.3614 45.0 0.5779 0.3409 45.6 0.5734 0.3519
Pink 39.9 0.5126 0.3749 39.6 0.5192 0.3626 39.9 0.5160 0.3700
Mid-grey 63.5 0.4377 0.4092 63.4 0.4355 0.4082 63.5 0.4356 0.4091
Pale grey 137.3 0.4382 0.4092 136.2 0.4373 0.4093 136.6 0.4372 0.4100

from figure 2, this test is not really challenging for the classical
method, as circles, connected by the solid line and representing
the reference chromaticity of the ceramic tiles used for the test,
encircle the star which represents the illuminant CIE-A.

Reference tristimulus values Xref , Yref , Zref are listed, for
each tile, in table 3, together with the tristimulus values Xc,
Yc, Zc for each tile, measured by the colorimeter calibrated by
the traditional method using the calibration vector c (16), and
the tristimulus values XC , YC , ZC for each tile, obtained by
the EWLS method using the calibration matrix C.

For the sake of comparison, the chromaticity coordinates
x, y are also calculated for each tile from the data presented in
table 3, and the results are reported in table 4, tile by tile.

As you can see from the values reported in table 4,
results obtained by the EWLS method are consistent with
those obtained by the traditional method for all tiles and are
particularly improved in the blue region. This was expected
and is mainly due to the choice of the calibration filters, as
shown in figure 1.

10. Conclusions

We reviewed a least square problem that is useful in metrology
for solving an overdetermined system of equations with row-
wise independent and differently sized errors. The defined
problem is a constrained optimization problem with the
parameter estimate and the noise correction as variables. An
iterative algorithm is presented that solves the first order
optimality condition by successive approximations with a
linear equation. Numerical examples show that the proposed
algorithm is more efficient than standard methods in some
cases of metrological interest.

The least square approach is proposed for calibrating
colorimeters. Experimental results prove that the proposed
algorithm is more efficient than the standard method.
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