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Abstract

Blind audio source separation is well-suited for the application of unsupervised
techniques such as Nonnegative Matrix Factorization (NMF). It has been shown
that on simple examples, it retrieves sensible solutions even in the single-channel
setting, which is highly ill-posed. However, it is now widely accepted that NMF
alone cannot solve single-channel source separation, for real world audio sig-
nals. Several proposals have appeared recently for systems that allow the user
to control the output of NMF, by specifying additional equality constraints on
the coefficients of the sources in the time-frequency domain. In this article,
we show that matrix factorization problems involving these constraints can be
formulated as convex problems, using the nuclear norm as a low-rank inducing
penalty. We propose to solve the resulting nonsmooth convex formulation us-
ing a simple subgradient algorithm. Numerical experiments confirm that the
nuclear norm penalty allows the recovery of (approximately) low-rank solutions
that satisfy the additional user-imposed constraints. Moreover, for a given com-
putational budget, we show that this algorithm matches the performance or
even outperforms state-of-the art NMF methods in terms of the quality of the
estimated sources.

1. Introduction

Single-channel source separation is an underdetermined problem, commonly
used as a pre-processing technique for higher-level tasks (speech recognition
in complex environments, polyphonic music transcription, etc.). While exact
source recovery cannot be expected in general, a key ingredient in source sep-
aration techniques consists in assuming some form of redundancy in the data,
which renders the problem overdetermined. This is typically done by repre-
senting audio tracks in the time-frequency domain as low-rank matrices. Non-
negative matrix factorization was first applied to audio signals for polyphonic
transcription [SB03], although it was already used in other fields [PT94, LS99].

An important idea underlying matrix factorization techniques for audio sig-
nals is that they recover a representation of signals in terms of template signals
modulated by location-dependent gains. In the field of music signal processing,
this idea was supported by experiments on simple music signals [FBD09]. In
computer vision, similar experiments suggested a that part-based representation
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of visual objects could be retrieved by NMF [LS99]. The miracle of part-based
representation no longer works for real music or speech signals, because they
cannot be assumed to satsify the low-rank hypothesis, but it has spawned sev-
eral interesting research tracks: parameterized templates were introduced in
[VBB10] in order to match the harmonic structure of many musical instruments
; probabilistic models and penalty functions to favor smooth time-varying gains
in [Vir07, Fév11] ; Markov models, to stabilize the recognition of vowels in
speech processing [MSR10].

In parallel to these research tracks, linear models for audio signals have
also been the subject of many contributions. These models rely on the library
approach (or dictionary approach), where audio templates correspond to actual
signals stored offline in libraries, each specific to an instrument. The University
of Iowa’s electronic music studios, for instance, have made available recordings of
isolated notes for many popular instruments: violin, piano, cello, more generally
instruments belonging to the family of woodwind, brass, or string instruments.
Due to the large size of the libraries, there are many ways to represent any
audio signals as a linear combination of audio templates. Thus, in the library
approach, structured decompositions are introduced, based on simple principles:
if an instrument is present in the mix, only a few of its templates should be used
at the same time [SSR09] ; in the case where the sources are unknown group
structures are employed to select the appropriate libraries [BPSS10].

More recently, several contributions have been made to take into account
prior information specific to the target mix signal: manual segmentation of audio
tracks [OFBD11], MIDI aligned music scores [GSD12, HBD10], time-aligned
pitch estimates for the singing voice [DT12]. A common trait of these methods
is that they are all based on a simple extension of NMF : annotations are used
to specify equality constraints in the matrix of activation coefficients in NMF,
setting them to known values. Thus, annotations help learn a source specific
dictionary on segments of the recording where only that source is active: in this
way, manual segmentation of audio signals allows a blind source separation task
to be cast as a supervised linear model. In [GSD12], prior information consists in
the score that the music follows. Digital music synthesizers are used to provide
a rough guess of the sources. All these contributions are now identified as the
category of informed source separation methods. The formulation proposed in
this article belongs to this category.

While time segmentation of audio signals allows to use supervised learning
techniques, it is not always applicable. Instead, one can always rely on a uni-
versal property of natural signals: they have a very sparse representation in the
time-frequency domain. This property, dubbed W-disjoint orthogonality, is at
the heart of several source separation techniques in the multiple microphone
setting [YR04, AGB10].

In a previous contribution [LBF12], we formulated as a problem of non-
negative matrix factorization (NMF) with additional equality constraints, con-
sistently with the strong tradition in audio source separation. Results on the
SISEC database showed that we can obtain state-of-the-art results while an-
notating only a fraction of the spectrogram ; since user annotation is difficult
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and time-consuming, we also experimented with automatic annotation meth-
ods, relying on supervised learning. Interaction with the user has been further
explored in [BM13, FBR12]. Although based on a slightly different technique,
called probabilistic latent component analysis (PLCA), the formulation used in
[BM13] can be viewed as NMF where dissimilarity between observations and
the model is measured with a Kullback-Leibler divergence.

While it gives satisfactory results, NMF is hard to solve: for typical values
of the “rank” parameter used in audio, algorithms cannot be guaranteed to
converge to globally optimal solutions, and there is no alternative but to resort
to algorithms that converge to local minima. In practice, this means that several
initial points should be tried and the best be selected on a principled basis. One
would be tempted to replace the strict low-rank constraint by a convex penalty
function favoring low-rank solutions.

The main contribution of this article is to show that we can replace NMF by
a matrix approximation problem involving nonnegativity constraints, low-rank
inducing penalty functions and constraints on the coefficients of the solutions to
model additional information provided by the user, i.e. annotations. The main
advantage of such a formulation is that one can borrow tools from the field of
convex optimization to construct algorithms that retrieve source estimates of
similar, if not better quality, for a comparable computational budget, as shown
in preliminary results [LAG13]. In this article, we give a detailed presentation of
a subgradient algorithm used to solve the proposed formulation, and show that
it has the desired effect of finding solutions that are (approximately) low-rank.
Our second contribution, which we detail in Section 5.1, is related to the way
we let the user specify annotations: by restricting the set of annotated time-
frequency coefficients to those whose target values is zero, we show that our
formulation can gain in robustness, at a small sacrifice in terms of generality.

The rest of this article is organized as follows: in Section 2, we review of
well-established techniques for single-channel source separation : time-frequency
transforms, filtering techniques for source estimates recovery, and evaluation
metrics. In Section 3, we introduce a formulation of informed source separation
using nonnegative matrix factorization which was previously proposed [LBF12].
In Section 3.2, we discuss a convex formulation of annotation-informed source
separation, dubbed AISS lownuc, in the form of a low-rank matrix approxima-
tion problem with a low-rank inducing penalty term, and equality constraints.
User-provided annotations are encoded as equality constraints, and those are key
to the success of our formulation. After presenting in Section 4 our algorithm
for AISS lownuc, we investigate in Section 5 the impact of various choices of
annotations, and demonstrate the benefits of our convex formulation compared
with NMF.

2. Time-frequency analysis and audio source separation

This section is a brief introduction to audio source separation. In Section
2.1, we present time-frequency transforms, which allow to transform a one-
dimensional audio signal into a two-dimensional object, frequency and time
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being now the dimensions of variation. The matrix factorization problem that
we introduce is indeed posed in the time-frequency domain, so that an input
time-frequency matrix is separated as a sum of matrices, which are interpreted
as source terms (as illustrated in Figure 3). We refer the reader to textbooks
such as [OS75] for a complete presentation of time-frequency transforms and
their many applications, such as modifying the duration of an audio signal of
modifying its pitch.

Next, we explain in Section 2.2 how to transform those source estimates
back as audio signals, using time-frequency masking : early proposals for source
separation recognized filtering as the best way to avoid artifacts due to inexact
solutions [SB03, FBD09]. In Section 2.3, we summarize evaluation metrics for
audio source separation [VGF06], and define the notion of oracle estimates, in
controlled experiments where the true source signals are known in advance.

2.1. Time-frequency representation of audio signals

Single-channel source separation consists in recovering a certain number of
unknown source signals from measurements of their sum. The first step in single-
channel source separation consist in finding a representation of the source signals
that enhances their redundancy. As we shall explain in this section, this is
done by computing their spectrogram, which is a time-frequency representation.
Time-frequency representations of audio signals are sparse and redundant, which
is key to the success of blind source separation.

The computation of spectrograms is illustrated on Figure 1: short time seg-
ments are extracted from the signal and multiplied coefficientwise by a window
function. Successive windows overlap by a fraction of their length, which is usu-
ally taken as 50%. On each of these segments, a Fourier transform is computed.
Thus, from a one-dimensional signal x ∈ RT , we obtain a complex matrix C of
size F × N where FN ≃ 2T (because of the 50% overlap between windows).
These preliminary steps correspond to computing the short time Fourier trans-
form (STFT):

Cfn =
F
∑

t=1

xt+(n−1)Hwt exp

(

−
2(f − 1)π(t− 1)

F

)

for all f ∈ {1 . . . F}, and n ∈ {1 . . .N}. The so-called hop size H determines
the overlap between successive windows, w ∈ RF is a window function, and
N is chosen to match the size of the signal. To make this possible, that the
signal should be appropriately zero-padded beforehand. We refer the reader
to textbooks such as [OS75] for more explanations. Finally, we take Yfn =
|Cfn|2, in order to obtain approximate invariance to translations of the signal.
Coefficient Yfn measures the amount of energy of the signal at frequency f and
time index n in the time-frequency plane. This magnitude is represented as a
color code in Figure 1: blue for small coefficients, and red for high coefficients.

The length winlen of the segments, or window length determines the shape
of the spectrogram as a matrix. The number of rows corresponds to the fre-
quency resolution: indeed, letting fs be the sampling rate of the audio signal,
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consecutive rows correspond to consecutive frequencies that are fs
winlen Hz apart.

On the other hand, the number of columns determines the time resolution. For
instance, if a signal is sampled at the typical rate of 44100 Hz, and the window
length is 2048 (which corresponds to approximately 50 ms), the frequency res-
olution is 20 Hz. If, the window length is 1024, the frequency resolution will be
only 10 Hz, but the time resolution will be 25 ms.

An important property of the STFT operator is that we can reconstruct a
signal exactly from its STFT samples, through a so-called “inverse” short time
Fourier transform (iSTFT). However, modifying the coefficients of a signal in
the time-frequency domain does not guarantee that the “inverse” signal will be
well-defined. In other words, the adjoint of the STFT operator has a nontrivial
kernel.
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Figure 1: Time-frequency operators enhance sparsity in audio signals

Spectrograms of natural signals have two important properties. The first,
depicted in Figure 1 is their sparsity: only a fraction of the STFT coefficients
have significant magnitude. The second property is redundancy: there are many
similar columns in the spectrogram, which reflects an intuitive notion of vocab-
ulary for musical sounds or speech.

2.2. Time-frequency masking and source separation

Computing spectrograms approximately preserves the property that the ob-
served signal is the sum of the source signals. Again defining, the spectrogram
of the mix Yfn = |Cfn|2, we have Y ≃

∑

g Xg, where Xg is the spectrogram of
source g. Note that even if we assume that the mixed signal is the sum of source
signals, in the time domain (x =

∑

g sg), we can only guarantee Y ≃
∑

g Xg ap-
proximately since Y and Xg are nonlinear transforms of x and sg, respectively.
Still, this approximate summation property is good enough and observed in
practice.

Now, suppose we have an estimate of the spectrogram X̂g for each source g.
To obtain an estimate of the time domain signals sg ∈ RT , we first estimate their
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STFT through time-frequency masking Ŝg,fn =
X̂g,fn

∑

g′ X̂g′,fn

Cfn, and recover ŝg

from Ŝg by inverse STFT. Note that the masking coefficients

maskg,fn =
X̂g,fn

∑

g′ X̂g′,fn

(1)

are nonnegative and sum to one each pairl (f, n): consequently, we have
∑

g Ŝg =
C and

∑

g ŝg = x, i.e. we obtain a source separation that reconstructs the mixed
signal exactly.

We now come to a fundamental property on which our contribution relies:
since each source spectrogram Sg,fn is sparse, the masking coefficients maskg,fn
are most likely equal to either 0 or 1. Indeed, we display in Figure 2 color codes
indicating in bright color those points (f, n) for which masking coefficients are
close to 0 or 1. We also scale the brightness according to the magnitude of
the spectrogram, so that the most important points are emphasized. As we
can see, a significant proportion of the spectrogram is either black (no source is
active), or colored (only one source contributes). A smaller fraction of the points
is white, those are the points where several sources contribute simultaneously.
This property, dubbed W-disjoint orthogonality, is at the heart of state-of-the
art methods in multichannel audio source separation algorithms [YR04]. This
property implies that although the support of the sources are neither disjoint
in the time domain, nor in the frequency domain, they are disjoint in the time-
frequency domain.

Thus, if we provide for each source a guess of a subset of those points where
its contribution is negligible, we would already obtain good source estimates. In
the multichannel setting, [YR04, AGB10] use unsupervised learning techniques
to provide such a guess. Those techniques cannot be applied in the single-
channel case.

In recent contributions [BM13, LBF12], a subset of the coefficients of the
spectrogram of each source is constrained to pre-specified target values. Matrix
factorization techniques can then be used to complete the picture, as will be
explained in Section 3.2. One point raised by those contributions is that source
estimates are very sensitive to the chosen target values. However, if we trust the
W-disjoint orthogonality property, we can safely choose to impose constraints
only when the coefficients are equal to zero, and let other coefficients free for
further investigation. This possibility will be discussed further in Section 5.1.

Before we proceed to a formal presentation of matrix factorization, let us
discuss evaluation procedures in audio source separation.

2.3. Evaluation of source separation results

Single-channel source separation is an open problem in audio signal process-
ing: it is highly ill-posed, so that several assumptions must be made to avoid
situations were recovering source estimates is not sensible. As mentioned before,
we must assume that the number and type of sources is known, and that the
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Figure 2: The W-disjoint orthogonality property (see text for details)

recorded signal is a linear instantaneous mixture of the source signals. This is
a standard hypothesis, and in this report we will additionally assume that the
mix is balanced. More precisely, we assume that all source signals have equal ℓ2
norm: this is to avoid such situations where one of the source signals is so small
that it is unreasonable to try to recover it.

Listening tests provide the most valuable insights on the quality of source
estimates ŝg. In some cases, they are also the true performance measure, for
instance if we are to remix sources or make a karaoke version of a song. Purely
quantitative criteria, on the other hand, are objective and require little enough
computational resource so we can use them to track the performance of a se-
quential algorithm, or determine the influence of some parameter on source
separation performance. Benchmark evaluations use both types of criterion, in
an attempt to find an ideal perceptual measure of quality.

Computing quantitative criteria implies that we have true source signals at
our disposal. The simplest performance criterion is the signal to noise ratio
(SNR) for each source g:

SNRg = 10 log10
∥ŝg∥22

∥sg − ŝg∥22
. (2)

In practice, the SNR is not close to a perceptual metric, because it does
not tolerate some benign deformations of the target signal : for instance, if
the estimate ŝg was simply a scaled version of the true source signal λsg then

perceptually the result would be perfect, but the SNR would be 10 log10
λ2

(1−λ)2

which can be arbitrarily low. Another quality measure, the source to distortion
ratio (SDR), was first proposed in [VGF06] to allow such deformations.
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method 1 random blind oracle

SDR1 7.83 -2.02 -0.02 18.43
SDR2 6.17 1.01 -0.04 12.82

Table 1: Example of source separation results on one audio track

More precisely, the idea behind SDR is to estimate the contribution of each
source in a given estimate, through a linear model:

ŝg =
∑

l

λlsl + ε (3)

where each λl ∈ R is interpreted as a gain applied to each source and ε is
an error term. Thus,

∑

l ̸=g λlsl can be interpreted as undesirable interferences
(hearing other sources than the desired one), and ε is often interpreted as arte-
facts introduced by the algorithm. Coefficients λl are estimated by least-squares
regression, and three metrics are then computed:

SDRg =20 log10

(
∥λgsg∥2

∥ŝg − λgsg∥2

)

SIRg =20 log10

(

∥λgsg∥2
∥
∑

l ̸=g λlsl∥2

)

)

SARg =20 log10

(
∥λgsg∥2
∥ε∥2

)

)

The source-to-distortion measure (SDR) is an overall measure of quality of the
source estimate. The source-to-interference-ratio (SIR) and source-to-artifacts-
ratio allow a finer diagnosis of the error in the estimate. If the index g is omitted,
SDR simply refers to the average 1

G

∑

g SDRg over all sources.
The SDR of a proposed method must always be compared to that obtained

when using the mixed signal as a source estimate (in fact, the mixed signal
divided by the number of sources G so that the sum of estimates is equal to the
mix): we will refer to this as the blind guess. This way, we measure the improve-
ment accomplished rather than an absolute value that is not always meaningful.
Another interesting point of comparison is if we use the true spectrogramsXg,fn

to compute the masking coefficients in Equation 1 : in a sense, this corresponds
to the ideal performance of our method.

Table 1 is an example of evaluation: method 1 is compared to a random
method, to the blind guess and an oracle estimator ; SDR is displayed for both
sources. As we can see, the blind guess yields an SDR close to 0: this is because
we use a balanced mix, whereas in the unbalanced case, the blind guess actually
becomes a good guess of one of the sources (and a perfect case if only one source
is present in the mix). Consequently, we can average SDR over all sources to
measure an overall performance, and omit column blind.

Other deformations can be allowed in the bss eval toolbox released by
[VGF06], but they are more useful in a multichannel setting.
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Oracle estimates. When the masking coefficients of Equation 1 are computed
using the ground truth values of Xg,fn, we will refer to the obtained estimates
as oracle estimates. The notion of oracle estimates has been further studied
in [VGP07], so that the term “oracle” actually corresponds to the optimal es-
timates of the sources that could be found using any method relying on time-
frequency masking. The oracle estimates that we defined in this Section are not
optimal in this sense, but they are close enough so that they can be considered
as an upper-bound of the quality we can achieve using our proposed formulation.

3. Formulations for informed source separation

Figure 3: Overview of the source separation process.

Figure 3 summarizes the flow of our source separation procedure: we apply a
short-time Fourier transform (STFT) to the observed signal, and take the square
modulus, thus discarding the complex phase. Our formulation, which we dub,
annotation informed source separation (AISS) is then performed. Estimates of
the sources Sg are then computed in the time-frequency domain by masking,
and mapped back to waveforms sg.

Now that we have explained the role of time-frequency transforms, we can
restrict our attention to a problem of matrix approximation. The observed
spectrogram is stored in matrix Y ∈ RF×N , where F is the number of frequency
bins, and N the number of time bins. We assume that Y ≈

∑G
g=1 Xg, where

each matrix Xg ∈ RF×N is the power spectrogram of source g. For each source
g, a binary parameter Mg,fn ∈ {0, 1} indicates whether we impose a target
value to Xg,fn. Target values are specified by an additional parameter Tg,fn.
For instance, if we want to impose the constraint Xg,fn = 3, we set Mg,fn = 1
and Tg,fn = 3. If on the other hand, we want to optimize Xg,fn, then we simply
set Mg,fn = 0, regardless of the value of Tg,fn.

In Equation 4 we display an example where the top row of X1 and bottom
row of X2 are constrained to have all zeros, and the remaining entries are left
free, since the corresponding entries of M are all equal to zero. The values in
T will be referred to as target values.
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M1 =

⎛

⎝

1 1 1
0 0 0
0 0 0

⎞

⎠ T1 =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ X1 =

⎛

⎝

0 0 0
× × ×
× × ×

⎞

⎠

M2 =

⎛

⎝

0 0 0
0 0 0
1 1 1

⎞

⎠ T2 =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠ X2 =

⎛

⎝

× × ×
× × ×
0 0 0

⎞

⎠ (4)

Thus, our problem takes as input a matrix of observations Y ∈ RF×N ,
a sparse three-way array M ∈ RF×N×G, and another sparse three-way array
T ∈ RF×N×G. The pair (M,T ) represents user annotations. We will always
assume in the rest of this article that F ≤ N .

We focus in this article on the numerics of informed source separation, re-
gardless of how annotations were acquired. Recently, there has been much ef-
fort in building (semi-)automatic tools to gather annotations, either through
a graphical user interface1 [HDB11, DT12, LBF12, BM13], or using a pre-
calibrated classifier such as random forests[LBF12]. In the latter contribution,
it is shown that for simple benchmarks where the sources to be separated are
singing voice and accompaniment music, it is possible to retrieve a significant
fraction of annotations (up to 20%) with limited error.

We first present a summary of nonnegative matrix approximation with the
Itakura-Saito divergence and explicit factors. In previous work [LBF12], we
introduced annotation-informed source separation using this technique. In Sec-
tion 3.2, we introduce a convex formulation of low-rank approximation. This
formulation, together with the algorithm presented in Section 4, is the main
contribution of this article.

3.1. Constrained nonnegative matrix factorization

As discussed in Section 2.1, matrix factorization is useful in capturing the
redundancy of high-dimensional data sets. Each source g is modelled as a
product of factors Dg ∈ RF×K with the corresponding activation coefficients
Ag ∈ RK×N : Xg = DgAg. The number K of columns of D must be fixed in
advance. Since only the sum Y =

∑

g Xg is observed, blind source separation
techniques proceed by computing a matrix factorization Y = DA and assign
each column of D to one and only one source, thereby obtaining one dictionary
Dg and one matrix of activation coefficients Ag for each source. In our setting,
annotations act as incomplete observations of each source term Xg.

Allowing inexact observations, estimates of Dg and Ag are obtained by solv-

1see also https://www.youtube.com/watch?v=Rd3prIkO5bg for a video demonstration
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ing the following optimization problem [LBF12]:

min L(Y,
∑G

g=1 DgAg) ,
s.t. Mg ⊙ (DgAg) = Mg ⊙ Tg ,

Dg ≥ 0
Ag ≥ 0 .

(5)

where L(Y, Ŷ ) is a measure of dissimilarity between Y and Ŷ . ⊙ stands for
pointwise multiplication. Additional nonnegativity constraints are imposed to
ensure that each source estimate is nonnegative: indeed, as we saw in Section 2,
we need nonnegative estimates in order to form time-frequency masks. Note that
imposing nonnegativity of the factors is stronger than imposing nonnegativity of
the source termsXg. For typical values ofK in audio source separation, Problem
5 is nonconvex and multimodal, so that only local minima can be computed. In
practice, one obtains good source estimates by starting from many initial points
and selecting the best solutions, at the cost of increasing the computing time.

As for the choice of L(Y, Ŷ ), the Itakura-Saito divergence was used in [LBF12]:

L(Y, Ŷ ) =
∑

fn

Yfn

Ŷfn

+ log
Yfn

Ŷfn

− 1

The Itakura-Saito is a popular choice in the audio source separation community.
Another choice is the generalized Kullback-Leibler divergence. However, such
measures of dissimilarity require an additional level of complexity in the opti-
mization. An algorithm to retrieve good candidate solutions was developed in
[LBF12], specifically to handle this aspect. In this article, we will use a simpler
dissimilarity measure.

3.2. A convex formulation with low-rank inducing penalties

Instead of fixing the rank of the source terms Xg, we introduce a penalty
function favoring low-rank solutions. Denoting the nuclear norm by ∥X∥⋆, i.e.
the sum of singular values of X , the optimization problem becomes:

minX

f̂(X)
︷ ︸︸ ︷

1

2
∥Y −

G
∑

g=1

Xg∥2F +

ψ(X)
︷ ︸︸ ︷

λ
G
∑

g=1

∥Xg∥∗

subject to Mg ⊙Xg = Mg ⊙ Tg for all g = 1 . . .G
Xg ∈ C for all g = 1 . . .G

(6)

Dissimilarity between the input spectrogram and its approximation is now

measured with a Frobenius norm : ∥X∥F =
√
∑

f,n X
2
fn. This choice is made

for convenience, and we will leave the use of more involved dissimilarity measures
for future work.
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To any rectangular matrix X ∈ RF×N , we can associate a singular value
decomposition (SVD) X = PΣQ⊤, where P ∈ RF×F and Q ∈ RF×N have
orthonormal columns and Σ is a diagonal matrix with nonnegative diagonal
coefficients σ1 ≥ . . .σF . : the rank of X is thus equal to the number of nonzero
elements of Σ. Coefficients σi are known as the singular values of X .

Instead, of fixing the rank of Xg to a known value, one might attempt to
penalize the number of nonzero singular values of Xg, bu that function is not

convex. The sum of singular values, also known as nuclear norm ∥X∥∗ =
∑F

f=1
has the advantage of being convex with respect to X : we expect that for
increasing values of λ, solutions of Problem 6 have many small singular values,
and only a few large singular values, hence they will be nearly low rank. This
will be further discussed in the experimental section.

Nonnegativity of the solutions Xg is often required in source separation,
e.g. when magnitude or power spectrograms are used to compute estimates
of the source signals. However, the nonnegativity constraints may be dropped
if other time-frequency operators are used (like the modified discrete cosine
transform[OS75]). For flexibility, we will allow both possibilities and consider
either case C = RF×N or C = R

F×N
+ . In the latter case, the source terms are

required to have nonnegative coefficients. We also introduce the notation

Q = {X,Xg ∈ C,Mg ◦Xg = Mg ◦ Tg, ∀g = 1 . . .G}

for the feasible set. Set Q is convex, and we will make frequent use of projections
on Q in the following.

The objective function f(X) is a composite function, i.e. it is the sum
of a smooth function f̂(X) and a non-smooth function ψ(X): thus, in our
formulation, the advantage of dealing with a convex objective function is slightly
counterbalanced by the fact that it is also non-smooth, which leads to a more
complex optimization problem.

4. Subgradient projection algorithm

As we introduced a convex model (convex objective function and convex
feasible region), we can now look for global optima of the informed source sep-
aration problem. Since we are dealing with a nonsmooth objective function,
we recall a few preliminary notations and basic facts in Section 4.1, before we
proceed to a detailed presentation of a subgradient algorithm in Sections 4.2-4.3.

4.1. Notations and basic definitions

In the following, we will consider the vector space RF×N×G endowed with
scalar product ⟨A,B⟩ =

∑

g TrA
⊤
g Bg, and the induced norm

∥A−B∥ =
√
∑

g

∥Ag −Bg∥2F
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where ∥ · ∥F is the Frobenius norm on RF×N . We will also make use of the
spectral norm of matrices of size F ×N :

∥W∥op = max{∥Wu∥2 s.t. ∥u∥2 ≤ 1} ,

At times, we might also refer to this norm as the operator norm. Recall that
the spectral norm is equal to the largest singular value of W .

We define f̂(X) = 1
2∥Y −

∑

g Xg∥2F the quadratic part of the objective func-
tion, and ψ(X) = λ

∑

g ∥Xg∥∗ the non-differentiable part. Objective function

f is defined over all RF×N×G, it is convex and Lipschitz continuous, so its
directional derivatives are defined in every direction [Roc70]:

f ′(X ;D) = lim
t↓0

f(X + tD)− f(X)

t
.

Note that although the objective function is convex, there may be several
globally optimal solutions.

Quantity Z is a subgradient of f at X if it satisfies one of the following
statements, which are equivalent:

∀Y, f(Y )− f(X) ≥ ⟨Z, Y −X⟩ , (7)

∀D, f ′(X ;D) ≥ ⟨Z,D⟩ .

The set of subgradients of f at X is the subdifferential ∂f(X). It is closed,
convex, and it is bounded because domf = RF×N×G. It is possible to make
the link between subgradients and directional derivatives even stronger. In fact,
one can show [Sho85], using the theorem of separating hyperplanes, that the
inequality in Equation (7) is tight, for an appropriate choice of subgradient:

f ′(X ;D) = max ⟨Z,D⟩
Z ∈ ∂f(X) .

Subgradients generalize the gradient of differentiable functions: indeed, if f is
differentiable then ∂f(X) = {∇f(X)}. As we can see in Equation (7), subgra-
dients extend the well-known result that a convex function is lower-bounded by
its tangent at a given point.

4.2. Subgradients and SVD

The subgradient projection algorithm is a simple method for generic non-
smooth problems. Given an initial point X0, and a choice of subgradient Zk

at every step, a subgradient iteration consists in taking a step in the opposite
direction of the subgradient, and projecting the result on the feasible set:

Xk+1 = Π(Xk − hZk) (8)

where h > 0 is the step size, and Π : RF×N×G /→ RF×N×G is the projection on
the feasible set Q. We will also use the notation Πg to refer to the projection of
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each block on its own set of constraints, so Π(X) = (Πg(Xg))g=1...G. Note that
in our case, the projection is simple:

Π(X)g,fn =

{

Tg,fn if Mg,fn = 1
Xg,fn otherwise

if C = R
F×N×G

Π(X)g,fn =

{

Tg,fn if Mg,fn = 1
(Xg,fn)+ otherwise

if C = R
F×N×G
+

with the notation (x)+ = max(0, x). As we can see, if f is differentiable, we
recover the usual gradient projection method. General properties of subgradient
algorithms are discussed in Section 4.3.

The gradient of f̂ with respect to each matrix Xg is readily seen to be:

∇f̂(X) =
∑

g

Xg − Y ,

which corresponds to the opposite of the residual R = Y −
∑

g Xg. Subgradients
of ψ are obtained by forming the singular value decomposition (SVD) of source
terms Xg. Let us denote the SVD of each source term:

Xg = PgΣgQ⊤
g ,

P⊤
g Pg = I ,

Q⊤
g Qg = I ,

Σg = Diag(σ1, . . . ,σF ) .

Since F ≤ N , it is best to compute an ‘economy size‘ SVD, i.e. Pg ∈ RF×F ,
Qg ∈ RF×N , Σg ∈ RF×F . Recall that matrices Pg and Qg are orthogonal and
Σg is diagonal.

With these notations at hand, the following are necessary and sufficient
conditions for Z ∈ RF×N×G to be a subgradient of f at X [RFP10] :

Zg = −R+ λPgQ⊤
g +Wg , (9)

W⊤
g Xg = 0 ,

WgX⊤
g = 0 ,

∥Wg∥op ≤ λ .

Wg ∈ RF×N is a free variable subject to the constraints that its row space
and column space are respectively orthogonal to those of Xg, and that its op-
erator norm is less than λ.

Since the subgradient algorithm only requires to choose an arbitrary subgra-
dient at each iteration, we simply choose W = 0.
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Algorithm 1 Subgradient algorithm for informed source separation.

Input: Y ∈ RF×N , M ∈ {0, 1}F×N×G, T ∈ RF×N×G, λ > 0, h0 > 0
k ← 0
Initialization : Xg ← Πg(Y/G) for g = 1 . . .G.
repeat

k ← k + 1
Store current iterate X̃ ← X
Update step length h← h0

√
k+1

R← Y −
∑

g Xg

for g = 1, . . . , G do
(P,Σ, Q)← svd(Xg, ’econ’)
Xg ← Xg + h(R − λPQ⊤).
Xg ← Πg(Xg)

end for

until ∥X − X̃∥ ≤ ϵ

4.3. Overview and comments

Algorithm 1 sums up the subgradient projection algorithm that we use in
our experiments. The user should specify in adavance whether C = RF×N or
C = R

F×N
+ . In the latter case, it should also be checked that Tg,fn ≥ 0.

Defining an appropriate stopping criterion is quite involved, in view of the
non-differentiability of the objective function and the presence of constraints.
We choose ∥Xk+1 − Xk∥ ≤ ϵ as a stopping criterion. Recall from Section 4.1

that ∥A−B∥ =
√
∑

g ∥Ag −Bg∥2F .

Iteration complexity. The cost of each iteration of the subgradient projection
method is dominated by the computation of one SVD for each matrix X . This
amounts to O(G(F 2N + F 3)) floating point operations [GL96]. We split the
update of the gradient term ∇f(Xk) in two places: the residual term is com-
puted only once as it appears in all blocks ∇f(Xk)g ∈ RF×N , while SVDs are
computed one by one for each Xg, so that only one triplet (P,Σ, Q) need actu-
ally be stored in memory. Projecting on the constraints Mg ◦Xg = 0 is linear
in the number of nonzero entries of M = (M1; . . . ;MG) : this is typically very
cheap as the proportion of nonzero entries is only a fraction of the total number
of entries in M . Projecting on nonnegativity constraints is linear in the number
of entries of each matrix Xg. Note that the order in which we project does not
matter.

Rate of convergence. Choosing the step size in the subgradient method is not a
trivial task: indeed, unless we can prove that our choice of subgradient ensures
a decrease of the cost function at each step, it is not possible to select the step
size by line search. In general, we can still guarantee convergence to a minimum

15



point of Problem 6 as long as [Nes03, Theorem 3.2.2]:
∑+∞

k=0 h
k = +∞

∑+∞
k=0(h

k)2 < +∞

One possible choice, which is often advocated, is to fix h0 arbitrarily and choose
hk = h0

√
k+1

. In this case, the approximation error f(Xk)−f(X∗) ≤ ϵ decreases,

in function of the number of iterations, as O

(
ln(k + 1)√

k + 1

)

.

5. Numerical experiments

We have presented a convex formulation for informed source separation and
derived an algorithm to solve it, based on the subgradient method. Our aim in
this experimental section is to show that it compares favourably with NMF on
a benchmark of professionally produced music recordings. Before we can do so,
however, we will examine in Sections 5.1 - 5.4 a certain number of factors that
influence the performance of our algorithm. One may skip these sections at first
reading and proceed to the comparison with NMF in Section 5.5, after taking
a look at the paragraph on Audio settings.

As mentioned earlier, an important point raised by [LBF12, BM13] is the
sensitivity of solutions to the quality of annotations. We discuss in Section
5.1 two possible choices of annotations: either imposing zeroes in source terms,
letting large amplitude coefficientsXg,fn be determined by the low-rank approx-
imation ; or imposing large amplitude coefficients as well, which would imply in
practice to have precise estimates of the masking coefficients.

We discuss step size selection in Section 5.2. In Section 5.3, we check that the
nuclear norm term in our convex formulation has the desired effect of favoring
low-rank solutions. In Section 5.4, we examine the influence of the sparsity-
inducing parameter λ on the quality of source estimates. We perform experi-
ments on a randomly selected audio track to discuss these points.

Finally, we compare in Section 5.5 our convex formulation and the NMF
formulation presented in Section 3.1 on a benchmark database from the SISEC
evaluation campaign, on which state-of-the-art methods in source separation are
evaluated every year. Still on this benchmark, we evaluate the influence of the
proportion of annotations on source separation results. Finally, the relationship
between the proportion of annotations and the quality of source estimates is
made precise in Section 5.6.

Audio settings. All experiments are performed on real audio signals. Unless
explicitly mentioned, simulations are performed on a randomly chosen audio
track from the SISEC database of professional music recordings. The duration
of the track is between 10 and 25 seconds. All tracks were sampled at 16 kHz,
STFTs computed with sinebell windows of length 512 samples (i.e. 32 ms),
with an overlap of 50% between windows. This yields input matrices Y with
512 rows and between 800 and 2000 columns. The number of rows is reduced
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choice run 1 run 2 run 3 run 4 run 5 mean std
T = 0 5.17 5.03 4.98 5.11 5.04 5.06 0.08

T general 4.61 4.58 4.50 4.28 4.66 4.52 0.15

Table 2: Imposing only zeroes in T yields better SDR values with high proba-
bility.

from 512 to 257 by exploiting Hermitian symmetries in the Fourier transform.
In all tracks, the two sources are accompaniment g = 1 and voice g = 2.

5.1. Choice of annotations

Since we have at our disposal the ground truth sources, we can compute ideal
target values for the annotations: Mg,fn = 1, and Tg,fn is obtained by Equation
1. In this case, there is no need to solve Problem 6, since the feasible set reduces
to one point. In this case we obtain an oracle estimate. In reality, we only expect
a fraction of the coefficients of M to be equal to 1. In [BM13, LBF12], estimates
of the target values Tg,fn are provided by the user, or using an external “plugin”
[LBF12].

Since the solutions of Problem (6) are quite sensitive to specific values of T ,
one possibility is to only pick Mg,fn = 1 when the associated target value is
Tg,fn = 0. In view of the W-disjoint orthogonality property discussed in Section
2.1, we expect that a large fraction of the coefficients in T fall in this subset, so
that good enough source estimates can be retrieved.

We compare here these two possible choices of annotations in a controlled
experimental setting, where coefficients of M can be selected according to the
known value of T . In the first scenario, we sample each Mg,fn at random in
{0, 1} with probability p of choosing 1. Corresponding target values are chosen
as Tg,fn = maskg,fnVfn: this way, we impose a proportion p of the entries of X
to correspond to the oracle estimates [VGP07].

The second scenario consists in imposing only zero values, i.e. Tg,fn = 0
for all (f, n, g). Only a fraction of the FNG entries of X can be constrained,
in this case. For fair comparison, for a given value of p, we sample M and
T as follows: first we threshold some values of T as Tg,fn = 0 if maskg,fn <
maxh maskh,fn. We then compute the proportion ρ of zero entries of T , and

sample Mgfn = 1 with probability
p

ρ
. In this way, we know that the expected

number of constraints is always pFNG for small enough values of p. When
G = 2, this means that p < 1

2 : we cannot annotate more than 50% of the 2FN
entries, since either source 1 or source 2 is dominant. If G = 3, p can be up
to 66%, and so on. In any case, this restriction is not too strong since we are
expecting our system to work with small fractions of annotations.

We display in Table 2 the average SDR obtained on 5 simulated annotations
masks, with either choice (T general or T = 0), and p = 0.2. Note that the
actual number of constraints relative to FNG was equal to 0.2 up to 10−2. It
turns out that even though the target values T = 0 are not exact, it is better
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to constrain entries of Xg to be small than constrain entries of X to be equal
to a large and inexact value.

5.2. Influence of step size in subgradient descent

The subgradient method we use is sensitive to the choice of the initial step
size. Figure 4 displays the objective function value versus the allowed CPU
time for the subgradient algorithm: as we can see, too small values of h0 yield
suboptimal solutions. On the other hand, too high values of h0 not only yield
suboptimal solutions after 60 seconds, but also give very bad results in early
iterations.

One should bear in mind that the choice of step size is not so crucial if one
allows enough CPU time, since iterates are guaranteed to converge to the global
minimum (X → X∗). If the allowed CPU time (or number of iterations) is lim-
ited, a practical strategy consists in running a few tens of iterations with various
values of h0, keep the one which yields the lowest objective cost value, and use
it for the rest of the allowed time. See also Section 4.2 for more comments about
step size selection.

0 50 100 150 200106

107

 

 
h0=1.00e0
h0=1.00e1
h0=1.00e2
h0=1.00e3
h0=1.00e4

Figure 4: Evolution of the objective function value VS allowed CPU time, for
various values of h0.

5.3. Influence of λ on singular value profile

Figure 5 displays the singular value profile of one of the estimated sourcesXg,
for various values of the sparsity-inducing penalty parameter λ. The magnitude
of singular values is displayed in log scale so that we can compare the influence
of λ more precisely. Although the magnitude of a particular singular value is
not interpretable, it is useful to count the number of singular values less than an
arbitrary threshold. For instance, we can see that the number of singular values
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less than 10−1 is around 60 for λ = 10−1, 190 for λ = 102, and 0 for λ = 10−2.
This is consistent with our expectation that the nuclear norm penalty favors
solutions that are approximately low rank.
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Figure 5: Magnitude of singular values in decreasing order, for various values
of λ. Dotted line is the true singular value profile.

5.4. Sensitivity of solutions to λ

Choosing regularization parameters (number of latent components, coeffi-
cient of structured penalties, etc.) in unsupervised techniques such as sparse
PCA or the present problem is known to be a very challenging problem. In
practice, one can only try a few values and conduct listening tests to determine
the best value. In evaluation contexts, where the sources are known, this can
be replaced by selecting the values that yield the highest SDR value. As we
can see in Table 3, there is much practical importance in tuning λ, once all
other parameters are fixed, since it can lead to an improvement of 3 dB over a
randomly chosen value.

For λ = 0, solutions of Problem 6 cannot be expected to yield much im-
provement, other than that given by imposing annotations. As λ → +∞, we
observe in Table 3 that SDR decreases after a certain point. Thus, a certain
amount of trial and error is required to find a satisfactory value of λ, but this
value is not too sensitive as we can see on Table 4 : choosing λ in the order of
101 seems to yield satisfactory performance.

5.5. Comparison of our formulation with NMF on the SISEC database

We are now ready to compare our formulation (dubbed lownuc) with the
constrained NMF proposed in [LBF12]. We reproduce in this subsection the
experiment of [LAG13]. We make this comparison on the whole SISEC PPMR

19



λ 10−4 10−2 100 102 104

SDR 3.98 4.82 7.33 7.16 4.40

Table 3: Sensitivity of SDR to λ.

λ 10−2 10−1 100 101 102

SDR track 1 3.57 5.95 6.40 6.41 6.22
SDR track 2 4.79 7.93 8.35 8.33 8.17
SDR track 3 2.85 4.36 5.41 5.54 5.56

Table 4: Sensitivity of SDR to λ for three tracks on a finer grid of λ values.

SDR SIR SAR

lazy 3.47 4.91 10.22
nmf 7.93 16.19 8.82
lownuc 8.78 16.02 9.95
oracle 12.54 22.73 13.03

Table 5: Average results on SISEC database using 40% of annotations. See text
for a description of the row labels.

database[ANV+12], which consists of 5 audio tracks with duration between 10
to 25 seconds each. For fairness, parameters λ (for lownuc) and K (for NMF)
were both selected for maximum value of

∑

g SDRg, out of a finite number of
trial values. Target values T are not constrained to be 0. Again, remember that
a given value of p corresponds to pFNG equality constraints, irrespectively of
the choice of annotations we make.

We include in our comparison the “oracle” estimates, computed using the
true values of the source spectrograms: those are an upper-bound on the accu-
racy of our method. A sanity check is to compare also to a simple candidate:
projecting Xg = 1

GY on the feasible set Q of Problem (6). As we can see in
Table 5, both nmf and lownuc improve substantially over lazy estimates, with
lownuc outperforming nmf by roughly 0.85 dB on average. In our interpreta-
tion, this is because the nonnegativity constraints that we impose are weaker
than in NMF.

Despite the simplicity of the subgradient scheme, our approach is also attrac-
tive in terms of computing time, as illustrated on Figure 6(a). We display here
the SDR against the allowed CPU time. Since NMF is a nonconvex problem,
we display the SDR for several initial points (red curves). A closer look at the
first few seconds of each run (Figure 6(b)) shows that the subgradient method
improves over NMF as soon as the allowed CPU time budget is more than ten
seconds of computations.

5.6. Influence of the proportion of annotations

We can now evaluate the results of our approach for various values of p.
According to our previous discussion in Section 5.1, we only pick Mg,fn = 1
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Figure 6: (Left) Evolution of SDR as a function of CPU time (in seconds), for
(green) our method and (red) NMF started from several initial points.

when Tg,fn = 0. Hyperparameters were tuned as follows: λ = 1 as it seems
to give good results on all tracks. A CPU time budget of 180 seconds was
allowed. Again, remember that a given value of p corresponds to pFNG equality
constraints, irrespectively of the choice of annotations we make.

p SDR SIR SAR
5 % 2.33 3.35 10.80
10 % 3.85 5.79 9.37
20 % 6.07 9.99 8.81
30 % 7.78 13.85 9.23
50 % 11.88 26.58 12.07
oracle 12.54 22.73 13.03

Table 6: Mean results on the SISEC database, as the proportion of annotation
increases.

Table 6 displays source separation results achieved by lownuc. All instru-
ment tracks were mixed together to form the accompaniment (source 1), and
vocal tracks (that is, lead vocal and backing vocals if any) mixed together as
source 2. Complete results are available online 2. As we can see, satisfactory re-
sults are obtained with as little as 20% of annotations. For 50% of annotations,
the computed masks are close to the oracle masking coefficients.

6. Conclusion and perspectives

We have introduced a convex formulation for annotation informed source
separation, dubbed AISS lownuc. Instead of explicitly looking for low-rank
source estimates, we use nuclear norm terms to favor solutions that are close

2http://www.di.ens.fr/~lefevrea/neurocomp_demo.zip
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to low-rank, as demonstrated in the experimental section. One feature of our
formulation is that it handles nonnegativity constraints as an option, which
allows several choices of time-frequency operators, such as the modified discrete
cosine transform[OS75].

In order to simplify our investigations, we have used a Frobenius norm to
measure dissimilarity between the observed spectrogram and its model. In fu-
ture work, we will consider dissimilarity measures that are more frequently used
in the audio source separation community, such as the Kullback-Leibler diver-
gence [BM13].

Our algorithm for AISS lownuc is based on subgradient iterations. Ongoing
experiments using smoothing techniques [Nes05] suggest that we can further im-
prove the quality of source estimates by approximating the nonsmooth objective
function by a differentiable one with Lipschitz continuous gradient. Another in-
teresting research direction would be to use inexact subgradients, by computing
only partial SVDs. By choosing an appropriate algorithm for SVD, we expect
that this will reduce the complexity of each iteration.

Experiments on a benchmark of professionally produced music recordings
[ANV+12] suggest that imposing zeroes in the source estimates is sufficient
and even better than using target values for high coefficients. This is a useful
complement to the heuristics proposed in [LBF12, BM13]. The formulation we
have proposed for AISS is competitive with NMF: even at early iterations, it
produces source estimates of superior quality, based on well-established criteria
[VGF06].

As expected, the nuclear norm term in our formulation favors approximately
low-rank solutions. It is difficult to decide whether exact thresholding may be
accomplished, since in our Problem the proximal operator is difficult to compute.

From the theoretical point of view, our convex formulation is definitely more
attractive than NMF since we can guarantee that our algorithm converges to a
global optimum whereas multiplicative updates algorithms for NMF can only be
shown to convergenge to local minima (when they do converge) : furthermore,
we can rely on standard rates of convergence for subgradient algorithms to apply
to our formulation.

To conclude, we have shown that interactions with user specified constraints
allow to construct well-posed semi-supervised learning techniques. User assisted
source separation methods are the state of the art in single-channel audio source
separation, so it is worth considering algorithms that solve general formulations
which would allow to incorporate various user specifications as constraints or
penalty functions. Thus, the convex formulation presented in this article opens
the possibility of even smarter tools in audio software for creative purposes as
well as advanced sound engineering tasks.
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