
http://sites.uclouvain.be/absil/2013.04 Tech. report UCL-INMA-2013.04-v3

Low-rank retractions: a survey and new results∗

P.-A. Absil† I. V. Oseledets‡

November 4, 2014

Abstract

Retractions are a prevalent tool in Riemannian optimization that provides a way to

smoothly select a curve on a manifold with given initial position and velocity. We review

and propose several retractions on the manifold Mr of rank-r m × n matrices. With the ex-

ception of the exponential retraction (for the embedded geometry), which is clearly the least

efficient choice, the retractions considered do not differ much in terms of run time and flop

count. However, considerable differences are observed according to properties such as domain

of definition, boundedness, first/second-order property, and symmetry.

Key words: Low-rank manifold; fixed-rank manifold; low-rank optimization; retraction;

geodesic; quasi-geodesic; projective retraction; orthographic retraction; Lie-Trotter splitting

1 Introduction

We consider the general low-rank optimization problem of minimizing a real-valued function on a

set of matrices of fixed rank:

min
X∈Mr

f(X), (1)

where

Mr = {X ∈ R
m×n : rank(X) = r} (2)

is the set of m × n matrices of rank r and m, n, and r < min(m, n) are positive integers. Applica-

tions of (1) appear in particular in learning problems, where the low-rank constraint is inherent to

the model or introduced to reduce memory usage and computation time; see the list of applications

in the introduction of [MMBS13b].

Several techniques have been proposed to address (1)—or more specific instances thereof—by

exploiting the fact that Mr is a submanifold of the Euclidean space R
m×n; see, e.g., [MMBS13a,

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Opti-

mization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.

This work was financially supported by the Belgian FRFC (Fonds de la Recherche Fondamentale Collective). The

work of I.O. was supported by Russian Science Foundation grant 14-11-00659. The final publication is available at

Springer via http://dx.doi.org/10.1007/s10589-014-9714-4.
†Department of Mathematical Engineering, ICTEAM Institute, Université catholique de Louvain, B-1348

Louvain-la-Neuve, Belgium (http://sites.uclouvain.be/absil/).
‡Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street 8, Moscow, Russia

(ivan.oseledets@gmail.com).

1

http://sites.uclouvain.be/absil/2013.04
http://dx.doi.org/10.1007/s10589-014-9714-4
http://sites.uclouvain.be/absil/

SWC13, AAM14, MMBS13b, Van13]. Most of these techniques choose a descent direction
.

X for

f in the tangent space to Mr at the current iterate X ∈ Mr and then compute the next iterate

by performing a line search along a curve γ on Mr satisfying γ(0) = X and d
dt γ(t)

∣

∣

t=0
=

.
X. The

curve γ is conveniently chosen as γ(t) = R(X, t
.

X) where R is a retraction on Mr. Retractions

on manifolds, a concept due to Shub [Shu86] that we recall in Section 2.3, have received much

attention lately in the context of Riemannian optimization; see, e.g., [ADM+02, ABG07, AMS08,

Van13, AM12, RW12, SWC13, BMAS14, KSV14].

The purpose of this paper is to review several retractions on Mr and propose new ones. In

particular, we introduce the Lie–Trotter retraction, which directly follows from the first-order

splitting method described in [LO13, §3.2]. An extended version of the “KSL” flavor of this

retraction is known to have an exactness property [LO13, Theorem 4.1], from which we deduce that

the Lie–Trotter retraction is a second-order retraction, i.e., the second derivative of t 7→ R(X, t
.

X)

at t = 0 belongs to the normal space to Mr at X.

The paper is organized as follows. After Section 2 giving the necessary background and pre-

liminaries, Section 3 presents the various retractions, discussing their implementation and their

computational cost. Numerical experiments comparing the retractions are conducted in Sections 4

and 5. Conclusions are drawn in Section 6.

2 Background and preliminaries

This section recalls fundamental notions pertaining to the low-rank manifolds, flop counts, and

retractions on manifolds.

2.1 The low-rank manifold

Central in this paper is the low-rank manifold Mr (2). This subsection gives background on the

geometry of Mr, with an emphasis on the representation of its elements and tangent vectors.

We first introduce some notation. Let

St(r, m) = {X ∈ R
m×r : X⊤X = Ir}

denote the (compact) Stiefel manifold of orthonormal m × r matrices,

R
m×r
∗ = {X ∈ R

m×r : rank(X) = r}

denote the noncompact Stiefel manifold of full column rank m × r matrices,

GL(r) = {X ∈ R
r×r : rank(X) = r}

denote the general linear group of order r, i.e., the set of all r × r invertible matrices, and

O(r) = {X ∈ R
r×r : X⊤X = Ir}

denote the orthogonal group of order r, i.e., the set of all r × r orthogonal matrices.

2

The set Mr is known to be a submanifold of dimension (m+n−r)r embedded in the Euclidean

space R
m×n [Lee03, Example 8.14]. The low-rank optimization problem (1) is thus in the field of

play of Riemannian optimization; see, e.g., [AMS08].

In practice, we prefer not to store an X ∈ Mr as an m × n matrix; it requires storing mn

numbers, which is much larger than the manifold dimension (m + n − r)r in the frequent situation

where r ≪ min(m, n). Instead, we represent X ∈ Mr as

X = MN⊤ with (M, N) ∈ N1 := R
m×r
∗ × R

n×r
∗ , or (3)

X = MN⊤ with (M, N) ∈ N2 := St(r, m) × R
n×r
∗ , or (4)

X = USV ⊤ with (U, S, V) ∈ N := St(r, m) × GL(r) × St(r, n). (5)

Several other representations exist, see [MMBS13b, §3], but in this paper we will only make use

of the three representations above, with an emphasis on (5). Note that the mappings

πi : Ni → Mr : (M, N) 7→ MN⊤,

i = 1, 2, and

π : N → Mr : (U, S, V) 7→ USV ⊤ (6)

are surjective (i.e., every X ∈ Mr is represented) but not injective: the equivalence classes of

representations are

π−1
1 (π1(M, N)) = {(MR, NR−T) : R ∈ GL(r)}

π−1
2 (π2(M, N)) = {(MQ, NQ) : Q ∈ O(r)}

π−1(π(U, S, V)) = {(UQU , Q⊤
U SQV , V QV) : QU , QV ∈ O(r)}. (7)

We also point out, as we will allude to this fact later on, that each of the three “π” mappings

is a submersion, i.e., its differential is surjective at every point; this is shown in detail in [AAM14,

§2] for the case of π1, and the two other cases can be treated similarly. This provides us with

three different expressions of Mr as a quotient manifold. The one that concerns us most is

Mr ≃ (St(r, m) × GL(r) × St(r, n))/(O(r) × O(r)) (8)

with quotient map (6) whose fibers are given by (7).

The set of all tangent vectors to Mr at X = USV ⊤ (5) is termed the tangent space to Mr at

X and denoted by TXMr. The concept of tangent vector to an abstract manifold can be found,

e.g., in [Boo03] or [AMS08]. Since Mr is a submanifold of R
m×n, the tangent space TXMr is

simply identified with {γ′(0) : γ smooth curve on Mr with γ(0) = X}. Depending of whether we

want to recall the foot X in the notation, we write (X,
.

X) ∈ TXMr or
.

X ∈ TXMr.

The projection PXZ of Z ∈ R
m×n onto the tangent space TXMr is given by

PXZ = ZV V ⊤ + UU⊤Z − UU⊤ZV V ⊤, (9)

see [KL07, Lemma 4.1]. Hence every tangent vector
.

X to Mr at X ∈ Mr can be written in the

form
.

X = ZV V ⊤ + UU⊤Z − UU⊤ZV V ⊤. (10)

3

However, the choice of Z to represent
.

X is not unique, and moreover Z ∈ R
m×n contains again

mn numbers, to be compared with the dimension (m + n − r)r of the vector space TXMr. These

drawbacks are remedied next.

Once a decomposition (5) is chosen for X ∈ Mr, a unique representation (
.
U,

.
S,

.
V) of any

.
X ∈ TXMr can be chosen such that

.
X = U

.
SV ⊤ +

.
USV ⊤ + US

.
V ⊤, (11a)

U⊤
.
U = 0, V ⊤

.
V = 0. (11b)

This follows from [KL07, §2.1], or alternatively from the machinery of quotient manifolds by

showing that (U, S, V) 7→ {(
.
U,

.
S,

.
V) : U⊤

.
U = 0, V ⊤

.
V = 0} is a horizontal distribution for the

quotient (8). If
.

X = PXZ, and in particular if
.

X = Z, the decomposition (11) is given by

.
S = U⊤ZV,
.
U = (ZV − U

.
S)S−1 = (I − UU⊤)ZV S−1,

.
V = (Z⊤U − V

.
S⊤)S−T = (I − V V ⊤)Z⊤US−T .

In order to get rid of the inverse of S that appears in the above formulas, we can set Up :=
.
US

and Vp =
.
V S, which yields the unique representation considered in [Van13, §2.1]:

.
X = U

.
SV ⊤ + UpV ⊤ + UV ⊤

p , (12a)

U⊤Up = 0, V ⊤Vp = 0. (12b)

We will favor this representation. If
.

X = PXZ, and in particular if
.

X = Z, the decomposition (12)

is given by

.
S = U⊤ZV,

Up = ZV − U
.
S = (I − UU⊤)ZV,

Vp = Z⊤U − V
.
S⊤ = (I − V V ⊤)Z⊤U.

Finally, the normal space at X is the orthogonal complement to TXMr, in the sense of the

classical Frobenius inner product in the embedding space R
m×n. Since the tangent space is given

by

TXMr = {U
.
SV ⊤ + UpV ⊤ + UV ⊤

p :
.
S ∈ R

r×r, Up ∈ R
m×r, U⊤Up = 0, Vp ∈ R

n×k, V ⊤Vp = 0}

(13)

one finds that the normal space is

T ⊥
X Mr = {Z ∈ R

m×n : U⊤Z = 0 and ZV = 0}. (14)

2.2 Flop counts

We will use flop counts as a way to compare the computational cost of various operations. When

counting flops, we follow the conventions in [GV96, §1.2.4], and we always assume, unless otherwise

stated, that m < n, as this has an impact on the way certain computations are carried out. For

4

example, U⊤ZV costs 2mnr + 2mr2 flops when performed as U⊤(ZV) and 2mnr + 2nr2 flops

when performed as (U⊤Z)V ; the assumption that m < n will thus lead us to prefer the U⊤(ZV)

order, unless U⊤Z is needed in later operations and ZV not, in which case the (U⊤Z)V order is

preferable. These are subtle considerations that need to be taken into account when looking for

the most flop-efficient implementation. This calls for two caveats. The first one is that we have

made a careful but not systematic attempt to find the most flop-efficient implementation of the

various retractions studied in this paper.

The second caveat, much in line with the last paragraph of [GV96, §1.2.4], is that the flop

count does not directly translate into time efficiency, as it ignores various overheads—such as

memory traffic—associated with program execution. For example, if A and B are m × r and C is

r × r with m = 104 and r = 102, then computing A’*B in Matlab can be significantly slower than

computing A*C, even though both operations have the same the flop count of 2mr2. Moreover,

even though it can also be performed in 2mr2 flops with modified Gram-Schmidt [GV96, §5.2.8],

the economy-size QR decomposition of A in Matlab is slower than the product A*C, even much so

on older versions of Matlab. In order to avoid relying on Matlab’s QR implementation, we perform

orthonormalizations using the polar decomposition A = QP with P = (A⊤A)1/2 and Q = A/P ,

for a dominant flop count of 4mr2 when A is of size m × r with r ≪ m.

These remarks indicate that the flop counts and the timing comparisons given in this paper,

while informative, must be taken with a grain of salt. With these provisions in mind, we obtain

that computing
.

X = PXZ (9) in the (Up,
.
S, Vp) representation (12), with X given in the (U, S, V)

representation (5), requires a flop count of 2mnr[ZV]+2mr2[U⊤ZV]+2mr2[U
.
S]+2mnr[Z⊤U]+

2nr2[V
.
S⊤], hence 4mnr + 4mr2 + 2nr2.

Throughout the paper, we present dominant flop counts under the common assumption that

the rank is very low, i.e., r ≪ m. For PXZ, the dominant flop count is thus 4mnr.

2.3 Retractions on manifolds

A (first-order) retraction [ADM+02] (or see [AMS08, §4.1]) on a manifold M is a smooth mapping

R from the tangent bundle TM onto M such that

1. R is defined and smooth on a neighborhood of the zero section in TM;

2. R(X, 0) = X for all X ∈ M;

3. d
dt R(X, t

.
X)

∣

∣

∣

t=0
=

.
X for all X ∈ M and

.
X ∈ TXM.

When M is an embedded submanifold of a Euclidean space E , which is the case of the low-rank

manifold Mr, we say that a retraction R is a second-order retraction if moreover d2

dt2 R(X, t
.

X)
∣

∣

∣

t=0
belongs to the normal space at X to M in E . This is one of the criteria along which the retractions

described in Section 3 differ; see in particular the discussion in Section 4.2.

Retractions are useful in optimization algorithms for applying an update vector
.

X to a current

point X [AMS08, §4] or for “lifting” an objective function to the tangent space [AMS08, §7].

In the present paper, we also consider a related concept which we call extended retraction,

defined as a mapping R from {TXE : X ∈ M} ≃ {(X, Z) : X ∈ M, Z ∈ E} onto M such that

5

R(X, 0) = X and d
dt R(X, tZ)

∣

∣

t=0
= PXZ for all X ∈ M and Z ∈ R

m×n, where PX denotes the

orthogonal projector onto the tangent space to M at X. (In the case of Mr, P is given by (9).)

The name “extended retraction” is justified by the fact that R(X, Z) with Z restricted to TXM

is a retraction. This new concept will be exploited in Section 3.7.

3 Retractions on the low-rank manifold

In this central section, we present and analyze several retractions on the low-rank manifold Mr.

At the beginning of each subsection, we mention the related literature of which we are aware. In

particular, the developments in Sections 3.5 and 3.9 are new to the best of our knowledge. The

Lie–Trotter retractions of Sections 3.7 and 3.8 are arguably new as (extended) retractions but

they directly follow from the material in [LO13, §3.2].

3.1 Projective retraction

The projective retraction is perhaps the retraction that most directly comes to mind on submani-

folds embedded in a Euclidean space. It consists in defining R(X,
.

X) as the projection of X +
.

X on

the manifold. The projective retraction on the low-rank manifold Mr is described and analyzed

in [AM12, §3.2], and an efficient implementation is presented in [Van13, §3].

The projective retraction is thus defined by

R(X,
.

X) = arg min
Y ∈Mr

‖Y − (X +
.

X)‖F ,

where ‖ · ‖F denotes the Frobenius norm. Let σ1(A), . . . , σmin(m,n)(A) be the singular values of an

m × n matrix A in decreasing order. It is known [AM12, Prop. 6] that whenever
.

X is sufficiently

small for ‖
.

X‖ < σr(X)/2 to hold, then R(X,
.

X) exists, is unique, and

R(X,
.

X) =
r

∑

i=1

σiuivi,

where X +
.

X =
[

u1 . . . umin(m,n)

]

diag(σ1, . . . , σmin(m,n))
[

v1 . . . vmin m,n

]⊤

is a singular

value decomposition (SVD) with singular values in decreasing order.

If
.

X is available in the form (12), then [Van13, §3] shows that R(X,
.

X) can be computed

efficiently as follows. First perform orthonormalizations Up = QuSu and Vp = QvSv. Observe

that

X +
.

X =
[

U Qu

]

[

S +
.
S Su

S⊤
v 0

] [

V ⊤

Q⊤
v

]

.

Obtain (Us, Σs, Vs) as an SVD (with decreasing singular values) of the small 2r-by-2r matrix
[

S +
.
S Su

S⊤
v 0

]

. Then we have

R(X,
.

X) = U+S+V ⊤
+ ,

where U+ =
[

U Qu

]

Us(:, 1 : r), V+ =
[

V Qv

]

Vs(:, 1 : r), and S+ = Σs(1 : r, 1 : r).

It is shown in [AM12] that the projective retraction is a second-order retraction.

6

3.1.1 Matlab implementation details

In the numerical experiments of Sections 4 and 5, this retraction is labeled proj. The orthonor-

malizations are obtained with the polar decomposition mentioned in Section 2.2. The SVD is

computed with the svd function, which we found to be faster than getting the truncated SVD

directly with svds.

3.1.2 Flop count

Unless otherwise stated, we assume throughout the paper that X and
.

X are given in the form (5)

and (12), and we consider the dominant flop count when r ≪ m ≤ n.

The dominant flop count to compute (U+, S+, V+) is then 4mr2[Qu, Su] + 4nr2[Qv, Sv] +

O(r3)[Us, Σs, Vs] + 2m2r2[U+] + 2n2r2[V+], hence 8(m + n)r2. However, one should bear in mind

that the O(r3) flop count of the SVD concerns an operation that cannot in general be performed

with finitely many elementary arithmetic operations; it thus involves an iterative process and a

stopping criterion, and this may have a significant impact on the computation time when r is not

much smaller than m. This comment also applies to the matrix square root involved in the polar

decomposition.

If a line search has to be performed, it is also informative to estimate the additional flop count

required to compute R(X, t
.

X) for a new value of t. In the case of the projective retraction, this

additional flop count is O(r3)[Us, Σs, Vs] + 2m2r2[U+] + 2n2r2[V+], hence a dominant flop count

of 4(m + n)r2.

3.1.3 Inverse retraction

Computing the inverse retraction is required in certain situations, e.g., the computation of the

R-barycenter X of a collection of points Y1, . . . , YN , defined by
∑N

i=1 R−1
X Yi = 0, where R−1

X Yi

stands for the tangent vector
.

X at X such that R(X,
.

X) = Yi. Note however that, depending on

the manifold and the retraction, the R-barycenter and the inverse retractions may not be uniquely

defined.

The inverse projective retraction is given by R−1
X Y = (X + TXMr) ∩ (Y + T⊥

Y Mr) − X. A

rather unwieldy formula for R−1
X Y can be obtained from the expressions of the tangent space (13)

and the normal space (14). In contrast, the retraction considered next has a very simple inverse,

as it involves the intersection of two orthogonal affine subspaces of the embedding space R
m×n.

3.2 Orthographic retraction

The orthographic retraction on Mr is introduced in [AM12, §4.4], but computational aspects are

not discussed therein. The concept can be found as far back as [Ros61, Lue72].

The orthographic retraction R on Mr is defined by setting R(X,
.

X) as the point nearest to

X +
.

X in

X +
.

X + T ⊥
X Mr ∩ Mr. (15)

7

This point is unique when
.

X is sufficiently small. When X and
.

X are represented as in (5)

and (12), R(X,
.

X) can be expressed as follows:

R(X,
.

X) = (U(S +
.
S) + Up)(S +

.
S)−1((S +

.
S)V ⊤ + V ⊤

p)

= U+S+V ⊤
+ ,

where U(S +
.
S) + Up =: U+SU and V (S⊤ +

.
S⊤) + Vp =: V+SV are orthonormalizations and

S+ := SU (S +
.
S)−1S⊤

V .

By virtue of the analysis in [AM12], this is a second-order retraction.

3.2.1 Matlab implementation details

This retraction is labeled orth. In our Matlab implementation, the orthonormalizations are ob-

tained with the polar decomposition, and we use mldivide in the computation of S+.

3.2.2 Flop count

Under the standing assumptions stated in Section 3.1.2, the flop count is 2mr2[U(S +
.
S) + Up] +

2nr2[V (S⊤ +
.
S⊤) + Vp] + 4mr2[U+, SU] + 4nr2[V+, SV] + O(r3)[S+]. The dominant cost is thus

6(m + n)r2.

The dominant additional flop count to compute R(X, t
.

X) for a new value of t can be reduced

to 2(m + n)r2 if adequate matrices are precomputed (namely, US, U
.
S + Up, U⊤Up, U⊤

p Up, V S⊤,

V
.
S⊤ + Vp, V ⊤Vp, and V ⊤

p Vp).

3.2.3 Inverse retraction

The inverse orthographic retraction is simple:

R−1
X Y = PX(Y − X) = Y V V ⊤ + UU⊤Y − UU⊤Y V V ⊤ − X,

where P is the projection (9). If Y = UY SY V ⊤
Y , we have

R−1
X Y = ((I − UU⊤)UY SY V ⊤

Y V)V ⊤ + U(U⊤UY SY V ⊤
Y (I − V V ⊤)) + U(U⊤UY SY V ⊤

Y V − S)V ⊤.

This yields the form (12) for R−1
X Y .

3.3 Quotient-based retraction: compact Stiefel approach

A retraction that one naturally obtains by viewing Mr as the quotient (8) is the following:

R(X,
.

X) = U+S+V ⊤
+ ,

where

U+ = RSt(U,
.
U)

S+ = S +
.
S

V+ = RSt(V,
.
V),

8

and RSt is a retraction on the corresponding Stiefel manifold. Since, as we have seen in (7),

the decomposition (5) of X is not unique, we need to ensure that the outcome U+S+V ⊤
+ does

not depend on the choice of the decomposition. This invariance is seen to hold if and only if

the retraction on Stiefel satisfies RSt(UQU ,
.
UQU) = RSt(U,

.
U)QU for all QU ∈ O(r). One such

retraction is the projective retraction on Stiefel [AM12, §3.3], advocated in [MS14, (7)], which

returns the orthonormal factor of the polar decomposition of U +
.
U .

3.3.1 Matlab implementation details

We use the projective retraction on Stiefel for RSt. The resulting retraction on Mr is thus the

one of [MS14, (7)], which we label StRSt-pj.

3.3.2 Flop count

Assuming as usually that
.

X is provided in the representation (12), the dominant flop count is

2mr2[U + UpS−1] + 4mr2[U+] + 2nr2[V + VpS−T] + 4nr2[V+], that is, 6(m + n)r2.

The dominant flop count to compute R(X, t
.

X) for a new t can be reduced to 2(m + n)r2 if

adequate matrices are precomputed.

3.3.3 Inverse retraction

Assume that the projective retraction is used on Stiefel. Given X = USV ⊤ and Y = U+S+V ⊤
+ in

Mr, we seek
.

X ∈ TXMr such that R(X,
.

X) = Y . Observe that Y = (U+QU)(Q⊤
U S+QV)(V+QV)⊤

for all QU , QV orthogonal. We need U+QU = (U +
.
U)PU with PU symmetric positive definite,

and this yields U⊤
+ U =: QU PU (polar decomposition) and

.
U = U+QU P −1

U − U . Likewise, we set

V ⊤
+ V =: QV PV (polar decomposition) and

.
V = V+QV P −1

V − V . Finally,
.
S = Q⊤

U S+QV − S, and

we have

R−1
USV ⊤(

.
X) = U+S+V ⊤

+ ,

where
.

X is given by (11).

3.4 Quotient-based retraction: noncompact Stiefel approach

Yet another possibility is to define

R(X,
.

X) = (U +
.
U)(S +

.
S)(V +

.
V)⊤

= (US + Up)S−1(S +
.
S)S−1(V S⊤ + Vp)⊤

= U+S+V ⊤
+ ,

where US+Up = U+SU and V S⊤+Vp = V+SV are two orthonormalizations and S+ = SU S−1(S+
.
S)S−1S⊤

V . This is a retraction that one naturally obtains by viewing Mr as the quotient manifold

(Rm×r
∗ × GL(r) × R

n×r
∗)/(GL(r) × GL(r)) and favoring representations where the first and third

factors are orthonormal.

3.4.1 Matlab implementation details

This retraction is labeled RRR. We use the polar decomposition for the orthonormalizations.

9

3.4.2 Flop count

Assuming that the orthonormalizations are chosen as polar decompositions, the dominant flop

count is 2mr2[US + Up] + 4mr2[U+, SU] + 2nr2[V S⊤ + Vp] + 4nr2[V+, S+], that is, 6(m + n)r2.

The dominant flop count to compute R(X, t
.

X) for a new t is reduced to 4(m + n)r2 if US and

V S⊤ are precomputed, and even 2(m+n)r2 if U⊤
.
U ,

.
U⊤

.
U , V ⊤

.
V , and

.
V ⊤

.
V are also precomputed.

3.4.3 Inverse retraction

We seek
.

X in the form (11) such that R−1
USV ⊤(

.
X) = U+S+V ⊤

+ . Observe that U+S+V ⊤
+ =

(U+SU)(S−1
U S+S−T

V)(V+SV)⊤ for all SU , SV invertible. We thus require U +
.
U = U+SU , S +

.
S =

S−1
U S+S−T

V , and V +
.
V = V+SV . This yields SU = (U⊤U+)−1,

.
U = U+SU − U , SV = (V ⊤V+)−1,

.
V = V+SV − V ,

.
S = S−1

U S+S−T
V − S.

3.5 Simple second-order retractions

The retractions proposed in this section are more conveniently derived using a two-factor approach.

Without loss of generality, following the notation of [AAM14], we thus consider X = MN⊤ ∈ Mr

and
.

X = MHN⊤ + M⊥KN⊤ + MLN⊤
⊥

∈ TXMr, where M ∈ R
m×r
∗ , N ∈ R

n×r
∗ , H ∈ R

r×r,

K ∈ R
(m−r)×r, L ∈ R

r×(n−r), the columns of M⊥ form a basis of the orthogonal complement

of the column space of M , and likewise for N⊥ with N . Our goal is to derive an expression for

R(X,
.

X) that makes R is a second-order retraction on Mr.

We seek R in the form

R(X,
.

X) =
[

M M⊥

]

[

A0 + A1 + A2

B0 + B1 + B2

]

[

C0 + C1 + C2 D0 + D1 + D2

]

[

N⊤

N⊤
⊥

]

,

where terms indexed by j (j = 0, 1, 2) are jth order expressions of
.

X. The “0th order” condition

on R (i.e., R(X, 0) = X) yields

A0C0 = I (17a)

B0C0 = 0 (17b)

A0D0 = 0 (17c)

B0D0 = 0. (17d)

The first-order condition on R (i.e., d
dt R(X, t

.
X)

∣

∣

∣

t=0
=

.
X) yields

A1C0 + A0C1 = H (18a)

B0C1 + B1C0 = K (18b)

A0D1 + A1D0 = L (18c)

B0D1 + B1D0 = 0. (18d)

10

Finally, the second-order condition on R (i.e., d2

dt2 R(X, t
.

X)
∣

∣

∣

t=0
∈ T ⊥

X Mr) yields

A0C2 + A1C1 + A2C0 = 0 (19a)

B0C2 + B1C1 + B2C0 = 0 (19b)

A0D2 + A1D1 + A2D0 = 0 (19c)

B0D2 + B1D1 + B2D0 arbitrary. (19d)

The above system of matrix equations is underdetermined. A simple solution is readily found

to be

A0 = C0 = I, B0 = D0 = 0,

A1 = H, C1 = 0, B1 = K, D1 = L,

A2 = 0, C2 = 0, B2 = 0, D2 = −HL.

The resulting retraction is thus given by

R(X,
.

X) =
[

M Mp

]

[

I + H

I

]

[

I I − H
]

[

N⊤

N⊤
p

]

,

where we set Mp = M⊥K and Np = N⊥L⊤.

In the three-factor representation (5) and (12), this yields

R(X,
.

X) = U+S+V ⊤
+ (20)

where U+SU := U(S +
.
S) + Up and V+SV := V + VpS−T (I −

.
S⊤S−T) are orthonormalizations

and S+ := SU S⊤
V . To see this, link the 2-factor and 3-factor representations by taking M = U

and N = V S⊤; the relation between the tangent vector representations is then seen to be given

by
.
S = HS, Up = M⊥KS, Vp = N⊥L⊤, and the retraction then writes

R(X,
.

X) =
[

U UpS−1
]

[

I +
.
SS−1

I

]

[

S I −
.
SS−1

]

[

V ⊤

V ⊤
p

]

.

3.5.1 Matlab implementation details

This retraction is labeled ez-2nd. We use the polar decomposition for the orthonormalizations.

We explicitly compute S−1 using inv as it appears twice.

3.5.2 Flop count

Assuming as usually that X as in (5) and
.

X as in (12) are provided, the dominant flop count

is 2mr2 [U(S +
.
S) + Up] + 2nr2 [V + VpS−T (I −

.
S⊤S−T)] + 4mr2 [U+] + 4nr2 [V+], hence

6(m + n)r2.

The dominant flop count to compute R(X, t
.

X) for a new t can be reduced to 2(m + n)r2 with

adequate precomputed matrices.

11

3.6 Simple second-order balanced retraction

In the underdetermined system of equations obtained in Section 3.5, if we moreover impose a

better balancing between the left and right factors by further requiring that A1 = C1, then we are

led to the retraction proposed in [SWC13, Lemma 4]. In the representation (5) and (12), it writes

as follows:

R(X,
.

X) = U+S+V ⊤
+ , (21)

where U+SU := U(S+ 1
2

.
S− 1

8

.
SS−1

.
S)+Up(I− 1

2 S−1
.
S) and V+SV := V (S⊤+ 1

2

.
S⊤− 1

8

.
S⊤S−T

.
S⊤)+

Vp(I − 1
2 S−T

.
S⊤) are orthonormalizations and S+ := SU S−1S⊤

V .

3.6.1 Matlab implementation details

This retraction is labeled Shalit. The same comments as those of Section 3.5 apply.

3.6.2 Flop count

The dominant flop count is the same as in Section 3.5.

3.7 Lie–Trotter extended retraction

Observe that the three terms in PXZ (9) belong to TXMR. Following [LO13, §3.2], let us

define the KSL Lie–Trotter extended retraction R on Mr by setting R(X, Z) as follows for all

Z ∈ TXR
m×n ≃ R

m×n, thus in particular for all Z ∈ TXMr:

1. Obtain U1 and Ŝ1 from

U1Ŝ1V ⊤ = USV ⊤ + ZV V ⊤. (22)

One gets U1 and Ŝ1 by an orthonormalization U1Ŝ1 = US + ZV with U1 orthonormal.

2. Obtain S̃0 from

U1S̃0V ⊤ = U1Ŝ1V ⊤ − U1U⊤
1 ZV V ⊤. (23)

One gets S̃0 by S̃0 = Ŝ1 − U⊤
1 ZV .

3. Obtain V1 and S1 from

U1S1V ⊤
1 = U1S̃0V ⊤ + U1U⊤

1 Z. (24)

One gets V1 and S1 by an orthonormalization V1S⊤
1 = V S̃⊤

0 + Z⊤U1.

Finally, set

R(X, Z) = U1S1V ⊤
1 . (25)

3.7.1 Analysis

We now need to show that the above procedure indeed defines an extended retraction on Mr.

First, it can be shown that R(X, Z) is well defined, i.e., the outcome (25) does not depend on

the choice of the representation (5) of X nor on the orthonormalizations that yield U1 and V1. To

see this, consider the above procedure carried out with two representations X = USV ⊤ = USV ⊤,

12

and use the underline notation to denote the results obtained with the second representation. One

has, for some QU , QV ∈ O(r), U = UQU , V = V QV , and S = Q⊤
U SQV . We then find that, for

some QU1
, QV1

∈ O(r), we have U1 = UQU1
, Ŝ1 = U⊤

U1
Ŝ1QV , S̃0 = Q⊤

U1
S̃0QV , V 1 = V1QV1

, and

S̃1 = Q⊤
U1

S1QV1
, which yields that U1S1V ⊤

1 = U1S1V ⊤

1 . For example, the first step yields U1Ŝ1 =

US + ZV and U1Ŝ1 = US + ZV , which yields the above relations U1 = UQU1
, Ŝ1 = U⊤

U1
Ŝ1QV .

Second, the mapping R is smooth. This is readily seen by choosing the polar decomposition for

the orthonormalizations and noting that the polar factors are smooth functions of their product.

Third, it is readily checked that the zeroth-order property holds: R(X, 0) = X for all X ∈ Mr.

The forth and final point is to show the first order property: d
dt R(X, tZ)

∣

∣

t=0
= PXZ for all

X ∈ M and Z ∈ R
m×n. Since R(X, tZ) amounts to the KSL integration of the low-rank ordinary

differential equation
.
Y (t) = PY (t)Z with initial condition Y (0) = X, the first order property

follows directly from the fact that KSL is a consistent integrator. Alternatively, the property can

be proved from basic principles as follows. First observe that if U(t)S(t) = A(t) is a time-varying

polar decomposition, then U ′ = (I − UU⊤)A′S−1 + Uskew(U⊤A′)S−1 and S′ = sym(U⊤A′),

where skew(A) = 1
2 (A−A⊤) and sym(A) = 1

2 (A+A⊤) denote the skew-symmetric and symmetric

components of A. This can be deduced using the product rule and the expression TU St(m, r) =

{UΩ + U⊥K : Ω = −Ω⊤ ∈ R
r×r, K ∈ R

(m−r)×r} where U⊥ is such that
[

U U⊥

]

∈ O(m).

We then obtain d
dt U1

∣

∣

t=0
= (I − UU⊤)ZV S−1 + Uskew(U⊤ZV)S−1, d

dt Ŝ1

∣

∣

∣

t=0
= sym(U⊤ZV),

d
dt S̃0

∣

∣

t=0
= sym(U⊤ZV) − U⊤ZV = −skew(U⊤ZV), d

dt V1

∣

∣

t=0
= (I − V V ⊤)(V skew(U⊤ZV) +

Z⊤U)S−T + V skew(V ⊤(V skew(U⊤ZV) + Z⊤U))S−T = (I − V V ⊤)Z⊤US−T , and d
dt S⊤

1

∣

∣

t=0
=

sym(V ⊤(V skew(U⊤ZV) + Z⊤U)) = sym(V ⊤SU). This yields d
dt U1S1V ⊤

1

∣

∣

t=0
= d

dt U1

∣

∣

t=0
SV ⊤ +

U d
dt S1

∣

∣

t=0
V ⊤ + US d

dt V ⊤
1

∣

∣

t=0
= PXZ.

We have thus shown the following.

Proposition 3.1 (Lie–Trotter extended retraction). The R mapping defined by (25) is a well-

defined extended retraction on Mr.

Note that, since U1 appears instead of U in (23) and (24), the component of Z in the normal

space T ⊥
X Mr has an impact on the outcome (25); that is, R(X, Z) 6= R(X, PXZ) in general.

We now proceed to show that the Lie–Trotter extended retraction is a second-order retrac-

tion. The proof will make use of the following remarkable property of the Lie–Trotter extended

retraction, which can be deduced directly from [LO13, Theorem 4.1].

Proposition 3.2 (exactness property). Let R be the Lie–Trotter extended retraction defined

in (25). For all X, Y ∈ Mr, it holds that R(X, Y − X) = Y .

Note that the expression R(X, Y − X) only makes sense for extended retractions, as Y − X

does in general not belong to TXMr.

Theorem 3.3 (second-order property). Let R be the Lie–Trotter extended retraction defined

in (25). For all X ∈ TXMr and all
.

X ∈ TXMr, it holds that R(X, t
.

X) = Rortho(X, t
.

X)+O(t3).

Since Rortho is a second-order retraction, it follows that R is a second-order retraction.

Proof. We freely drop the foot X in the notation. Observe that Rortho(t
.

X) = X + t
.

X + ON(t2)

13

where ON(t2) ∈ T ⊥
X Mr with ‖ON(t2)‖ ≤ ct2 for all t sufficiently small. This yields

R(t
.

X) = R(Rortho(t
.

X) − X + ON(t2))

= R(Rortho(t
.

X) − X) + DR(Rortho(t
.

X) − X)[ON(t2)] + O(t4)

= R(Rortho(t
.

X) − X) + (DR(0) + O(t))[ON(t2)] + O(t4)

= R(Rortho(t
.

X) − X) + O(t3)

since DR(0) is the projection onto the tangent space,

= Rortho(t
.

X) + O(t3)

by the exactness property.

3.7.2 Flop count

Assuming that Z is a full m×n matrix and X is available in the factorized form (5), the dominant

cost is 2mr2+2mnr[US+ZV]+4mr2[U1, Ŝ1]+2mr2[U⊤
1 ZV]+r2[Ŝ1−U⊤

1 ZV]+2nr2+2mnr[V S̃⊤
0 +

Z⊤U1] + 4nr2[V1, S⊤
1], hence 4mnr + 8mr2 + 6nr2.

Note however that this extended retraction does not play in the same league as the other

retractions mentioned above, as its input is a full m × n matrix Z instead of an
.

X represented as

in (12). Recall from Section 2.2 that computing
.

X as PXZ already requires 4mnr + 4mr2 + 2nr2

flops.

The dominant additional flop count to compute R(X, tZ) for a new value of t is 4mr2[U1, Ŝ1]+

2mr2[tU⊤
1 ZV] + r2[Ŝ1 − tU⊤

1 ZV] + 2mnr[V S̃⊤
0 + tZ⊤U1] + 4nr2[V1, S⊤

1]. In comparison, for each

retraction R̃ defined above, computing R̃(X, tPXZ) for a new t has a cost of O((m + n)r2) only,

since PXZ can be precomputed. The Lie–Trotter extended retraction is thus not competitive in

the “new t” scenario.

3.8 Lie–Trotter retraction

The (KSL) Lie–Trotter retraction R is simply defined as the Lie–Trotter extended retraction (25)

where Z is restricted to belong to TXMr. The sole purpose of this section is to present a compu-

tationally efficient way of computing R(X,
.

X) when
.

X is available in the (Up, S, Vp) form (12).

1. Get U1 and Ŝ1 by an orthonormalization U1Ŝ1 = U(S +
.
S) + Up with U1 orthonormal.

2. Get S̃0 by S̃0 = Ŝ1 − (U⊤
1 Up + (U⊤

1 U)
.
S).

3. Get V1 and S1 by an orthonormalization V1S⊤
1 = V S̃⊤

0 + Z⊤U1, with Z as in (12).

Finally, set

R(X,
.

X) = U1S1V ⊤
1 .

This is a second-order retraction in view of the analysis in Section 3.7.

14

3.8.1 Matlab implementation details

This retraction is labeled KSL. We use the polar decomposition for the orthonormalizations. From

the first step, we have U⊤U1 = (S +
.
S)Ŝ−1

1 . We compute V S̃⊤
0 + Z⊤U1 as V (S̃⊤

0 + U⊤
p U1 +

.
S⊤(U⊤U1)) + Vp(U⊤U1).

3.8.2 Flop count

The dominant flop count is 2mr2[U(S +
.
S) + Up] + 4mr2[U1, Ŝ1] + O(r3)[U⊤U1] + 2mr2[U⊤

1 Up] +

4nr2[V S̃⊤
0 + Z⊤U1] + 4nr2[V1, S⊤

1], that is, 8(m + n)r2.

The dominant flop count to compute R(X, t
.

X) for a new t can be reduced to 4mr2 + 6nr2.

3.9 Modified Lie–Trotter retraction

Observe that the above procedure adds
.
S twice and subtracts it once. Instead, one could modify

the procedure as follows to add it only once:

1. Get U1 and Ŝ1 by a decomposition U1Ŝ1 = US + Up with U1 orthonormal.

2. Get S̃0 by S̃0 = Ŝ1 + U⊤
1 U

.
S.

3. Get V1 and S1 by a decomposition V1S⊤
1 = V S̃⊤

0 + VpU⊤U1.

Finally, set

R(X,
.

X) = U1S1V ⊤
1 .

This can be shown to be a retraction using techniques similar to those employed in Section 3.7.

However, numerical experiments indicate that this is not a second-order retraction; see Section 4.2.

3.9.1 Matlab implementation details

This retraction is labeled KSL+. In view of the first step, the product U⊤U1 appearing in steps 2

and 3 can be computed as SŜ−1
1 .

3.9.2 Flop count

The dominant flop count is 2mr2[US + Up] + 4mr2[U1, Ŝ1] + 4nr2[V S̃⊤
0 + VpU⊤U1] + 4nr2[V1, S⊤

1],

thus 6mr2 + 8nr2. When m < n, the “LSK” way (computing V1 first) is preferable in terms of

flops; this amounts to the (different) retraction that maps (X,
.

X) to R(X⊤,
.

X⊤)⊤, with dominant

flop count of 8mr2 + 6nr2. We use the LSK way in our experiments when m < n.

The dominant flop count to compute R(X, t
.

X) for a new t can be reduced to 2mr2 + 6nr2 if

adequate matrix products are precomputed.

3.10 Exponential retraction

The exponential retraction is defined by R(X,
.

X) = γ(1), where γ is the geodesic on Mr (viewed

as a Riemannian submanifold of R
m×n) with initial conditions γ(0) = X and γ′(0) =

.
X. The

exponential is arguably the “theoretically ideal” retraction, but it was realized early on that

15

trying to move along geodesics is usually computationally expensive [Lue72]. Formalizing the

idea of resorting instead to first-order approximations of geodesics was a motivation behind the

concept of retraction [Shu86, ADM+02]. And indeed, for our manifold Mr, we are not aware

of a closed-form expression for the geodesics. (Note however that there is a Riemannian metric

on Mr, different from the embedded metric, for which geodesics admit a closed-form expression;

see [AAM14, §6.11].)

Nevertheless, it is worthwhile investigating how the retractions proposed above compare with

the exponential. To this end, we have implemented the following basic numerical scheme for

solving the geodesic equation PX(t)X
′′(t) = 0, where P is the tangent projection (9): X(t + δ) =

Rortho(X(t), δ
.

X(t)),
.

X(t + δ) = PX(t+δ)

.
X(t). As usually in numerical integration schemes, the

choice of δ is guided by the conflicting goals of achieving low truncation errors, rounding errors,

and computation times. In our numerical experiments, we found that δ = 10−3 was an acceptable

compromise, and we did not attempt to choose δ adaptively.

This retraction is labeled geod.

4 Numerical tests

We now compare numerically the various retractions described above. The Matlab code that

generated the tables is available from http://sites.uclouvain.be/absil/2013.04.

4.1 Pairwise distances

In a first set of experiments reported in Table 1, we compute the pairwise distances ‖Ri(X, t
.

X) −

Rj(X, t
.

X)‖F , where Ri stands for the ith retraction in our list. Matrix X is represented as in (5),

where U and V are generated by orthonormalizing matrices drawn from the standard normal

distribution and S is drawn from the standard normal distribution. The tangent vector
.

X = PXZ

is generated by drawing an m × n matrix Z from the standard normal distribution. For this small

value of t, one observes that the second-order retractions R (i.e., all the retractions but StRSt-pj,

RRR, and KSL+) achieve the smaller distance between R(X, t
.

X) and Rgeod(X, t
.

X).

Table 1: Pairwise distances with m = 1.0e+03, n = 1.0e+03, r = 1.0e+01, t = 1.0e-04.
proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

proj 0.0e+00 1.3e-05 1.8e-04 1.9e-05 1.3e-05 1.3e-05 9.2e-06 1.6e-05 8.8e-06

ortho 1.3e-05 0.0e+00 1.8e-04 2.1e-05 3.4e-08 1.6e-08 9.5e-06 1.9e-05 4.4e-06

StRSt_pj 1.8e-04 1.8e-04 0.0e+00 1.7e-04 1.8e-04 1.8e-04 1.8e-04 1.7e-04 1.8e-04

RRR 1.9e-05 2.1e-05 1.7e-04 0.0e+00 2.1e-05 2.1e-05 2.0e-05 1.1e-05 2.0e-05

ez-2nd 1.3e-05 3.4e-08 1.8e-04 2.1e-05 0.0e+00 2.3e-08 9.5e-06 1.9e-05 4.4e-06

Shalit 1.3e-05 1.6e-08 1.8e-04 2.1e-05 2.3e-08 0.0e+00 9.5e-06 1.9e-05 4.4e-06

KSL 9.2e-06 9.5e-06 1.8e-04 2.0e-05 9.5e-06 9.5e-06 0.0e+00 1.8e-05 7.0e-06

KSL+ 1.6e-05 1.9e-05 1.7e-04 1.1e-05 1.9e-05 1.9e-05 1.8e-05 0.0e+00 1.7e-05

geod 8.8e-06 4.4e-06 1.8e-04 2.0e-05 4.4e-06 4.4e-06 7.0e-06 1.7e-05 0.0e+00

Table 2 shows the results obtained for the same experiment but with S now chosen to have a

large condition number. Specifically, we choose S with singular values equal to 1 (r −1 times) and

16

http://sites.uclouvain.be/absil/2013.04

10−6 (one time). The various retractions are seen to behave very differently in this ill-conditioned

setting. In particular, a large discrepancy is observed between RRR, ez-2nd, Shalit, and the

other retractions. These retractions are readily seen to be unbounded: bounded inputs do not

yield bounded outputs. The orth retraction is also unbounded, but the unboundedness becomes

apparent for inputs such that S +
.
S is ill-conditioned. All the other retractions considered above

are bounded, namely proj, StRSt-pj, KSL, KSL+, and geod.

Table 2: Pairwise distances with m = 1.0e+03, n = 1.0e+03, r = 1.0e+01, t = 1.0e-04.
proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

proj 0.0e+00 9.4e-02 3.2e-03 1.0e+03 1.0e+03 2.5e+04 2.2e-03 3.8e-03 1.9e-03

ortho 9.4e-02 0.0e+00 9.6e-02 1.0e+03 1.0e+03 2.5e+04 9.6e-02 9.6e-02 9.5e-02

StRSt_pj 3.2e-03 9.6e-02 0.0e+00 1.0e+03 1.0e+03 2.5e+04 3.3e-03 3.2e-03 4.0e-03

RRR 1.0e+03 1.0e+03 1.0e+03 0.0e+00 2.0e+03 2.4e+04 1.0e+03 1.0e+03 1.0e+03

ez-2nd 1.0e+03 1.0e+03 1.0e+03 2.0e+03 0.0e+00 2.6e+04 1.0e+03 1.0e+03 1.0e+03

Shalit 2.5e+04 2.5e+04 2.5e+04 2.4e+04 2.6e+04 0.0e+00 2.5e+04 2.5e+04 2.5e+04

KSL 2.2e-03 9.6e-02 3.3e-03 1.0e+03 1.0e+03 2.5e+04 0.0e+00 4.5e-03 3.7e-03

KSL+ 3.8e-03 9.6e-02 3.2e-03 1.0e+03 1.0e+03 2.5e+04 4.5e-03 0.0e+00 3.9e-03

geod 1.9e-03 9.5e-02 4.0e-03 1.0e+03 1.0e+03 2.5e+04 3.7e-03 3.9e-03 0.0e+00

Several other experiments on pairwise distances could be conducted to get a more detailed un-

derstanding of the differences between the various retractions. In particular, since the retractions

do not have the same domain of definition, pushing them to the limit of their domain of definition

can reveal marked differences.

4.2 Second-order property

As we have seen, retractions proj, ortho, ez-2nd, Shalit, KSL, and geod are second-order re-

tractions. In Table 3, we report an experiment that corroborates this finding and indicates that

the other retractions considered above are not second-order retractions. The table provides the

values of the Frobenius norm of the tangent projection of the second-order finite difference, i.e.,

δi(t) := ‖PX(Ri(X, t
.

X) − 2X + Ri(X, −t
.

X))‖F /t2 where Ri stands for the ith retraction in the

list. If δi(t) is O(t) (and thus O(t2) since it is an even function), it indicates that Ri is a second-

order retraction. If it behaves like O(1), it indicates that Ri is not a second-order retraction. It

appears from Table 3 that StRSt-pj, RRR, and KSL+ are not second-order retractions, while all

the other retractions are second-order retractions.

Note that δ(t) is in fact identically zero in exact arithmetic for ortho and ez-2nd. This

explains why the O(t) behavior is not visible in Table 3 for these two retractions. The property

that δ(t) ≡ 0 is obvious for ortho: in view of (15), we have that PX(Rortho(X,
.

X)−X) =
.

X, hence

PX(Rortho(X, t
.

X)−2X +Rortho(X, −t
.

X)) = PX(Rortho(X, t
.

X)−X)+PX(Rortho(X, −t
.

X)−X) =

t
.

X − t
.

X = 0. For ez-2nd, one can show that PX(Rez-2nd(X, t
.

X) − X) is an odd function of t,

and the property follows.

17

Table 3: Norm of the tangent projection of the second-order finite difference.
t proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

1.0e-03 1.2e+01 2.5e-09 1.8e+03 5.2e+02 2.1e-09 1.6e-03 1.9e+00 1.8e+02 2.1e+00

1.0e-04 1.2e-01 2.6e-07 1.8e+03 5.2e+02 2.1e-07 1.6e-05 1.9e-02 1.8e+02 2.2e-02

4.3 Symmetry

Most of the retractions presented above are readily seen to preserve symmetry, i.e., R(X,
.

X) is

a symmetric matrix if X and
.

X are symmetric matrices. The exceptions are ez-2nd, KSL, and

KSL+. The experiments reported in Table 4 confirm that these three retractions do not preserve

symmetry. In these experiments, X and
.

X are chosen symmetric and the Frobenius norm of

R(X,
.

X) − R(X,
.

X)⊤ is computed.

Table 4: Symmetry test.
proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

6.9e-14 1.0e-13 4.9e-14 8.3e-14 2.1e+00 9.9e-14 1.1e+01 1.1e+01 1.3e-12

4.4 Run times

For information, we report wall-clock computation times for X of square shape (Table 5) and for

X of horizontal shape (Table 6). The tests were run with MATLAB Version 7.13.0.564 (R2011b)

on a PC with two Intel(R) Pentium(R) D CPU 3.00GHz, 2048 KB cache each, running Linux

kernel 3.2.0. The timings observed are compatible with the flop counts mentioned for the various

retractions, and geod, as expected, is much slower.

Table 5: Timing experiments (in seconds) with m = 1.0e+04, n = 1.0e+04, r = 1.0e+01.

proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

2.6e-02 2.3e-02 2.2e-02 2.2e-02 2.1e-02 2.5e-02 2.4e-02 2.3e-02 5.8e+01

To test how these figures may depend on the platform, we also ran the same experiments with

Matlab 8.1.0.604 (R2013a) on a PC with four Intel(R) Xeon(R) CPU X3210 2.13GHz, 4096 KB

cache each, running Linux kernel 2.6.18. The outcomes are presented in Tables 7 and (8).

5 Retractions at work: low-rank matrix completion

Several modern solvers for optimization on manifolds require the manifold of interest to be

equipped with a retraction; see, in particular, the Manopt toolbox [BMAS14]. The behavior

of the resulting optimization algorithm may crucially depend on the choice of the retraction. In

this section, we illustrate this claim for the low-rank manifold Mr (2), by showing that the re-

tractions discussed above yield considerable variations in performance when they are used within

a Riemannian trust-region solver applied to a low-rank matrix completion problem.

18

Table 6: Timing experiments (in seconds) with m = 1.0e+03, n = 1.0e+04, r = 1.0e+01.

proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

1.5e-02 1.3e-02 1.3e-02 1.3e-02 1.3e-02 1.5e-02 1.5e-02 1.3e-02 3.6e+01

Table 7: Timing experiments (in seconds) with m = 1.0e+04, n = 1.0e+04, r = 1.0e+01.

proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

1.3e-02 9.9e-03 1.1e-02 1.0e-02 1.1e-02 1.2e-02 1.2e-02 1.1e-02 2.5e+01

The objective function f on Mr is the one described in [AAM14], namely,

f(X) =
1

2
‖PΩ(X − C)‖2

F ,

where C is an m × n matrix, Ω ⊂ {1, . . . , m} × {1, . . . , n} is the set of indices of the observed

entries, PΩ sets to zero the entries not in Ω while leaving the other entries unchanged, and ‖ · ‖F

denotes the Frobenius norm. A minimizer of f over Mr is thus a rank-r matrix X such that

Xij − Cij , (i, j) ∈ Ω, is smallest in the least-square sense.

We conducted several numerical experiments with Matlab R2014a equipped with the Manopt

toolbox, version 1.0.7. We chose the manifold structure of Mr to be the one generated by

fixedrankembeddedfactory (the geometry described in [Van13]), with the exception of the retrac-

tion which was reassigned in turn to each of the retractions defined in Section 3. We experimented

with various solvers (steepestdescent, conjugategradient, and trustregions), various proce-

dures for constructing C, and various procedures for constructing the initial guess X0 passed to

the solver. We refer to this combination of choices as the setup.

The outcomes of the numerical experiments were very diverse and it is impractical to describe

them in detail in view of the large number of setups that were considered. The big picture is that,

for some setups, the choice of the retraction has little impact on the behavior of the algorithm,

while for other setups, the choice of the retraction has a significant impact, with qualitative findings

that may or may not be consistent across runs. (Runs differ when the procedures for constructing

C or X0 involve (pseudo)randomly generated matrices.)

In Table 9, we report results obtained with a setup for which the qualitative findings were

fairly consistent across runs. Matrix C is generated as C = LR⊤, where L of size m × r and R of

size n × r are drawn from the standard normal distribution. The index set Ω is chosen uniformly

at random with a sampling ratio of 4d/(mn), where d = k(m+n−k) is the dimension of Mr. The

initial iterate X0 is chosen as the best rank-r approximation of PΩ(C) (obtained with an SVD of

PΩ(C) truncated to its r largest singular values). Manopt’s factory fixedrankembeddedfactory

and solver trustregions are called with default parameters. The number of trust-region inner

iterations in Table 9 correspond to one typical run.1 In this specific setup, we found across all

runs that retractions proj, ortho, KSL, and geod perform similarly, and better than the other

retractions. Moreover, the ratio between the number of inner iterations taken by the worst and the

1The Matlab code that we used to generate the tables of this paper is available from

http://sites.uclouvain.be/absil/2013.04.

19

http://sites.uclouvain.be/absil/2013.04

Table 8: Timing experiments (in seconds) with m = 1.0e+03, n = 1.0e+04, r = 1.0e+01.

proj ortho StRSt_pj RRR ez-2nd Shalit KSL KSL+ geod

6.9e-03 5.8e-03 5.9e-03 5.8e-03 5.8e-03 6.8e-03 6.5e-03 6.0e-03 1.5e+01

best retraction was most often slightly smaller than 2. This shows that the choice of the retraction

can have a considerable impact on the performance of low-rank optimization algorithms.

Table 9: Total number of inner iterations required to reach the first iterate number k such that

f(Xk) = 1.0e-06 f(X0), with m = 1.0e+03, n = 1.0e+03, r = 1.0e+01.

proj ortho StRSt-pj RRR ez-2nd Shalit KSL KSL+ geod

iter 16 19 29 25 20 27 16 27 16

6 Concluding comments

We have presented, analyzed, and tested numerically several retractions on the low-rank manifold

Mr of rank-r m×n matrices. In the absence of a closed-form expression, the exponential retraction

(geod) is clearly the least time-efficient one, confirming that much computational effort can be

spared by considering other retractions. A rather good coherence has been observed between

flop counts and run times, but the differences between the various retractions along these criteria

are rather inconsequential, except for geod. However, the various retractions differ markedly

according to properties such as domain of definition, boundedness, first/second-order property, and

symmetry. It also appears from the various low-rank matrix completion experiments mentioned

in Section 5 that the choice of the low-rank retraction is an issue that deserves attention when

a practical low-rank optimization problem is solved: in the seemingly innocuous setup used for

Table 9, replacing a retraction by an other can make the algorithm twice faster.

It is quite possible that one of the low-rank retractions will emerge from extended practice

as the most adequate default choice within standard solvers, but it is premature to venture a

definitive recommendation. The current state of affairs is that the developers of low-rank numerical

methods have now available a sizeable collection of mechanisms—the various retractions presented

in Section 3—to smoothly produce curves of fixed-rank matrices with given initial position and

velocity; and we know from Table 9 that the choice of the mechanism may have a noticeable

impact on the performance of the numerical method.

Acknowledgements

We are grateful to the anonymous referees and to Bart Vandereycken for several useful comments

on the first version of this paper.

20

References

[AAM14] P.-A. Absil, Luca Amodei, and Gilles Meyer. Two Newton methods on the manifold

of fixed-rank matrices endowed with riemannian quotient geometries. Computation.

Stat., 29(3-4):569–590, 2014. doi:10.1007/s00180-013-0441-6.

[ABG07] P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on

Riemannian manifolds. Found. Comput. Math., 7(3):303–330, July 2007.

doi:10.1007/s10208-005-0179-9.

[ADM+02] Roy L. Adler, Jean-Pierre Dedieu, Joseph Y. Margulies, Marco Martens, and

Mike Shub. Newton’s method on Riemannian manifolds and a geometric

model for the human spine. IMA J. Numer. Anal., 22(3):359–390, July 2002.

doi:10.1093/imanum/22.3.359.

[AM12] P.-A. Absil and Jérôme Malick. Projection-like retractions on matrix manifolds.

SIAM J. Optim., 22(1):135–158, 2012. doi:10.1137/100802529.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Ma-

trix Manifolds. Princeton University Press, Princeton, NJ, 2008. URL:

http://press.princeton.edu/titles/8586.html.

[BMAS14] Nicolas Boumal, Bamdev Mishra, P.-A. Absil, and Rodolphe Sepulchre. Manopt, a

matlab toolbox for optimization on manifolds. Journal of Machine Learning Research,

15:1455–1459, 2014. URL: http://jmlr.org/papers/v15/boumal14a.html.

[Boo03] William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian

Geometry. Academic Press, 2003. Revised Second Edition.

[GV96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,

MD, third edition, 1996.

[KL07] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on

Matrix Analysis and Applications, 29(2):434–454, 2007. doi:10.1137/050639703.

[KSV14] Daniel Kressner, Michael Steinlechner, and Bart Vandereycken. Low-rank tensor

completion by Riemannian optimization. BIT Numerical Mathematics, 54(2):447–

468, 2014. doi:10.1007/s10543-013-0455-z.

[Lee03] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 2003.

[LO13] Ch. Lubich and I.V. Oseledets. A projector-splitting integrator for dynamical low-

rank approximation, 2013. arXiv:1301.1058v2.

[Lue72] David G. Luenberger. The gradient projection method along geodesics. Management

Sci., 18:620–631, 1972.

21

http://dx.doi.org/10.1007/s00180-013-0441-6
http://dx.doi.org/10.1007/s10208-005-0179-9
http://dx.doi.org/10.1093/imanum/22.3.359
http://dx.doi.org/10.1137/100802529
http://press.princeton.edu/titles/8586.html
http://jmlr.org/papers/v15/boumal14a.html
http://dx.doi.org/10.1137/050639703
http://dx.doi.org/10.1007/s10543-013-0455-z
http://arxiv.org/abs/1301.1058v2

[MMBS13a] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre. Low-rank optimization with trace

norm penalty. SIAM J. Optim., 23(4):2124–2149, 2013. doi:10.1137/110859646.

[MMBS13b] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre. Fixed-rank matrix factoriza-

tions and Riemannian low-rank optimization, 2013. arXiv:1209.0430v2.

[MS14] B. Mishra and R. Sepulchre. R3MC: A Riemannian three-factor algorithm for low-

rank matrix completion, 2014. Accepted for publication in the proceedings of the

53rd IEEE Conference on Decision and Control, 2014. arXiv:1306.2672v2.

[Ros61] J. B. Rosen. The gradient projection method for nonlinear programming. II. Nonlin-

ear constraints. J. Soc. Indust. Appl. Math., 9:514–532, 1961.

[RW12] Wolfgang Ring and Benedikt Wirth. Optimization methods on Riemannian mani-

folds and their application to shape space. SIAM J. Optim., 22(2):596–627, 2012.

doi:10.1137/11082885X.

[Shu86] Michael Shub. Some remarks on dynamical systems and numerical analysis. In

L. Lara-Carrero and J. Lewowicz, editors, Proc. VII ELAM., pages 69–92. Equinoc-

cio, U. Simón Bolívar, Caracas, 1986.

[SWC13] Uri Shalit, Daphna Weinshall, and Gal Chechik. Online learning in the embedded

manifold of low-rank matrices. J. of Mach. Learn. Res., 13:429–458, 2013.

[Van13] Bart Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM

J. Optim., 23(2):1214–1236, 2013. doi:10.1137/110845768.

22

http://dx.doi.org/10.1137/110859646
http://arxiv.org/abs/1209.0430v2
http://arxiv.org/abs/1306.2672v2
http://dx.doi.org/10.1137/11082885X
http://dx.doi.org/10.1137/110845768

	Introduction
	Background and preliminaries
	The low-rank manifold
	Flop counts
	Retractions on manifolds

	Retractions on the low-rank manifold
	Projective retraction
	Matlab implementation details
	Flop count
	Inverse retraction

	Orthographic retraction
	Matlab implementation details
	Flop count
	Inverse retraction

	Quotient-based retraction: compact Stiefel approach
	Matlab implementation details
	Flop count
	Inverse retraction

	Quotient-based retraction: noncompact Stiefel approach
	Matlab implementation details
	Flop count
	Inverse retraction

	Simple second-order retractions
	Matlab implementation details
	Flop count

	Simple second-order balanced retraction
	Matlab implementation details
	Flop count

	Lie–Trotter extended retraction
	Analysis
	Flop count

	Lie–Trotter retraction
	Matlab implementation details
	Flop count

	Modified Lie–Trotter retraction
	Matlab implementation details
	Flop count

	Exponential retraction

	Numerical tests
	Pairwise distances
	Second-order property
	Symmetry
	Run times

	Retractions at work: low-rank matrix completion
	Concluding comments

