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Abstract

It is seemingly paradoxical to the classical definition of the independent com-
ponent analysis (ICA), that in reality the true sources are often not strictly un-
correlated. With this in mind, this paper concerns a framework to extract quasi-
uncorrelated sources with finite supports by optimizing a range-based contrast func-
tion under unit-norm constraints (to handle the inherent scaling indeterminacy of
ICA) but without orthogonality constraints. Albeit the appealing contrast prop-
erties of the range-based function, e.g., the absence of mixing local optima, the
function is not differentiable everywhere. Unfortunately, there is a dearth of lit-
erature on derivative-free optimizers that effectively handle such a nonsmooth yet
promising contrast function. This is the compelling reason for the design of a nons-
mooth optimization algorithm on a manifold of matrices having unit-norm columns
with the following objectives: (i) to ascertain convergence to a Clarke stationary
point of the contrast function; (ii) to adhere to the necessary unit-norm constraints
more naturally. The proposed nonsmooth optimization algorithm crucially relies on
the design and analysis of an extension of the Mesh Adaptive Direct Search (MADS)
method to handle locally Lipschitz objective functions defined on the sphere. The
applicability of the algorithm in the ICA domain is demonstrated with simulations
involving natural, face, aerial and texture images.
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1 Introduction

Independent component analysis (ICA) is a blind source separation technique that at-
tempts to linearly recombine given signals into maximally statistically independent com-
ponents. The task is usually formulated as minimizing1 an objective function, termed
contrast function, that quantifies the “level of dependence” of a collection of random vari-
ables. In practical applications, one is often given an n×T matrix M containing T sam-
ples of n real-valued signals, and the ICA task is then to find an unmixing matrix X such
that the matrix X⊤M looks as much as possible, in the sense of a finite-sample contrast
function, like T observations of n statistically independent random variables. ICA is a
very active research topic—see, e.g., the surveys (Hyvärinen, 1999b, 2011)—with many
real-world applications, such as biomedical signal processing, remote sensing, seismic
signal analysis, denoising in electric and magnetic circuits, and medical image analysis.

A range-based contrast function for the simultaneous extraction of bounded sources
was first introduced in (Pham, 2000) and further investigated in (Lee et al., 2006a,b;
Vrins, 2007). A finite-sample estimate of this contrast, with low sensitivity to noise and
outliers, can be obtained (see Section 6 for details) using the finite-sample estimator
of the range using order statistics, as proposed in (Vrins et al., 2007, §V). We adopt
this contrast in this work due to the following reasons. (i) It is endowed with the
discriminacy property, i.e., it is devoid of mixing local optima (Pham and Vrins, 2006).
This means that any local minimum of the contrast function corresponds to an unmixing
matrix estimate. (ii) It is suitable for estimating the sources involving signals/images
which are in general bounded. (iii) It has been proved to be suitable for large-scale, ill-
conditioned, and noisy mixtures (Lee et al., 2006a). (iv) The finite-sample range-based
contrast function is less expensive to evaluate than classical contrast functions such as
the Shannon-entropy-based mutual information (MI).

However, minimizing this range-based contrast function presents two difficulties.
First, in connection with the scaling indeterminacy of the ICA task, it is common to
impose a unit-norm constraint on the columns of the candidate unmixing matrix X; see,
e.g., (Vrins et al., 2007, §II) and (Absil and Gallivan, 2006; Lee et al., 2006b). Expected
benefits of the unit-norm constraint are to simplify the expression of the contrast function
and to avoid continuums of minimizers that may complicate convergence analyses, re-
duce the convergence speed, or even destroy local convergence properties. The difficulty,
though, is that constrained optimization is in general more challenging than uncon-
strained optimization. Nevertheless, the unit-norm constraint yields a feasible set that
is merely a Cartesian product of (hyper)spheres. This feasible set has a natural structure
of a Riemannian manifold, and the optimization problem can thus be tackled by Rie-

1As in (Pham and Vrins, 2006) and in keeping with the recent optimization literature, we adopt
the convention that the contrast function is to be minimized. The literature that adopts the opposite
convention is encompassed by taking the opposite of the contrast function considered.
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mannian geometric techniques, exploited, e.g., in (Shen et al., 2009; Absil and Gallivan,
2006; Shen and Hüper, 2009; Shen and Kleinsteuber, 2010; Selvan et al., 2012a). The
present paper connects with the Riemannian approach in the sense that the proposed
algorithm can be viewed as evolving on the Riemannian feasible set. The second difficulty
is that the range-based contrast function is nonsmooth, as it involves order statistics.
Consequently, smooth Riemannian optimization techniques, as described in (Absil et al.,
2008), are not suitable for this task.

Optimization algorithms for minimizing range-based contrast functions were pro-
posed in (Vrins, 2007) and in related papers, both in the orthogonal and nonorthog-
onal settings. In the orthogonal setting, orthonormality of the unmixing matrix X is
enforced after prewhitening (Hyvärinen et al., 2001). This produces unmixed signals
that are exactly uncorrelated. A method for orthogonal range-based ICA is proposed
in (Vrins et al., 2007, §VI), where the independent components (ICs) are estimated se-
quentially (deflation approach) by a direct-search–type method in which the search frame
is built by means of Jacobi-like rotations. A similar method, referred to as support-width
ICA (SWICA), is proposed in (Vrins, 2007, §4.3). The nonorthogonal setting, on the
other hand, is motivated by the fact that the sources in real-world applications may
not be exactly uncorrelated (and thus not exactly independent). It is even unreason-
able to expect that the finite-sample estimation of the correlation between the sources
be exactly zero. While prewhitening remains a worthy preprocessing for the mixtures
M, relaxing the orthogonality constraint offers leeway to find an unmixing matrix X

where the contrast function takes a lower value, with the hope that such an X will also
yield a better recovery of the sources. This explains why nonorthogonal ICA methods
have gained popularity in the recent years (Douglas et al., 2000; Yeredor, 2002; Pham,
2001; van der Veen, 2001; Boscolo et al., 2004). In this direction, the nonorthogonal
support-width ICA (NOSWICA) reported in (Lee et al., 2006b) relaxes the orthogonal-
ity constraint during the estimation process. To get around the difficulty of repeatedly
estimating the same source in the deflation method, the first source is estimated by min-
imizing the support-width, and the rest of the sources are extracted by minimizing the
penalized support. Since there is an inherent drawback of accumulating the IC estima-
tion error in the deflation method, an algorithm for simultaneous range-based ICA was
proposed in (Selvan et al., 2012b), in the form of a population-based nonsmooth opti-
mizer, namely, a cross-entropy method with von Mises-Fisher (vMF) distribution. The
attractive feature here is the ability to intrinsically maintain the unit-norm constraint
of randomly drawn candidate solutions from the vMF distribution.

The aforementioned optimization methods for range-based ICA are not supported
by convergence analyses. In fact, as acknowledged in (Vrins, 2007, Remark 22), the
first goal of Vrins’s influential thesis was not to develop optimization schemes but rather
to analyze the theoretical behavior of entropic contrast. Moreover, the cross-entropy
method of (Selvan et al., 2012b) lacks convergence guarantees and suffers from the com-
putational burden of such heuristics.

In this paper, we contribute to improving the optimization aspect of range-based ICA
algorithms by proposing and analyzing a new method for nonsmooth optimization with
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unit-norm constraint. The new method, when applied to the minimization of the range-
based contrast function on the Cartesian product of spheres, results in a nonorthogonal
ICA algorithm that is shown to strongly outperform other ICA algorithms in an image
separation task.

The new optimization method, called SMADS, is an extension to the sphere of the
mesh adaptive direct search (MADS). The MADS algorithm is an iterative derivative-
free constrained optimizer proposed by Audet et al. (Audet and Dennis, 2006) to handle
nonsmooth objective functions, where constraints are imposed using the extreme bar-
rier approach—the objective function values of infeasible points are set to +∞. It is
an improvement over the generalized pattern search (GPS) class of methods (Torczon,
1997) that use only a finite number of poll directions for exploring the space of variables
locally. The key advantage of the MADS algorithm over other frame-based methods,
e.g., (Coope and Price, 2000), is that it produces an asymptotically dense set of polling
directions, meaning that convergence to a local optimum is guaranteed under mild as-
sumptions. In other words, the MADS algorithm produces a Clarke stationary point.
Aside from this merit, it is also easy to implement.

The proposed SMADS algorithm takes the form of a general-purpose derivative-free
feasible method for unconstrained optimization on the sphere. By “feasible”, we mean
that all the iterates produced by SMADS belong to the sphere. By “unconstrained”, we
mean that, for simplicity of the exposition, the feasible set is assumed to be the whole
sphere; however, since the workings of SMADS are only slightly more complex than those
of MADS, it would not be difficult to handle further constraints akin to those considered
in (Audet and Dennis, 2006). (Observe that the original MADS is not suited for the
sphere constraint, nor for manifold constraints in general. In particular, the hypertan-
gent cone is empty everywhere and convergence results such as (Audet and Dennis, 2006,
Th. 3.12) become vacuous.) The SMADS algorithm is built so as to retain all the con-
vergence properties of the original MADS while remaining computationally inexpensive
and easy to implement. The additional computational cost with respect to the original
MADS is due to occasional scaling and rounding operations that occur during the face
transition mechanism (described in Section 2); it remains comparatively negligible unless
the objective function is extremely cheap to evaluate.

This paper is organized as follows. Section 2 introduces notation that enables a con-
cise description and analysis of the proposed algorithm. After recalling the fundamentals
of the original MADS algorithm, Section 3 defines and discusses SMADS, the proposed
mesh adaptive direct search algorithm on the sphere. An in-depth convergence analysis
of SMADS is then proposed in Section 4, where the common principles and differences
with the original MADS algorithm are highlighted. In Section 5, a practical instance
of the SMADS algorithm is provided, extending the LTMADS algorithm to the sphere
setting. The adaptation of the SMADS algorithm for the purpose of minimizing the
range-based ICA contrast function is then detailed in Section 6. Numerical experiments
are conducted in Section 7, where the task of unmixing the image data is considered.
Finally, conclusions and perspectives are given in Section 8.
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2 Notation and Definitions

This section introduces notation, depicted in Figure 1, that enables a more concise
description and analysis of the SMADS algorithm (Algorithm 1). This section can be
skipped and referred to when needed.

Let R
n
0 := R

n \ {0} denote the set of n-tuples of real numbers with the zero n-
tuple excerpted, and let R+ denote the set of strictly positive real numbers. The unit
(hyper)sphere in R

n is denoted by

S
n−1 := {x ∈ R

n : ‖x‖2 = 1}, (1)

where ‖·‖2 denotes the Euclidean norm, and the axis-aligned circumscribed (hyper)cube
is denoted by

Cn−1 := {x ∈ R
n : ‖x‖∞ = 1}, (2)

where ‖ · ‖∞ denotes the maximum norm. Let s > 0 with 1
s
integer. The virtual mesh

of size s on the hypercube Cn−1 is the set

Mn−1
s := {x ∈ Cn−1 :

x

s
∈ Z

n}. (3)

We define the scaling map onto the sphere,

S : Rn
0 → S

n−1 : x 7→
x

‖x‖2
, (4)

the scaling map onto the hypercube,

C : Rn
0 → C

n−1 : x 7→
x

‖x‖∞
, (5)

and the latter followed by rounding onto the virtual mesh of size s,

Ms : R
n
0 →M

n−1
s : x 7→ s⌊

1

s
C(x)⌉, (6)

where ⌊·⌉ represents rounding off the argument to the nearest integer value.
Let (e1, . . . , en) denote the canonical basis of Rn. For i = −1, . . . ,−n, define ei :=

−e|i|. For i = ±1, . . . ,±n and x ∈ R
n, define xi := e⊤ix. For i = ±1, . . . ,±n, let Fei

denote the face of Cn−1 that contains ei, that is,

Fei := {x ∈ C
n−1 : xi = 1}.

The affine hull of a face Fei is aff(Fei) := {x ∈ R
n : e⊤ix = 1} = {x ∈ R

n : xi = 1}.
This is the hyperplane that contains Fei . The tangent space of aff(Fei) is T aff(Fei) =
{v ∈ R

n : e⊤iv = 0}. It is the hyperplane spanned by {e1, . . . , ei−1, ei+1, . . . , en}. For
i = ±1, . . . ,±n and x ∈ R

n with xi 6= 0, define the scaling of x onto aff(Fei) by

(x)↑i :=
x

xi
.
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Observe that (x)↑i is the intersection between aff(Fei) and the straight line through 0

and x. Note also that for any point x on the affine hull aff(Fei) of a given face Fei , the
scaling C(x) leaves the point x unmodified if x ∈ Fei and brings x to the nearest face
Fej otherwise. The scaling C—and hence also the scaling Ms—thus implicitly offers a
convenient face transition mechanism that will be used to produce iterates belonging to
Cn−1 at all times.

For i = ±1, . . . ,±n and d ∈ R
n−1, define the embedding (d)→֒i to be the vector of

R
n obtained from d by inserting a zero in the ith position. In other words, (d)→֒i ∈ R

n

with

e⊤j (d)→֒i =















dj for j = 1, . . . , i− 1

0 for j = i

dj−1 for j = i+ 1, . . . , n.

Given a sequence {αk}k≥0 ∈ R, we let the smallest α encountered up to element k
be denoted by

αk := min
k′≤k

αk′ . (7)

3 SMADS Algorithm on the Sphere

The purpose of this section is to define and discuss SMADS, the proposed mesh adaptive
direct search algorithm on the sphere.

We first recall the general ideas behind the original MADS algorithm. Initially
presented in (Audet and Dennis, 2006), MADS is an iterative derivative-free constrained
optimization algorithm generating a finite number of trial points at each iteration k, using
a set of directions around the current iterate xk. The current objective value f(xk) is
compared to the objective function at the feasible trial points and is updated when
improvement is achieved (without any sufficient decrease requirement). The trial points
must belong to a specific mesh, constructed using a set of directions in R

n scaled by the
mesh size parameter. Note that in order to ensure the MADS convergence properties,
these directions must respect some conditions that are detailed in (Audet and Dennis,
2006), and will be discussed later in the convergence analysis of SMADS (Section 4).

Each iteration of the MADS algorithm is composed of two steps, namely, the search
step and the poll step. The search step is optional and allows the exploration of the
search space. Any heuristic can be used to sample candidates, as long as they lie on
the mesh. This step is not involved in the convergence analysis and is typically used
to enhance global exploration of the search space. The poll step on the other hand
is mandatory, and is used whenever the search step is not used or fails to produce an
improved iterate. The poll step is the one that leads to the convergence results of the
MADS algorithm. To do so, it only produces candidate points that lie on a subset of
the mesh, called the poll frame, to which corresponds a parameter called the poll size.
The mesh size parameter is then updated at the end of each iteration and the poll size
is updated accordingly.
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xy

(y)↑2 Fe2

aff(Fe2)

T aff(Fe2)

C((y)↑2) C(x)

S(x)
M 1

2
(x)

e1e−1

e2

e−2

C1

S
1

Figure 1: A pictorial representation of the introduced notation for a 2-dimensional set-
ting, which illustrates the unit sphere S1, the hypercube C1 (alternately long- and short-
dashed lines), the virtual meshM1

1
2

of size 1
2 (small hollow dots), one of the four faces

(Fe2 in alternately long- and triple short-dashed line), its affine hull aff(Fe2) (medium-
dashed lines) and the corresponding tangent space T aff(Fe2) (short-dashed lines). A
point x ∈ R

2
0 is depicted alongside its scaling S(x) onto the sphere (checked dot) and its

scaling C(x) onto the hypercube (dull gray dot on the right). The scaling-and-rounding
map M 1

2
of x to the virtual mesh is also shown (hollow dot). Another point y ∈ R

2
0 is

depicted together with its scaling (y)↑2 (dark gray dot) onto the affine hull of the face
Fe2 . A face switching mechanism is implicitly present in the mapping C as typified by
the point C((y)↑2) (dull gray dot on the left).
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Algorithm 1 : Spherical MADS (SMADS)

1: Refer to Section 2 for notation
2: Input: real-valued function f on the sphere S

n−1, extended to R
n
0 according to (8);

convergence threshold ε ≥ 0 (where ε = 0 generates an infinite sequence); integer
τ > 1;

3: Initialization: k := 0; initial iterate x0 := ±ej for some j ∈ {1, . . . , n}; mesh size
parameter αm

0 := τβ0 for some integer β0 ≤ 0; poll size parameter αp
0 as in (11);

4: while αp
k > ε do

5: SEARCH STEP (optional)
6: Generate N ≥ 0 points x1

k, . . . ,x
N
k on the meshMn−1

αm
k

(see (3) and (7));

7: if N > 0 and there is i∗ ∈ {1, . . . , N} such that f(xi∗

k ) < f(xk) then
8: xk+1 := xi∗

k and declare iteration successful;
9: else

10: POLL STEP
11: Construct poll frame Pk according to Definition 1; (A specific way of construct-

ing Pk will be given in Section 5.1.)
12: if there is p∗ ∈ Pk such that f(p∗) < f(xk) then
13: xk+1 := p∗ and declare iteration successful;
14: else

15: xk+1 := xk and declare iteration unsuccessful;
16: end if

17: end if

18: k := k + 1;
19: Update the parameters αm

k as in (10) and αp
k as in (11);

20: end while

21: return
◦
x := S(xk) := xk/‖xk‖2;
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We now present the SMADS algorithm, our adaptation of MADS to the sphere set-
ting. The algorithm statement is given in Algorithm 1. Several comments and precisions
follow.

The problem addressed by SMADS is to minimize a given real-valued function f
defined on the (hyper)sphere S

n−1. We use the same notation f to denote its zero-
degree homogeneous extension to R

n
0 , i.e.,

f(x) := f(S(x)), (8)

where S denotes the scaling to the sphere given by (4).
All the iterates generated by SMADS belong to the circumscribed hypercube Cn.

SMADS can however be viewed as an iteration on the sphere S
n−1 because the scaling

map S restricted to Cn is a one-to-one map that leaves f invariant. The situation is
depicted in Figure 2. By working on the hypercube instead of the sphere, we benefit
from the fact that the search space is locally a linear manifold almost everywhere, but
we need a face-transition mechanism (provided by the scaling map Ms (6)). As we will
show below, the face-transition mechanism present in SMADS introduces a very mild
computational overhead and retains all the convergence properties of the original MADS.

The search step in Algorithm 1 is optional since N = 0 is allowed. In view of (3)
and (7), the finest virtual mesh (3) at any iteration k is given byMn−1

αm
k

= Cn−1 ∩αm
k Z

n.

As we will see, 1/αm
k is an integer at every iteration k, and it follows thatMn−1

αm
k

consists

of the nodes of a fitted grid on the circumscribed hypercube Cn−1. This is illustrated in
Figure 1 (for n = 2) and Figure 3 (for n = 3) for one face.

The poll step is performed whenever the search step does not produce a new iterate.
Since the meshMn−1

αm
k

is finite and the search step does not update αm
k , it follows that

the poll step is performed infinitely often (when the convergence threshold ε is set to 0).
The poll frame Pk is constructed around the current iterate xk, according to Defini-

tion 1.

Definition 1 (poll frame). Given a positive spanning set Ξk ⊂ R
n−1 (i.e., every element

of Rn−1 can be written as a nonnegative linear combination of the elements of Ξk), the
poll frame of SMADS at the current iterate xk ∈ Fei is the set

Pk := Mαm
k

(

{xk + αm
k (ξ)→֒i(k) : ξ ∈ Ξk}

)

, (9)

where M (6) is the mapping to the virtual mesh and i(k) is such that xk ∈ Fei(k) . (When
xk belongs to more than one face, the ambiguity can be removed by setting i(k) to be
the smallest i such that xk ∈ Fei .) Furthermore, each polling direction ξ ∈ Ξk must
satisfy the conditions below:

• ξ ∈ Z
n−1
0 ;

• αm
k ‖ξ‖ ≤ αp

k.
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S
n−1

Fe3

F−e3

e1

e2

e3

−e1

−e2

−e3

A B

C D

E F

G H

Figure 2: A pictorial representation of the algorithm setting, where the unit sphere Sn−1

is enclosed within a hypercube Cn−1. All the iterates lie on the (bounded) faces Fei ,
i = ±1, . . . ,±n, of Cn−1, e.g., the faces labeled as ABCD and EFGH are F−e3 and Fe3 ,
respectively; ei are the endpoints of the canonical basis vectors (dashed and continuous
arrows) pointing outward from the origin of Sn−1.
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S
n−1

Fei

Fej

x0 ← ei

x1 ← p1
0

p2
0

p3
0

p4
0

p1
1

p2
1

p3
1

p4
1

αm
0 ξ10

αm
0 ξ20

αm
0 ξ30

αm
0 ξ40

αm
1 ξ11

αm
1 ξ21

αm
1 ξ31

αm
1 ξ41

αm
0

αm
1

M2
αm
1

M2
αm
1
←M2

αm
0

Figure 3: The initial iterate x0 has been selected as ei. As per (3), the mesh is con-
ceptually built around x0, which is an integer lattice (dashed grid) with the mesh size
parameter αm

0 . For the poll directions Ξ0 = {ξ10, . . . , ξ
4
0} (arrows with a hollow head

for k = 0), the algorithm generates trial points p1
0, . . . ,p

4
0 (dark gray dots) around x0,

which constitute the poll frame denoted by a set P0. Note that at k = 0, the mesh
points located at the intersections of the dashed horizontal and vertical lines form a set
M2

αm
0
, such that P0 ⊂ M

2
αm
0

as specified in Definition 1. Since f(p1
0) < f(x0), p

1
0 is

used to update the current iterate x0 as x1. Recall that the meshM2
αm
1

with the mesh

size parameter αm
1 given by (7) is the same asM2

αm
0
, owing to the fact that αm

1 = τ1αm
0

where τ > 1 is a fixed integer. At every iteration k, four trial points are generated as the
set of directions Ξk (arrows with a solid head for k = 1) considered here is the maximal
positive basis with #Ξk = 2(n− 1) = 4.
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Observe also that ‖ (ξ)→֒i(k) ‖ = ‖ξ‖. In the original MADS algorithm presented
in (Audet and Dennis, 2006), there is more freedom on the nature of the vectors ξ; for
simplicity, we adopt the choice made in the LTMADS method, see (Audet and Dennis,
2006, §4).

(The reader familiar with the MADS algorithm will notice that the last bullet
of (Audet and Dennis, 2006, Def. 2.2) has no counterpart in Definition 1. Translated
in the SMADS context, the condition requires that limits of the normalized sets { ξ

‖ξ‖ :

ξ ∈ Ξk} are positive spanning sets. This condition is useful when f is smooth and
allows to conclude, as in (Coope and Price, 2000, Th. 4.2), that each cluster point is a
stationary point of f . However, as discussed in (Audet and Dennis, 2006), when f is
nonsmooth, other assumptions are needed to conclude that cluster points are (Clarke)
stationary points. The denseness assumption that we will encounter in Theorem 5 makes
the positive spanning limit set condition superfluous.)

The mesh size parameter αm
k is updated at the end of each iteration according to the

following rule: given two integers β− ≤ −1 and β+ ≥ 0, choose

αm
k = τβkαm

k−1 (10)

for some

βk =

{

{0, 1, . . . , β+} if iteration is successful

{β−, β− + 1, . . . ,−1} otherwise,

such that αm
k+1 ≤ 1. (Recall that τ > 1 is a fixed integer.) Hence, for all k, αm

k = τ
∑k

i=0 βi

and αm
k = τmin0≤k′≤k

∑k′

i=0 βi , where min0≤k′≤k

∑k′

i=0 βi ≤
∑k

i=0 βi ≤ 0 are integers. In
particular, as announced, 1/αm

k is an integer for all k.
The poll size parameter αp

k is then determined such that αm
k ≤ αp

k ≤ 1 and moreover,
for every infinite index set K, limk∈K αm

k = 0 if and only if limk∈K αp
k = 0. To fix ideas,

we set
αp
k =

√

αm
k (11)

which satisfies both conditions. (We impose that αp
k ≤ 1 in order to be able to apply

the last point of Lemma 6 in Theorem 7.)
As we will see in Theorem 2, limk→∞ αp

k = 0, which justifies the stopping criterion.
A crucial aspect of SMADS is that all the iterates and all the poll points belong to

the virtual mesh defined in (3), as shown next.

Proposition 1. In SMADS (Algorithm 1), for all k, and recalling definitions (3) and (7),
it holds that

xk ∈M
n−1
αm
k

and Pk ⊂M
n−1
αm
k

.

Proof. The claim is direct for Pk in view of the presence of the scaling-and-rounding
map Mαm

k
in (9). Regarding xk, let k′ be the smallest integer such that xk′ = xk. If

k′ = 0, then xk is a face center (i.e. xk = ei,−n ≤ i ≤ n) and the claim follows, so we
henceforth assume that k′ > 0. Then xk′ is a new point generated by Algorithm 1 at
step k′− 1 and, in view of the workings of the algorithm, we have that xk′ ∈M

n−1
αm
k′−1

. In
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view of the mesh size update rule (10), we have that αm
k′−1/α

m
k is an integer and hence

thatMn−1
αm
k′−1
⊆Mn−1

αm
k

. The claim follows.

An important consequence is that xk + αm
k (ξ)→֒i(k) involved in the definition (9) of

Pk is such that 1
αm
k

(

xk + αm
k (ξ)→֒i(k)

)

is a vector of integers for all k. Hence, in the fre-

quently encountered situation where αm
k (ξ)→֒i(k) is sufficiently small for xk+αm

k (ξ)→֒i(k)

to remain on the hypercube Cn−1, we have that the scaling-and-rounding operation Mαm
k

in Pk (9) has no effect and can thus be omitted. When it cannot be omitted, the scaling-
and-rounding operation remains computationally cheap. This justifies the claim made
in the introduction that the computational overhead of SMADS with respect to MADS
is minor.

4 Convergence Analysis of SMADS

In adapting to SMADS the convergence analysis of MADS (Audet and Dennis, 2006,
§3), the main difficulty is to take face transition into account. In other words, we need
to address the fact that, whenever xk +αm

k (ξ)→֒i(k) in the definition (9) of Pk is outside

the hypercube Cn−1, the action of Mαm
k

scales it back to Cn−1 and rounds it to the

nearest point of the virtual meshMn−1
αm
k

.

We first show that the convergence analysis of MADS still holds if the notion of
direction is replaced by the notion of adapted direction, defined next. We conclude by
showing that if the set of refining directions is dense, then so is the set of adapted refining
directions, under a reasonable condition on the size of the poll frame.

The scaling-and-rounding operation that occurs during face transition prompts us to
define adapted search directions as follows. The concept is illustrated in Figure 4.

Definition 2 (adapted search direction). Let xk ∈ Fei be the current iterate and
let ξ ∈ R

n−1 be a search direction, where i is chosen as in Definition 1 if there is an
ambiguity. The adapted search direction ξ̂ is the direction of the variation of xk obtained
by going to xk + αm

k (ξ)→֒i, scaling to the hypercube, rounding onto the virtual mesh,
and scaling back to the affine hull of face Fei ; more precisely,

ξ̂ :=
1

αm
k

(

(

Mαm
k
(xk + αm

k (ξ)→֒i)
)

↑i
− xk

)

. (12)

Observe that if ξ is an integer vector and xk +αm
k (ξ)→֒i remains in Fei , then ξ̂ = ξ.

Observe also that
Pk = C

(

{xk + αm
k ξ̂ : ξ ∈ Ξk}

)

;

hence {xk + αm
k ξ̂ : ξ ∈ Ξk} is the frame in aff(Fei) that projects to Pk by scaling onto

Cn−1.
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xk
pk = xk + αm

k ξkαm
k ξk

αm
k ξ̂k

C(pk)

Mαm
k
(pk)

(

Mαm
k
(pk)

)

↑i

= xk + αm
k ξ̂k

C1

S
1

aff(Fei)

S
2

Fei

Fej

aff(Fei)

xk

p1
k

p2
k

p3
k

p4
k

αm
k ξ1k

αm
k ξ2k

αm
k ξ3k

αm
k ξ4k

αm
k ξ̂4k

C(p4
k)

Mαm
k
(p4

k)

(

Mαm
k
(p4

k)
)

↑i

αm
k

Figure 4: Illustration of the face switching mechanism and the notion of adapted di-
rection (top: 2D; bottom: 3D). At iteration k, a poll direction (arrow with a hollow
head—top: ξk; bottom: ξ4k) produces the frame point (dark gray dot—top: pk; bottom:
p4
k) that belongs to aff(Fei) but not to Fei . Consequently, it must be assigned to a mesh

point on the face Fej of Cn−1. This is carried out in two steps: first, by scaling onto
the hypercube, symbolized as C, the frame point is restricted to Cn−1 (dull gray dot);
next, it is assigned to the nearest mesh point using the operation Mαm

k
(hollow dot).

By scaling this point back to aff(Fei) denoted as (·)↑i (checked dot), the face switching

procedure results in an adapted search direction (arrow with a diamond head—top: ξ̂k;
bottom: ξ̂4k).
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Until Section 4.1, the analysis of SMADS unfolds much as the analysis of MADS
in (Audet and Dennis, 2006, §3), with directions replaced by adapted directions. We
provide some details for the reader’s convenience.

Theorem 2. Under the assumption that a locally Lipschitz continuous function f :
S
n−1 → R and an initial iterate x0 ∈ Fei are available for the algorithm,

(i) all the iterates {xk} produced by the SMADS algorithm lie in a compact set;

(ii) the update of the poll and mesh size parameters satisfy

lim inf
k→∞

αp
k = lim inf

k→∞
αm
k = 0.

Proof. The first claim is straightforward: all the iterates belong to the hypercube Cn−1,
which is a compact set.

The second claim can be shown by means of a contradiction argument. We know
that for all N ≥ 0, the iterates x0, . . . ,xN belong to the meshMn−1

αm
N

. Suppose, by way

of contradiction, that the second claim does not hold. Then αm
∞ := limN→∞ αm

N > 0, and
it follows that all the iterates belong to Mn−1

αm
∞

. This set contains finitely many points,
hence an improved mesh point can be found only finitely many times. After that, the
mesh size parameter αm

N is decreased at each iterate according to rule (10), which implies
that the mesh size parameter goes to zero, a contradiction.

Definition 3 (minimal frame center). If the poll step fails to produce an improved
mesh point at iteration k, then the iterate xk is said to be a minimal frame center.

Definition 4 (refining subsequence). Let {xk}, {α
p
k} and {i(k)} be generated by Al-

gorithm 1. If K is an infinite index set such that {xk}k∈K are minimal frame centers,
{αp

k}k∈K converges to zero, and {i(k)}k∈K is a constant, say j, then {xk}k∈K is called a
refining subsequence (on face j).

The next result concerning the existence of at least one convergent refining sub-
sequence can be viewed as an extension of Theorem 3.6 in (Audet and Dennis, 2002)
obtained for the GPS algorithms.

Theorem 3. Let {xk} be the iterates produced by the SMADS algorithm optimizing
a locally Lipschitz f : S

n−1 → R, then there exists at least one convergent refining
subsequence.

Proof. The result follows immediately from Theorem 2 that guarantees the existence of
a subset of indices K ′ ⊂ K for which {αm

k }k∈K′ ↓ 0 with K being the set of indices
corresponding to the minimal frame centers.

In SMADS, the concept of refining direction (Audet and Dennis, 2006, Def. 3.2) is
complemented by the one of adapted refining direction.
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Definition 5 (refining direction and adapted refining direction). Let
◦
x be the limit

of a convergent refining subsequence. For some subset of indices L ⊆ K, if the limit
limk∈L

ξk
‖ξk‖

exists with poll direction ξk ∈ Ξk, then this limit is said to be a refining

direction for
◦
x. For some subset of indices L ⊆ K, if the limit limk∈L

ξ̂k

‖ξ̂k‖
exists with

poll direction ξk ∈ Ξk (where the hat denotes the adapted direction as in (12)), then
this limit is said to be an adapted refining direction for

◦
x.

The subsequent theorem is the generalization of (Audet and Dennis, 2006, Th. 3.12)
by taking into account adapted refining directions. We first recall a classical definition.

Definition 6 (Clarke generalized directional derivative). The Clarke generalized direc-
tional derivative of f at x ∈ R

n
0 along a direction v ∈ R

n is defined as

f◦(x;v) := lim sup
y→x, t↓0

f(y + tv)− f(y)

t
.

Theorem 4. Let f (as defined in (8)) be Lipschitz near a limit
◦
x ∈ Fej of a refining

subsequence on face j, and v̂ ∈ Taff(Fej ) be an adapted refining direction for
◦
x. Then

the generalized directional derivative of f at
◦
x in the direction v̂ is nonnegative, i.e.,

f◦(
◦
x; v̂) ≥ 0.

Proof. The proof reproduces the proof of (Audet and Dennis, 2006, Th. 3.12), with R
n

replaced by the linear manifold aff(Fej ) and without constraints.
Let {xk}k∈K be a refining subsequence that converges to

◦
x. Express v̂ ∈ Taff(Fej ) as

limk∈L
ξ̂k

‖ξ̂k‖
with ξk ∈ Ξk for all k ∈ L, following Definition 5. In view of (Audet and Dennis,

2006, Prop. 3.9) (which obviously generalizes from R
n to linear manifolds), we have that

f◦(
◦
x; v̂) = lim

k∈L
f◦

(

◦
x;

ξ̂k

‖ξ̂k‖

)

. (13)

The SMADS algorithm guarantees that αm
k ‖ξ̂k‖ converges to zero due to the following

rationale:

(i) αm
k ‖ξ‖∞ ≤ αp

k (second bullet in the conditions to be satisfied by the poll frame in
Definition 1);

(ii) lim inf
k→∞

αp
k = 0 (second bullet in Theorem 2).

By the definition of Clarke’s generalized directional derivative, we have

f◦(
◦
x; v̂) ≥ lim sup

k∈L

f(xk + αm
k ‖ξ̂k‖

ξ̂k

‖ξ̂k‖
)− f(xk)

αm
k ‖ξ̂k‖

= lim sup
k∈L

f(xk + αm
k ξ̂k)− f(xk)

αm
k ‖ξ̂k‖

(14)

≥ 0.
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The first inequality stems from the fact that f◦(
◦
x; v̂) given in Definition 6 uses a more

general supremum limit, whereas the one on the right hand side of (14) considers a
particular choice. The last inequality holds because xk is a minimal frame center.

Much as for MADS, we have the following convergence result to Clarke stationary
points.

Definition 7 (Clarke stationary point on the sphere). Let f be Lipschitz continuous
near

◦
x ∈ Fej . Then

◦
x is termed a Clarke stationary point of f if f◦(

◦
x;v) ≥ 0 for

every direction v ∈ R
n. Since f is homogeneous of degree zero, this is equivalent to

f◦(
◦
x;v) ≥ 0 for every direction v ∈ Taff(Fej ).

Theorem 5. Let f (as defined in (8)) be Lipschitz near a limit
◦
x ∈ Fej of a refining

subsequence on face j. If the set of adapted refining directions for
◦
x is dense in Fej ,

then
◦
x is a Clarke stationary point of f .

Proof. The proof follows from Theorem 4 and (Audet and Dennis, 2006, Prop. 3.9).

4.1 Denseness of Adapted Refining Directions

We now set out to show that, under some condition, if the set of refining directions is
dense, then so is the set of adapted refining directions.

To this end, the next lemma will play a crucial role. It provides bounds on the
perturbation incurred due to the scaling-and-rounding operation of the mapping Ms.

Lemma 6. Let y belong to aff(Fei) for some i ∈ {±1, . . . ,±n}; in other words, e⊤iy = 1.
Then, for all mesh sizes s > 0 with 1

s
integer, we have

‖Ms(y)− C(y)‖∞ ≤
s

2
. (15)

and

‖ (Ms(y))↑i − y‖∞ ≤ s
1

|(Ms(y))i(C(y))i|
. (16)

If moreover s < 1
‖y‖∞

, then

‖ (Ms(y))↑i − y‖∞ ≤ 2s‖y‖2∞. (17)

Finally, if moreover ‖y‖∞ ≤ 2, then

‖ (Ms(y))↑i − y‖∞ ≤ 8s. (18)

Proof. Claim (15) is straightforward from the definitions and from basic rounding error
theory.

We show (16). To simplify the notation, let a := Ms(y) and b := C(y), and observe
that (Ms(y))↑i − y = (a)↑i − (b)↑i. Observe also that |ai| ≤ ‖a‖∞ ≤ 1 and |bi| ≤
‖b‖∞ ≤ 1; for b, this is because b = y/‖y‖∞; for ai, this is because the mesh fits

to the hypercube. We have (a)↑i − (b)↑i =
a
ai
− b

bi
= bi(a−b)−(ai−bi)b

aibi
. Thus ‖ (a)↑i −
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(b)↑i ‖∞ ≤
|bi|‖a−b‖∞+|bi−ai|‖b‖∞

aibi
≤ ‖b‖∞‖a−b‖∞+‖b−a‖∞‖b‖∞

aibi
≤ 2‖b−a‖∞

aibi
, which is the

sought result. To obtain the penultimate inequality, we have used the (already shown)
fact that |bi| ≤ ‖b‖∞ ≤ 1 along with |ai − bi| ≤ ‖a− b‖∞.

We show (17). We have that (C(y))i = 1/‖y‖∞, and (Ms(y))i − (C(y))i ≤ s/2.
Hence 1

|(Ms(y))i(C(y))i|
≤ 1

|(C(y))i|−
s
2

1
|(C(y))i|

≤ 2‖y‖2∞ if s
2 < 1

2
1

‖y‖∞
, i.e., if s < 1

‖y‖∞
. The

claim follows.
Finally, (18) is direct in view of the above.

We can now state and prove the announced result.

Theorem 7. Let
◦
x ∈ Fej be a limit of a refining subsequence on face j. Let v be a refin-

ing direction, and let {ξk}k∈L be a sequence as in Definition 5 such that limk∈L
ξk

‖ξk‖
= v.

Assume that there is a constant c1 such that, for all k ∈ L, c1α
p
k ≤ αm

k ‖ξk‖. Then

limk∈L
ξ̂k

‖ξ̂k‖
= v, and thus v is also an adapted refining direction.

Proof. From Lemma 6, one deduces that ‖αm
k ξ̂k−αm

k ξk‖ ≤ 8αm
k . Since c1α

p
k ≤ αm

k ‖ξk‖,

it follows that
‖αm

k
ξ̂k−αm

k
ξk‖

αm
k
‖ξk‖

≤
8αm

k

c1α
p

k

≤
8αm

k

c1α
p

k

= 8
c1

√

αm
k → 0 as k → ∞, and thus

limk∈L
ξ̂k

‖ξ̂k‖
= limk∈L

ξk
‖ξk‖

.

5 A Practical SMADS

The original MADS algorithm described in (Audet and Dennis, 2006) is a general frame-
work in the sense that its convergence properties rely on some conditions on the polling
directions. In order to practically implement this algorithm, one has to provide a mech-
anism to produce admissible polling directions. The first proposed concrete instance of
MADS is the Lower Triangular MADS (LTMADS) (Audet and Dennis, 2006, §4). We
now propose a specific instance of SMADS, inspired from LTMADS. The algorithm,
called LTSMADS, is described in Algorithm 2. Precisions on the algorithm statement
and a convergence analysis follow.

The selection of xk+1 in line 19 of Algorithm 2 follows the opportunistic strategy.
For simplicity, we do not discuss other strategies (exhaustive, random, . . . ).

5.1 Generating Set of Directions

In the proposed LTSMADS, the directions in Ξk respecting the conditions mentioned
in Definition 1 are generated as in LTMADS (Audet and Dennis, 2006, §4). The al-
gorithm is based on a random lower triangular matrix, hence its name. A brief de-
scription of generating Ξk is provided below, and a more elaborate treatment is found
in (Audet and Dennis, 2006, §4).

For each iteration k, the lower triangular matrix L of size (n − 2) × (n − 2) is first
constructed as a basis in R

n−2 with the diagonal elements being either 2ℓ or −2ℓ and the
lower components being randomly selected from the set S = {−2ℓ+1,−2ℓ+2, . . . , 2ℓ−1},
where ℓ = − log4(α

m
k ). Next, a specific column b(ℓ) ∈ Z

n−1, relying only on αm
k , is built
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Algorithm 2 : LTSMADS

1: Refer to Section 2 for notation
2: Input: see Algorithm 1
3: Initialization: see Algorithm 1
4: while αp

k > ε do

5: if k > 0 and f(xk) < f(xk−1) then
6: SEARCH STEP

7: sk := Mαm
k−1

(xk−1 + 4αm
k−1 (ξ)→֒i);

8: if f(sk) < f(xk) then
9: xk+1 := sk;

10: else

11: xk+1 := xk;
12: end if

13: else

14: POLL STEP

15: Construct Pk := Mαm
k
({xk + αm

k (ξ)→֒i : ξ ∈ Ξk}), where Ξk is a positive basis
generated as detailed in Section 5.1;

16: if f(p) ≥ f(xk) for all p ∈ Pk then

17: xk+1 := xk;
18: else

19: Set xk+1 as the first element p of Pk such that f(p) < f(xk);
20: Set ξ as the corresponding element of Ξk;
21: end if

22: end if

23: k := k + 1;
24: Update the parameters αm

k as in (10) and αp
k as in (11);

25: end while

26: return
◦
x := xk;
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such that |bι̂(ℓ)| = 2ℓ for a randomly chosen index ι̂ ∈ {1, . . . , n − 1}, and the rest
of the components of b(ℓ) are set to be random integers in S. Then a zero vector of
length n− 2 is inserted into L to be the row of index ι̂ in a new matrix L′, of which the
remaining rows are permuted. The resulting (n − 1) × (n − 2) matrix is augmented by
the column b(ℓ) to form a basis B in R

n−1, and the columns of B are permuted as well
to form B′ with evenly distributed zeros. Finally a positive maximal basis denoted as
Ξk ∈ R

(n−1)×2(n−1) is obtained from B′ by appending to it the negative of each column
of B′. This generation process of the poll directions is exemplified below for n = 5
(where [S] denotes a random number in the set S and B′

i denotes the ith column of the
matrix B′):

L =







±2l 0 0

[S] ±2l 0

[S] [S] ±2l






b(l) =











[S]

2l

[S]

[S]











← ι̂
L′ =











[S] ±2l 0

0 0 0

±2l 0 0

[S] [S] ±2l











← ι̂

B =











[S] ±2l 0 b1

0 0 0 b2

±2l 0 0 b3

[S] [S] ±2l b4











B′ =











0 b1 ±2l [S]

0 b2 0 0

0 b3 0 ±2l

±2l b4 [S] [S]











Ξk =
(

B′
1 . . . B′

n −B′
1 . . . −B′

n

)

.

5.2 Convergence analysis of LTSMADS

By b-refining directions at the limit point
◦
x, we mean the refining directions generated

from poll directions b(ℓ). Similar to Definition 5, we also consider the set of adapted
b-refining directions constructed from b̂(ℓ) directions. The next result shows that the
denseness hypothesis in Theorem 5 holds with probability one in LTSMADS.

Theorem 8. Let {xk}k∈K be a convergent refining subsequence, say on face j, generated
by the practical SMADS (Algorithm 2). Then the set of adapted b-refining directions
associated to K is asymptotically dense in Fej with probability one.

Proof. The proof stems from the LTMADS analysis (Audet and Dennis, 2006, Th. 4.3)
and uses Theorem 7 for the adapted aspect. Let {xk}k∈K be a convergent refining
subsequence on face j produced by the SMADS, and

◦
x ∈ Fej be the limit of the sub-

sequence. Recall that there is a specific poll direction b(ℓ) among the set of directions
Ξk generated by the algorithm. The asymptotic denseness theorem (Audet and Dennis,
2006, Th. 4.3) shows that b(ℓ)/‖b(ℓ)‖∞ becomes arbitrarily close to a randomly picked
direction v ∈ Taff(Fej ) having ‖v‖∞ = 1 with a probability

P

[

‖
b(ℓ)

‖b(ℓ)‖∞
− v‖∞ < ǫ

]

≥

(

ǫ
4

)n−2

2(n− 1)
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for any 0 < ǫ < 1, provided k is sufficiently large satisfying
√

αm
k = 2−ℓ ≤ ǫ

2 . At iterate
xk ∈ Fej , we have an adapted b(ℓ) as defined above; recall that

αm
k b̂(ℓ) :=

(

Mαm
k
(xk + αm

k b(ℓ))
)

↑j
− xk.

The motivation for the final scaling to aff(Fej ) is to perform the computations in the
chart (·)↑j ; since the topology of a manifold is defined through the charts, it follows that

denseness in a chart is equivalent to denseness on the sphere. We now show that b̂(ℓ)
‖b(ℓ)‖∞

(which is in the direction of b̂(ℓ)) is a sufficiently small perturbation of b(ℓ)
‖b(ℓ)‖∞

for the

gist of the result to be preserved. We have ‖ b̂(ℓ)
‖b(ℓ)‖∞

− b(ℓ)
‖b(ℓ)‖∞

‖∞ = 1
αm
k
‖b(ℓ)‖∞

‖αm
k b̂(ℓ)−

αm
k b(ℓ)‖∞ = 1

αm
k
‖b(ℓ)‖∞

‖
(

Mαm
k
(xk + αm

k b(ℓ))
)

↑j
− xk − αm

k b(ℓ)‖∞ ≤
1

αm
k
‖b(ℓ)‖∞

8αm
k ≤

23−ℓ ≤ 4ǫ, where the antepenultimate inequality follows from (18) in Lemma 6. In
conclusion, we have shown that

P

[

‖
b̂(ℓ)

‖b(ℓ)‖∞
− v‖∞ < 5ǫ

]

≥

(

ǫ
4

)n−2

2(n− 1)
for
√

αm
k = 2−ℓ ≤

ǫ

2
. (19)

Since b(ℓ) is generated independently at each iterate and since, in view of Theorem 2,
√

αm
k ≤

ǫ
2 occurs at infinitely many iterates, it follows that

P

[

‖
b̂(ℓ)

‖b(ℓ)‖∞
− v‖∞ < 5ǫ at at least one iterate

]

= 1.

This shows asymptotic denseness of the b̂(ℓ) directions.

6 Adapting SMADS for Minimizing Range-based ICA Con-

trast

Given a random vector m ∈ R
n, the proposed ICA scheme estimates an unmixing

matrix X =
[

x(1) · · · x(n)
]

with column vectors x(j) ∈ R
n, j = 1, . . . , n, subject

to the constraint ‖x(j)‖2 = 1 such that the n components of c = XTm are maximally
independent as measured by a contrast function. As in (Pham, 2000, (4.1)), the contrast
function based on a range estimation approach using order statistics is expressed as

f(X) :=
n
∑

j=1

logR
(

x(j)⊤m
)

− log|detX|, (20)

where R(Y ) := max(Y )−min(Y ) is the range function with Y being a random variable.
An estimate of the range of Y is derived in (Vrins et al., 2007) by making use of an
ordered finite sequence of observations, y(l), l = 1, . . . , T ,

R(Y ) :=
1

h

h
∑

r=1

Rr(Y ) (21)
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with Rr(Y ) := y(T−r+1)− y(r). Now we can state the expression for the sample contrast
function

f(X;M) :=
n
∑

j=1

log

(

1

h

h
∑

r=1

Rr

(

x(j)⊤M
)

)

− log|detX|, (22)

where X is a candidate unmixing matrix and M ∈ R
n×T is a matrix of T observations

of n variables. One possible guideline to set the default value of h, as recommended
in (Vrins et al., 2007), is

h(T ) = max



1,



ℜ

{

(

T − 18

6.5

)0.65
}

− 4.5







 , (23)

where ρ denotes the nearest integer to ρ and ℜ{·} returns the real part of the argument.
Furthermore, the range estimate in (21), employing the empirically determined value of
h in (23), preserves the desirable discriminant contrast property inherent in the exactly
evaluated range contrast function (Vrins et al., 2007, p. 816).

We work under the assumption that the data matrix M is such that the term
∑n

j=1 log
(

1
h

∑h
r=1Rr

(

x(j)⊤M
))

in (22) is > −∞ under the constraint ‖x(j)‖2 = 1.

Note that
∑h

r=1Rr

(

x(j)⊤M
)

= 0 if and only if x(j)⊤M = α1⊤, where α is a constant.

Therefore, we have that
∑n

j=1 log
(

1
h

∑h
r=1Rr

(

x(j)⊤M
))

> −∞ as long as 1 6∈ Im(M⊤).

We remark that the assumption 1 6∈ Im(M⊤) does not apply to ICA problems where the
original sources are believed to be constant signals/images, i.e., their distributions are
degenerate. In practice, the situation 1 ∈ Im(M⊤) will not usually arise, because the
condition 1 ∈ Im(M⊤) means that all the T observations in R

n belong to a same hyper-
plane. As soon as T ≥ n, this situation occurs with zero probability under reasonable
assumptions on the observation noise.

The following lemma guarantees that the Lipschitz assumption frequently made in
the above convergence analysis of (LT)SMADS holds for the contrast function (22).

Lemma 9. The range-based ICA contrast function f (22) is Lipschitz near every X such
that −∞ < f(X) <∞.

Proof. The range-based contrast function in (22) involves the sum of max functions.
Since the max function is Lipschitz and the log function is differentiable on (0,∞), it

follows that the term
∑n

j=1 log
(

1
h

∑h
r=1Rr

(

x(j)⊤M
))

is Lipschitz near x if and only if
∑h

r=1Rr

(

x(j)⊤M
)

6= 0, j = 1, . . . , n. Besides, the barrier term − log|detX| is Lipschitz

near every X where it is finite.

Our objective function is thus the range-based ICA contrast in (22) defined on the
set of n× n matrices whose columns have unit Euclidean norm, denoted here by

OB(n) =
{

X ∈ R
n×n : ddiag(X⊤X) = In

}

, (24)
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where ddiag(·) represents the diagonal matrix whose diagonal elements are those of the
matrix in the argument, and In is the n× n identity matrix. Since OB(n) is merely the
Cartesian product of n copies of Sn−1, the generalization of SMADS (Algorithm 1) to
OB(n) is straightforward.

We point out that our definition of OB in (24) does not exactly coincide with its
definition given in (Trendafilov and Lippert, 2002), as it does not impose that its ele-
ments have full rank. The distinction is irrelevant for the objective function (22) since
the − log|detX| term guarantees that the iterates of any descent iteration stay away
from the set of rank-deficient matrices.

What follows is a theorem that justifies the choice of the SMADS algorithm to seek
for a local minimum of the contrast function defined in (22).

Theorem 10. For the range-based ICA contrast function f in (22), the sequence gen-
erated by the SMADS algorithm (Algorithm 2) admits at least one convergent refining
subsequence, and the limit point of any such subsequence is a Clarke stationary point
of f .

Proof. The result follows from compactness of OB and from Theorem 5.

Remark 1. In our numerical experiments, we have always observed that the whole
SMADS sequence converges, and it then follows from Theorem 10 that it converges to
a Clarke stationary point. Moreover, since SMADS is a descent method, convergence to
points that are not local minimizers is unstable under perturbations, and is not expected
to occur in practice.

7 Experimental Results

7.1 Simulation with Various Image Datasets

The range-based contrast function assumes that the source support measure is finite, in
other words, that the underlying sources are bounded. This assumption holds good in
the case of images. Moreover, the image sources are in general not uncorrelated and their
density distributions are usually multimodal, which exacerbate the challenges faced by
an ICA technique. Furthermore the earlier works using the range-based contrast either
recommend the use of image data (Vrins et al., 2007) or validate the algorithm with face
images (Vrins, 2007). Therefore we have considered the following image categories for
assessing the performance of our approach: (i) two sets of 12 natural images including
sceneries, human portraits, man-made structures, animals and birds from the Berkeley
segmentation dataset and benchmark (Martin et al., 2001); (ii) nine images under each
category of aerial and texture images acquired from the Signal and Image Processing
Institute, University of Southern California at “http://sipi.usc.edu/database”; (iii) nine
face images from the dataset of Informatics and Mathematical Modelling, Technical
University of Denmark (Stegmann et al., 2003). All the test images were resized to have
200×200 pixels each and converted into gray-scale images. From each dataset comprising
natural, aerial, texture and face images, 25 random combinations of six images were
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generated to assess the range-based ICA on OB in terms of the source separation quality.
During each trial, the multidimensional data of size 40000× 6 consisting of column-wise
concatenated pixel gray-levels was mixed by a mixing matrix built from 36 coefficients
drawn from a uniform distribution on the interval (0, 1). It is remarked that the mixing
procedure is advocated in the works of (Karhunen et al., 1997, p. 497) concerning the
source separation of multidimensional image data. The resulting mixture was whitened,
because pre-whitening is deemed as the standard preprocessing procedure (Li and Adalı,
2010) and it is believed to improve the convergence, although strictly speaking, ICA
algorithms on OB obviate the need for pre-whitening. The mixture/pre-whitened data
thus obtained was supplied as the input for the below-mentioned ICA algorithms for a
relative assessment of the source separation performance:

• fastICA (Hyvärinen, 1999a), JADE (Cardoso and Souloumiac, 1993), and info-
max (Makeig et al., 1996), which are widely reported in the ICA literature;

• SWICA (Vrins et al., 2007), where the range-based function in (22) was first in-
troduced;

• NOSWICA (Lee et al., 2006b) meant for the separation of highly correlated sources;

• ICA by entropy bound minimization (ICA-EBM) (Li and Adalı, 2010) that uses
an accurate entropy estimator and adopts a line-search optimization procedure;

• ICA by optimizing quadratic measures of independence (QICA) with an exhaustive
search strategy (Seth et al., 2011) in the quest of avoiding local optima;

• our proposed LTSMADS (Algorithm 2) on the OB manifold (OBMADS) minimiz-
ing the range-based function in (22).

It is pointed out that the image mixture is generated in an artificial manner to
enable us to compare the unmixing matrix/source estimate with the true unmixing
matrix/source. Further research is underway, where the algorithm can be potentially
employed to separate signal mixtures arising from real scenarios, e.g., unmixing elec-
troencephalogram recordings from scalp electrodes prior to generating brain maps to
help diagnose focal epilepsy seizures. In such real scenarios, since the true unmixing
matrix/source are unknown, one must resort to indirect quality assessment methods
in order to compare the various ICA algorithms; for example, in electroencephalogram
experiments that we will report elsewhere, an expert neurologist evaluates the accu-
racy with which the brain maps generated from the ICA output matches the patient’s
pathological condition.

The parameter values for OBMADS were set as prescribed in (Audet and Dennis,
2006): τ = 4, β+ = 1, β− = −1, ε = 10−10, αm

0 = αp
0 = 1, and total function

evaluations femax = 105. The ICA unmixing matrices yielded by the methods included
in the empirical study were used to reconstruct the sources from the mixtures. Since
the ambiguity of sign and the indeterminacy of the order of the ICs hold for the ICA
model, the source estimates are necessarily rescaled and reordered prior to computing
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Table 1: Mean and standard deviation of RMSE values from the investigated ICA
schemes with a face, aerial, texture and natural image dataset. This empirical study
involves 25 trial runs with the mixture of six randomly selected 200× 200 images from
each dataset. The face, aerial and texture dataset comprises nine images each, and two
natural image datasets contain 12 images each. The values in bold face represent the
minimum obtained among the experimented schemes.

ICA RMSE mean and std. dev.

algorithm natural I natural II face aerial texture

fastICA 0.169± 0.054 0.254± 0.050 0.439± 0.025 0.109± 0.026 0.018± 0.002

JADE 0.143± 0.037 0.230± 0.055 0.435± 0.031 0.092± 0.024 0.017± 0.002

infomax 0.158± 0.050 0.257± 0.052 0.423± 0.033 0.108± 0.031 0.018± 0.002

SWICA 0.138± 0.051 0.196± 0.045 0.335± 0.036 0.095± 0.026 0.099± 0.042

NOSWICA 0.297± 0.131 0.321± 0.129 0.356± 0.101 0.211± 0.127 0.237± 0.108

ICA-EBM 0.100± 0.024 0.113± 0.066 0.410± 0.045 0.058± 0.016 0.017± 0.002

QICA 0.182± 0.052 0.192± 0.053 0.398± 0.043 0.115± 0.038 0.091± 0.035

OBMADS 0.034± 0.008 0.040± 0.036 0.086± 0.011 0.042± 0.013 0.008± 0.001

the root-mean-square error (RMSE) values with respect to the original sources. Given

the original vectorized images a(j) = [a
(j)
1 , . . . , a

(j)
T ], j = 1, . . . , n, and the estimated ones

after reordering c(j) = x(j)⊤M = [c
(j)
1 , . . . , c

(j)
T ], j = 1, . . . , n, the RMSE is computed as

RMSE =

√

√

√

√

√

√

∑n
j=1

∑T
l=1

(

a
(j)
l − c

(j)
l

)2

∑n
j=1

∑T
l=1

(

a
(j)
l

)2 . (25)

The RMSE measure in (25) is always nonnegative, scale invariant, and it circumvents
the permutation ambiguity due to the reordering of the source estimates.

The mean and standard deviation of the RMSE values in 25 trial runs of the exper-
imented schemes with a face, aerial, texture dataset containing nine images each, and
two datasets comprising 12 natural images each are reported in Table 1. Though the
fastICA that maximizes the negentropy of the estimated sources with an approximate
Newton method offers computational advantage, the mean RMSE is high. The JADE
algorithm aims at minimizing the sum of the squared cross-cumulants of the source esti-
mates; the tensorial algorithm faces limitations in higher dimensions as evidenced by the
mean RMSE. The infomax employs a stochastic gradient ascent rule to maximize the
entropy of the ICs that are nonlinearly transformed; as expected, the surrogate contrast
resulted in an inferior outcome.

The SWICA, NOSWICA and OBMADS minimize the same contrast function in (22).
While the SWICA insists on the orthogonality constraint with the Givens rotation ma-
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(a)
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(d)
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(g)

(h)

(i)

(j)

Figure 5: Simulation results with nine natural images of size 200 × 200 for subjective
assessment. (a) Original source images. (b) Mixed images. (c)–(j) Estimated and
reordered sources from (c) fastICA, (d) JADE, (e) infomax, (f) SWICA, (g) NOSWICA,
(h) ICA-EBM, (i) QICA and (j) OBMADS with the RMSE values of 0.265, 0.353, 0.267,
0.248, 0.396, 0.127, 0.268 and 0.039, respectively.
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Figure 6: Unmixing results using nine face images of size 350× 300 for visual scrutiny.
(a) Original source images. (b) Mixed images. (c)–(j) Estimated and reordered sources
from (c) fastICA, (d) JADE, (e) infomax, (f) SWICA, (g) NOSWICA, (h) ICA-EBM,
(i) QICA and (j) OBMADS with the RMSE values of 0.458, 0.466, 0.468, 0.375, 0.365,
0.451, 0.467 and 0.114, respectively.
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trices, the NOSWICA intentionally relaxes this constraint in estimating the ICs which
hopefully represent the correlated sources. The support-width ICA methods have been
claimed to enjoy the following advantages (Vrins et al., 2007): (i) an improvement in the
separation performance; (ii) applicability in situations where sources may be correlated;
(iii) ability to recover the sources with strongly bimodal densities; (iv) robustness to
the dimensionality of the source space. The emphasis in (Vrins et al., 2007) is a sys-
tematic study of the range-based contrast function, and the nonsmooth optimization
recommended in the SWICA is admittedly simple. The NOSWICA motivates further
research in the direction of allowing more degrees of freedom in the ICA estimation by
taking into account the correlatedness assumption among the sources constructed from
real-world data. It has been remarked in (Vrins, 2007, p. 262) that the robustness of
NOSWICA is disappointing as the relaxation of orthogonality constraint comes with
a price of a larger space of solutions, which may account for the variability in results.
Indeed the aforestated reasons underpin the development of a robust nonsmooth op-
timization algorithm on the OB manifold that can efficiently handle the range-based
function as corroborated by the mean RMSE values listed in Table 1.

Since we intend to compare our approach with some recent ICA algorithms, the
ICA-EBM and QICA were incorporated into the empirical study. The QICA offers a
unified framework for a number of independence measures, and it generalizes the concept
of information theoretic learning (ITL); the similarity between two random variables is
evaluated by the inner product of their probability density functions. Since the QICA
stresses the accurate estimation of ICs rather than speeding up the estimation, we find
it appropriate for the comparative study. The ICA-EBM relies on accurately estimating
the entropy of a random variable with the help of the maximum entropy bound, given the
observations. The method is claimed to be effective in separating the sources following a
wide range of distributions. The fact that it is more common to encounter not-so-trivial
distributions of the image pixel gray-levels justifies the inclusion of the ICA-EBM in
simulations. Inspite of increased computational load, the QICA gave rise to a large mean
RMSE. On the other hand, the source estimates of acceptable quality were obtained in
the ICA-EBM.

Noteworthily, the OBMADS is capable of estimating the ICs more accurately, and the
reduction in the mean RMSE of the source estimates can be ascribed to the efficiency of
the Riemannian nonsmooth optimizer which ensures convergence to a Clarke stationary
point. Furthermore, the Wilcoxon’s signed-rank test has been carried out to affirm
that the RMSE reduction attained by OBMADS in unmixing the sources from all the
experimented image datasets is statistically significant (at the 0.05 significance level)
compared to the competing approaches. Except in three2 out of 35 instances, the p-
value obtained is 1.2290 × 10−05, which implies that the RMSE from OBMADS is less
than that of the method under comparison in all the 25 trial runs. It is remarked that in

2
p-values corresponding to the ICA-EBM versus OBMADS in the aerial and natural II dataset are

1.3898×10−05 and 3.6243×10−05, respectively, as OBMADS outclassed the ICA-EBM in 24 trial runs in
the former and in 23 in the latter case. Similarly, in the natural II dataset, the SWICA versus OBMADS
resulted in a p-value of 1.3898× 10−05.
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Figure 7: Effect of noise perturbation on the unmixing performance of OBICA measured
by the RMSE value, when the image sources are corrupted using (a) unbounded AWGN;
(b) bounded noise models (imnoise command in Matlab) prescribed for images. The
signal-to-noise-ratio (SNR) is specified in decibels (dBs).

the Wilcoxon’s signed-rank test, when a random sample of size z is element-wise strictly
less (or more) than the other sample, then the statistic assumes a fixed value given by
z(z + 1)/2 regardless of the actual values of the samples. As a consequence, the p-value
will remain the same for the comparisons wherein the investigated method outperforms
the competitors in a fixed number of trial runs. The Wilcoxon’s signed-rank test is more
meaningful here, since it belongs to the category of nonparametric hypothesis testing
methods, where the assumption that two compared populations are normally distributed
does not necessarily hold.

Finally, to bear evidence subjectively for the appealing performance of the proposed
optimizer coupled with a range-based contrast function, two instances of the natural and
face image simulation results from all the investigated ICA algorithms are portrayed in
Figures 5 and 6 along with the respective RMSE values.

7.2 Discussion on OBMADS Behavior

7.2.1 Noise Perturbation

To investigate the robustness of OBMADS under noise perturbations, the vector of
concatenated pixel gray-levels from a noisy image is first considered as an unbounded
source, i.e., the data-points are not necessarily confined to the interval [0, 255]. A linear
combination of three, six or nine natural images contaminated with the additive white
Gaussian noise (AWGN), having zero mean and the standard deviation incrementally
selected in the interval [1, 10], was supplied as the input for the OBMADS algorithm.
As can be envisaged, the unmixing performance measured by the RMSE degrades as

29



10
2

10
4

10
6

10
8

0.015

0.02

0.025

0.03

0.035

0.04

0.045

mixing matrix condition number (log scale)

R
M

S
E

 v
al

ue

 

 

3−D
6−D
9−D

Figure 8: The plot of the RMSE between the true and estimated sources versus the
condition number of the mixing matrices suggests that the performance of OBMADS is
not influenced by an ill-conditioned mixing matrix.

shown in Figure 7(a). Nevertheless, in the aforementioned setting, the boundedness
assumption to be valid for the sources in a range-based ICA model is clearly violated.
Therefore an interesting observation is included in Figure 7(b) for a set of six natural
images, while various types of noise—AWGN, salt-and-pepper noise and multiplicative
speckle noise—commonly used by the image processing community were introduced in
an artificial manner3. When the noisy pixel values are bounded, the situation turns out
to be in favor of our approach, since a consequence of noise addition is an increase in
the number of pixels with extreme gray-levels. Apparently the pixels whose gray-levels
are either zero or 255 facilitate any range-based ICA algorithm to estimate the range of
the unmixed sources more accurately.

7.2.2 Ill-conditioned Mixing Matrix

To examine whether the performance of OBMADS relies on the condition number of
the mixing matrix, mixtures of three, six or nine natural images generated using mixing
matrices with a wide-range of condition numbers were allowed to be source-separated.
The RMSEs between the true and estimated sources that correspond to different condi-
tion numbers of the mixing matrices were recorded. The plot in Figure 8 enables us to
conclude that the separation performance of OBMADS is not adversely affected by the
ill-conditioned mixing matrix.
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Figure 9: Correlation matrices generated with the source images are displayed for the
following datasets: (a) face; (b) natural I; (c) natural II; (d) aerial; (e) texture.
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Table 2: Mean and standard deviation of the computational time (in seconds) taken
by various ICA methods in ten trial executions. In each run, all the algorithms were
supplied with the same mixture generated from 6−, 7−, 8− or 9−D natural image data
of size 50 × 50. This table should be considered together with Figure 5, which shows
that OBMADS noticeably dominates the other methods in terms of unmixing quality.

ICA mean and std. dev. of computational time (seconds)

algorithm 6−D 7−D 8−D 9−D

fastICA 0.283± 0.522 0.322± 0.507 0.297± 0.579 0.296± 0.673

JADE 0.012± 0.006 0.016± 0.006 0.019± 0.007 0.028± 0.007

infomax 2.118± 0.310 2.309± 0.266 2.727± 0.611 3.659± 1.356

SWICA 1.032± 0.009 1.534± 0.014 2.147± 0.015 3.481± 0.034

NOSWICA 0.920± 0.175 1.304± 0.243 1.772± 0.253 2.579± 0.345

ICA-EBM 0.308± 0.053 0.361± 0.083 0.553± 0.117 0.600± 0.119

QICA 32.373± 0.287 45.365± 0.370 59.963± 0.901 77.398± 1.021

OBMADS 19.072± 1.161 31.391± 0.288 39.097± 0.092 49.711± 0.383

CE-vMF 32.307± 5.943 62.567± 9.572 105.657± 15.501 196.412± 29.310

7.2.3 Source Correlatedness

As the proposed optimization relaxes the orthogonality constraint and remains on OB,
it is ideally suited for unmixing the sources which are not uncorrelated. Importantly, it
is not uncommon to come across sources in practice which do not comply with the strict
uncorrelatedness assumption imposed by several ICA algorithms. For instance, the face
or landscape images share a common underlying pattern and tend to be highly corre-
lated (Lee et al., 2006b). In such circumstances, as emphatically stated in (Selvan et al.,
2012a), the whitening process does not restrict the search for the unmixing matrix to
the space of orthogonal matrices. To visualize the degree of correlation amongst the
images in each dataset (face, natural, aerial and texture), a pictorial representation of
the correlation matrices is provided in Figure 9. A closer scrutiny would reveal that the
face (Figure 9(a)) or natural images (Figures 9(b) and 9(c)) are more correlated than
the aerial (Figure 9(d)) or texture images (Figure 9(e)). The efficacy of the proposed
OB optimization algorithm can be endorsed by the illustrations in Figures 5 and 6, and
the relatively small RMSE values yielded by OBMADS in comparison with the state-of-
the-art approaches for face and natural image sources as consolidated in Table 1.
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7.2.4 Computational Cost

The software system was implemented in Matlab R2011b on a MacBook Pro (Intel Core
i7 2.2 GHz CPU, 8 GB 1333 MHz DDR3) using Mac OS X Lion 10.7.4.

In Figure 5, the proposed OBMADS is the only tested method that arguably produces
an unmixing of sufficient quality. Its computational time was of the order of one minute,
which makes it adequate for offline source separation tasks. For information, timing
comparisons are furnished in Table 2. The table also features the CE-vMF method
of (Selvan et al., 2012b), which produces results of similar quality as OBMADS but is
seen to be slower.

8 Conclusion

We have proposed and analyzed an extension to the sphere of the MADS algorithm
of (Audet and Dennis, 2006). A specific instance, called LTSMADS, of the resulting
derivative-free algorithmic framework has been proposed and extended to an optimiza-
tion algorithm, called OBMADS, evolving on the set of matrices with unit-norm column
constraint. OBMADS has then been applied to a range-based contrast function for ICA
due to Pham, Vrins and collaborators. An analysis has been carried out to show that
OBMADS converges to Clarke stationary points of the contrast function. Since the con-
trast function has the discriminacy property, it follows that bounded and independent
sources are recovered in practice from their linear mixtures by OBMADS in the infinite-
sample limit. The efficacy of OBMADS when the unmixing matrix is estimated from
a mixture of quasi-uncorrelated sources has been demonstrated using simulations with
natural, face, aerial and texture images. Though the paper focuses on an ICA applica-
tion, the proposed optimization algorithms are applicable to several potential problems
in science where one has to optimize a locally Lipschitz continuous function subject to
unit-norm constraints.
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