
http://sites.uclouvain.be/absil/2012.01 Tech. report UCL-INMA-2012.01-v2

A Riemannian Subgradient Algorithm for Economic

Dispatch with Valve-Point Effect∗

Pierre B. Borckmans†‡ S. Easter Selvan† Nicolas Boumal†§ P.-A. Absil†

July 13, 2013

Abstract

The economic load dispatch problem (ELDP) is a classical problem in the power systems
community. It consists in the optimal scheduling of the output of power generating units to
meet the required load demand subject to unit and system inequality and equality constraints.
This optimization problem is challenging on three different levels: the geometry of its feasible
set, the non-differentiability of its cost function and the multimodal aspect of its landscape.
For this reason, ELDP has received much attention in the past few years and numerous
derivative-free techniques have been proposed to tackle its multimodal and nondifferentiable
characteristics. In this work, we propose a different approach exploiting the rich geometrical
structure of the problem. We show that the (nonlinear) equality constraint can be handled
in the framework of Riemannian manifolds and we develop a feasible (all iterates satisfy the
constraints) subgradient descent algorithm to provide fast convergence to local minima. To
this end, we show that Clarke’s calculus can be used to compute a deterministic admissible
descent direction by solving a simple, low-dimensional quadratic program. We test our ap-
proach on four real data sets. The proposed method provides fast local convergence and scales
well with respect to the problem dimension. Finally, we show that the proposed algorithm,
being a local optimization method, can be incorporated in existing heuristic techniques to
provide better exploration of the search space.

Key words: economic load dispatch; nonsmooth optimization; differential geometry

1 Introduction

The economic load dispatch problem (ELDP) is the optimal scheduling of the output of power
generating units to meet the required load demand subject to unit and system equality and
inequality constraints [SCC03]. In the traditional ELDP, the cost function for each generator is
modeled by a single quadratic function. Nevertheless, in practice, one has to take into account
highly nonlinear input–output characteristics arising due to valve-point loadings or generating
unit ramp rate limits. As a consequence, we end up with a nonsmooth, equality- and inequality-
constrained optimization problem, (5), which is in general multimodal (it presents several local
optima) and for which classical smooth optimization techniques are thus not suitable.

For this reason, the ELDP has received much attention in the past few years and numer-
ous derivative-free techniques have been proposed to tackle its multimodal and nondifferentiable
aspects. Popular techniques include genetic algorithms (GA) [WS93], evolutionary program-
ming [YYH96], particle swarm optimisation (PSO) [PLSL05], and differential evolution (DE) [NI08].

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Opti-
mization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.
This work was financially supported by the Belgian FRFC (Fonds de la Recherche Fondamentale Collective).
†Department of Mathematical Engineering, ICTEAM Institute, Université catholique de Louvain, B-1348

Louvain-la-Neuve, Belgium (http://sites.uclouvain.be/absil/).
‡Supported by a FRIA (Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture) fellowship.
§Supported by a FNRS (Fonds National de la Recherche Scientifique) fellowship.

1

http://sites.uclouvain.be/absil/2012.01
http://sites.uclouvain.be/absil/

More recently, “global–local” hybrid methods have appeared that combine a “global” method
having good global searching abilities and a “local” method with better fine-tuning abilities. Even
though there may not be a clear frontier between the two groups of methods, it is quite evident
that methods such as GA, PSO and DE belong to the “global” group whereas a method such
as sequential quadratic programming (SQP) belongs to the “local” group. Desirable properties
of a local method include the following. (i) The method should be feasible, i.e., all the iterates
should satisfy the equality and inequality constraints. Indeed, a drawback of infeasible methods
is that even if the outcome is close to satisfying the constraints, the cost function value at the
outcome may be quite different from its value at the nearest point satisfying the constraints.
Another downside of infeasibility is that the intermediate results are not directly usable since they
do not respect the balance constraint. (ii) The iterates should converge to a local minimizer of
the cost function. (iii) There is a well-known trade-off between low numerical cost of the iteration
and fast convergence of the iterates; as a simplistic illustration, concatenating a few steps of a
given method improves the speed of convergence per iterate but degrades the numerical cost per
iterate. If the sought accuracy is sufficiently low—which is arguably the case of the ELDP where
the coefficient values and even the model itself are debatable—then it is preferable to run a lot
of cheaper iterations, as this makes it possible to check a stopping criterion more frequently and
hence to avoid the unnecessary computational effort inherent to overconvergence. (iv) Methods
that exploit the very particular structure of the ELDP should be preferred over “out of the box”
numerical algorithms.

SQP is a popular choice for the local method in global–local ELDP algorithms; see, e.g., [VJ04,
AKTH02, CLL+12, ASAO10]. Whereas SQP is a welcome complement to global search methods,
it does not satisfy any of the properties mentioned above. Specifically, it is an infeasible method,
since the equality constraint is only satisfied in the limit. Convergence, while empirically observed,
is not guaranteed because the classical convergence theory of SQP assumes, among other things,
that the cost function and the constraint functions have continuous first derivatives [NW06, theo-
rem 18.3], which is not the case in the ELDP (5). As a quadratically convergent method [NW06,
theorem 18.4], it can be seen as favoring fast convergence of the iterates at the expense of a higher
numerical cost per iterate. Finally, it is a general-purpose algorithm, not specifically tailored to
the ELDP.

Other local methods have been proposed in combination with global methods. The Nelder-
Mead (NM) method has been shown to be an effective local method in combination with PSO [Nik10],
but it does not exploit the readily accessible first-order information on the cost function. The
modified subgradient (MSG) method used in [YÖ11] exploits first-order information on the cost
function, but feasibility of the iterates is achieved only after a certain number of steps in view
of the sharp augmented Lagrangian approach. Shor’s r-algorithm, combined with an improved
differential evolution (IDE) method in [YWZY09], is also of the subgradient type, but the iterates
are not feasible.

In this paper, we develop a novel method that satisfies properties (i), (iii), and (iv). It is also
built to satisfy (ii) and does it empirically, however, as a consequence of (iv), its convergence does
not immediately follow from an existing result, and a detailed convergence analysis is beyond the
scope of this paper.

Property (i), feasibility of the iterates, is enforced using the framework of Riemannian opti-
mization. The adequacy of this framework stems from the fact that the equality constraint (3)
defines an ellipsoid, which admits a natural structure of a Riemannian manifold. Riemannian
optimization, also called optimization on manifolds, is nowadays a vibrant area of research, whose
foundations can be found, e.g., in [HM94, EAS98, AMS08]. Since this framework is new in the
ELDP context, we dedicate a significant part of this paper to laying out the necessary background.

Property (iii) comes by preferring a steepest-descent approach over a second-order approach.
However, in view of the non-smoothness due to the valve-point effect, the steepest-descent approach
does not rely on gradient techniques but rather on subgradient techniques, using the framework
of Clarke’s generalized calculus [Cla75].

In view of the above, the proposed method fits in the framework of Riemannian subgradient
descent. With respect to the general-purpose Riemannian subgradient descent method of Dirr et

2

al. [DHL07], a contribution of our development is to incorporate bound constraints in order to
handle the generator capacity constraints (2) present in the ELDP. Another contribution of this
work is that, whereas many heuristic algorithms for the ELDP consist of (a combination of) existing
black-box optimization techniques, the proposed method strives to exploit as much as possible the
very particular structure of the ELDP. This allows notably for an efficient representation of the
generalized gradient, which enables fast computation of a descent direction by solving a low-
dimensional quadratic program.

In summary, the proposed technique provides fast convergence to a nearby local minimum of
the ELDP (5), while satisfying the power balance (3) and capacity constraints (2) throughout the
optimization process. Therefore, the aforementioned heuristics largely explored in the literature
and the proposed subgradient descent algorithm present very complementary properties: the mul-
timodal aspect of the ELDP can be addressed using any global feasible exploration tool while the
local refinement of a potential solution is efficiently provided by the proposed approach, including
a check for the stationarity of the final iterate.

The remainder of the paper is organized as follows. In Section 2, the ELDP with the valve-
point effect is briefly presented, followed by a detailed treatment of the underlying geometry of the
optimization problem and an introduction to the necessary differential geometry tools in Section 3.
The subgradient descent algorithm is presented in Section 4. Subsequently, its formulation on
the Riemannian manifold and its specialization for the ELDP are discussed. Section 5 presents
the implementation details. In Section 6, numerical results are presented and we show how our
algorithm can be hybridized with a global scheme to deal with the multimodal aspect of the ELDP.
Finally, conclusions are drawn in Section 7.

2 ELDP Considering Valve-point Effect

2.1 Problem Statement

Traditionally, the generating-unit cost functions are considered to be convex with the heat rate
curves exhibiting monotonically increasing characteristics. However, in reality, the steam admis-
sion valves in the large steam turbines cause discontinuities in the incremental heat rate curves.
Therefore, to accurately model the ELDP, the valve-point loadings in the n generating units are to
be incorporated, leading to nonconvex input-output characteristics of the generating units [VJ05];
the cost function is then stated as

fT(p) =

n∑
i=1

f i(pi), p = [p1, p2, . . . , pn]
>

=

n∑
i=1

aip
2
i + bipi + ci +

∣∣di sin
[
ei
(
pmin
i − pi

)]∣∣ . (1)

Here fT(p) is the total production cost ($/h) pertaining to the n-dimensional output power vector
p and f i(pi) is the incremental fuel cost function ($/h) pertaining to the real power output of
the ith unit, pi. For the ith generating unit, the cost coefficients are denoted by ai, bi, ci, and the
constants from the valve-point effect by di, ei. All the coefficients are positive. In matrix notation,
we have

fT(p) = p>Diag(a)p+ b>p+ c>1 + d>
∣∣sin [e ◦ (pmin − p)

]∣∣ ,
where ◦ denotes the component-wise product, Diag(·) denotes the diagonal matrix obtained from
the entries of its vector argument, and the sine term and the absolute value are taken component-
wise.

The cost function fT(p) is to be minimized subject to the following inequality and equality
constraints:
(a) generator capacity constraints

pmin
i ≤ pi ≤ pmax

i , i = 1, . . . , n (2)

3

where pmin
i and pmax

i are the lower and upper power generating limits of the ith unit (MW);
(b) real power balance constraint

n∑
i=1

pi = pD + pL(p), (3)

where pD is the power demand (MW) and pL(p) stands for the power loss (MW) expressed as

pL(p) =

n∑
i=1

n∑
j=1

piBijpj +

n∑
i=1

b0i pi + b00, (4)

or in matrix notation pL(p) = p>Bp+p>b0+b00. Coefficients Bij , b
0
i , b

00 are the transmission loss
coefficients (B-coefficients) given by the elements of the square matrix B of size n× n, the vector
b0 of length n, and the constant b00, respectively. The matrix B is symmetric positive-definite,
hence pL(p) is a convex quadratic function of p.

To summarize, we consider the following optimization problem, that we will refer to as the
ELDP:

min
p∈Rn

fT(p) (1)

subject to (2) and (3).
(5)

2.2 Geometry of the Feasible Set

In this subsection, we explore the geometrical interpretation and consequences of constraints (2)
and (3).

The bound constraints (2) force p to lie inside a box whose faces are parallel to the reference
frame. The equality constraint (3) imposes that p lies on a quadric surface, specifically on an
ellipsoid since B is positive definite. The feasible set of (5), denoted by Ω, is thus composed of
the points on the ellipsoid that are also inside the box:

Ω := {p ∈ Rn : p satisfies (2) and (3)} (6)

=
{
p ∈ Rn : pmin ≤ p ≤ pmax, p>Bellp+ p>bell + cell = 0

}
,

where 1 is the vector of all ones, Bell = B, bell = b0−1, and cell = b00 +pd. In general, Ω may be
composed of more than one connected component, but we did not observe this in practical ELDP
instances. The feasible set Ω is depicted in Figure 1 for the cases n = 2 and n = 3.

p1

p2

pmin
1 pmax

1

pmin
2

pmax
2

(a) n = 2

p1

p2

p3

pmin
1

pmax
1

pmin
2

pmax
2

pmax
3

pmin
3

(b) n = 3

Figure 1: Representation of the p-space along with the constraints (inside the box and on the
ellipsoid) and the feasible set Ω (darker blue). Notice that Ω has measure zero in Rn.

4

2.3 Structure of the Optimization Landscape

In this subsection, we provide some insight about the cost function fT(p) defined in (1). A first
observation is that this function is separable, i.e., it consists in a sum of components f i, each
depending only on pi, the ith component of p. However, problem (5) does not decompose into
independent one-dimensional problems because the components of p are coupled through the
equality constraint (3). The cost function fT(p) is continuous but not everywhere differentiable.
Indeed, at any point q ∈ Rn for which one or more components qi cancel the corresponding sine
term in f i, the gradient of fT does not exist because of the absolute value. These points, termed
nondifferentiable points or kink points, are given by the following expression:

q = (q1, . . . , qn), ∃i s.t. qi = pmin
i +

kπ

ei
, k ∈ N. (7)

Nevertheless, at all other points p in Rn, the gradient of fT can be computed:

∇fT(p) = 2Diag(a)p+ b− d ◦ e ◦ cosθ ◦ sign(sinθ), (8)

where θ stands for
[
e ◦ (pmin − p)

]
. The function fT(p) is thus piecewise smooth (as defined

in [Roc03]) and one can use the canvas of Clarke’s generalized calculus [Cla75] to compute its
generalized gradient at the nondifferentiable points. This analysis will be carried out in Section 4.

Now, recall that problem (5) consists of minimizing fT(p) over the feasible set Ω. As depicted
in Figure 2 for an illustrative 2-dimensional case, the restriction of fT(p) to Ω presents a partially
smooth and multimodal landscape. If the portion Ω of the ellipsoid is not too large, a similar

p
min

1
p
max

1

p
min

2

p
max

2

(a) Level curves of fT (b) Cost function fT in R2

f
T
(p

)

p ∈ Ω

(c) Restriction to Ω

Figure 2: Landscape of the cost function fT(p) for an illustrative 2-dimensional case. (a) Level
curves of fT(p) and the ellipsoid constraint. (b) Graph of the cost function fT(p). (c) Graphs of
the restriction of fT(p) to Ω. The cost function is multimodal and piecewise smooth.

representation can be obtained for a 3-dimensional case, by projecting the feasible set Ω onto the
nearest 2-dimensional plane; see Figure 3, where the observations made for the 2-dimensional case
can also be noted.

2.4 Summary of the Optimization Challenges

From the previous sections, it appears that the ELDP is a challenging optimization problem on
three different levels: the geometry of its feasible set, the non-differentiability of its cost function,
and the multimodal aspect of its landscape. The rest of this paper presents our approach to deal
with these difficulties.

5

(a) Level curves (b) Restriction of fT to Ω̂

Figure 3: Landscape of the cost function fT(p) for an illustrative 3-dimensional case. This repre-
sentation is made possible by projecting the 3 dimensional feasible set Ω onto the nearest plane.
(a) Level curves of the restriction of fT(p) to the projection Ω̂ of Ω. (b) Graph of the restriction
of fT(p) to Ω̂. The cost function is multimodal and piecewise smooth.

3 Optimization Exploiting the Geometry of Ω

The proposed local method can be viewed as an adaptation of the classical line-search scheme

pk+1 = pk + αkdk, (9)

where pk and pk+1 denote the current and next iterates, dk is the search direction, and αk is
the step length. In this section, with property (i)—feasibility—in mind, we generalize the “+”
operation by means of the concept of retraction and we introduce “admissibility” conditions on
dk in order to guarantee that pk+1 remains in Ω for all αk sufficiently small. Then, in Section 4,
we will show how to choose dk as the steepest admissible direction. Finally, the selection of αk,
as well as other implementation details, will be addressed in Section 5.

3.1 The Ellipsoid Manifold

As explained in Section 2.2, the feasible set Ω of the ELDP (5) has a rich geometrical structure
that we would like to exploit. The set of points that satisfy the equality constraint (3) is an
ellipsoid centered at

aell = −1

2
(Bell)−1bell. (10)

This smooth surface has a natural structure of a manifold, specifically of an (n − 1)-dimensional
submanifold of Rn. We will call it the ellipsoid manifold:

En−1 := {p ∈ Rn : p satisfies (3)} (11)

={p ∈ Rn : p>Bellp+ p>bell + cell = 0}.

The gist of the proposed Riemannian optimization approach is to restrict the optimization
domain Rn to the constraint manifold, in this case with the resulting advantage that every iterate
belongs to En−1, i.e., satisfies the equality constraint (3). The ELDP (5) then becomes:

min
p∈En−1

fT(p) subject to pmin ≤ p ≤ pmax.

We mention that an alternative way, used by several ELDP heuristics, of respecting the equality
constraint (3) is to resort to a slack variable, which amounts to performing the optimization on
(n−1) variables while computing the last variable explicitly. A difficulty with this approach is that

6

the description of the cost function fT, of the feasible set Ω, and of the nondifferentiable points
in terms of the (n − 1) remaining variables becomes more intricate. This difficulty is avoided in
the Riemannian approach.

3.2 Riemannian Optimization Ingredients

The classical line-search scheme (9) is not meant to produce iterates that remain on a submanifold
such as En−1. In this subsection, we provide the needed ingredients of differential geometry
(the branch of mathematics that studies manifolds) in order to produce iterates on an abstract
submanifold M of Rn. Then, in Section 3.3, we will specialize the ingredients to the manifold
En−1, and finally, in Section 3.5, we will reintroduce the bound constraints (2).

Instrumental to the definition of an admissible direction dk is the notion of tangent space to
M at a point p ∈M, denoted by TpM, and defined as the following vector subspace of Rn:

TpM = {ξ ∈ Rn : ∃c : R→M with c(0) = p, c′(0) = ξ},

where c′(0) is the usual derivative at 0 of the curve c (assumed to exist). From this definition,
we see that TpM is the set of vectors that are tangent to the manifold at p. Geometrically, this
notion coincides with the concept of tangent plane to a smooth surface, as depicted in Figure 4.
The tangent bundle TM is the collection of the tangent spaces at all p ∈M.

The notion of steepest admissible direction will require a norm on TpM. Each tangent space
TpM is a vector space and as such can be endowed with an inner product 〈·, ·〉p. The natural
way of doing this is by restricting the canonical inner product of Rn to TpM, i.e.,

〈., .〉p : TpM× TpM→ R : (ξ, ζ) 7→ 〈ξ, ζ〉p = 〈ξ, ζ〉 = ξ>ζ.

We then say that M is a Riemannian submanifold of Rn. The inner product induces a notion of

norm: ‖ξ‖p = 〈ξ, ξ〉1/2p .
The normal space to M at a point p ∈ M, denoted as NpM, is the orthogonal complement

of TpM in Rn:
NpM = (TpM)⊥.

One can then compute the projection Pp(v) of a vector v ∈ Rn onto TpM by removing the normal
component of v.

We now turn to the generalization of the “+” operation of (9). A retraction onM [ADM+02,
AMS08] is a smooth mapping R from the tangent bundle TM onto M that satisfies R(0p) = p
for all p (where 0p denotes the origin of TpM) and d

dtR(tξp)
∣∣
t=0

= ξp for all ξp ∈ TpM. The
restriction of R to TpM is denoted by Rp. Observe that R given by Rp(αd) = p+ αd is a valid
retraction in Rn, hence the generalization.

Using these tools, one can adapt the iterative process (9) as follows: assuming that pk ∈ M,
construct pk+1 ∈M according to

pk+1 = Rpk

(
αkP kp (dk)

)
, αk ∈ R, dk ∈ Rn.

3.3 Optimization Ingredients on En−1

We now specifically provide the aforementioned tools for the ellipsoid manifold En−1. A schematic
diagram is given in Figure 4.

Let c(t) be a curve on En−1 parametrized by t ∈ R:

c : R→ En−1 : t→ c(t), s.t. c(0) = p, ċ(0) = ξ.

For all t ∈ R, the ellipsoid equation gives c(t)>Bellc(t) + c(t)>bell + cell = 0. Taking the derivative
with respect to t and evaluating at t = 0 (substituting for p and ξ), one obtains:

ξ>Bellp+ p>Bellξ + ξ>bell = 0.

7

Since Bell is a symmetric matrix, one can rewrite:

ξT (2Bellp+ bell) = 0.

The tangent space is thus defined as follows:

TpEn−1 = {ξ ∈ Rn : ξ>(2Bellp+ bell) = 0}. (12)

The normal space is then obtained by:

NpEn−1 = {ν ∈ Rn : ξTν = 0, ∀ξ ∈ TpEn−1}
= {τ (2Bellp+ bell), τ ∈ R}. (13)

The projection Pp(v) of a vector v ∈ Rn onto TpEn−1 can then be constructed so as to remove
the normal component of v:

Pp(v) = v − τ(2Bellp+ bell),

where the value of τ ∈ R must be determined to ensure that Pp(v) belongs to TpEn−1:

(v − τ(2Bellp+ bell))>(2Bellp+ bell) = 0,

which yields

τ =
v>(2Bellp+ bell)

‖(2Bellp+ bell)‖2
.

Defining np = (2Bellp+bell)
‖(2Bellp+bell)‖ as the unit normal vector to the ellipsoid at p, the projection becomes:

Pp(v) = v − npn>pv = (I − npn>p)v. (14)

It remains to choose a retraction R on En−1. On a Riemannian manifold, the exponential map,
based on geodesics, is a possible choice for R [AMS08, §5.4], but computing geodesics on the
ellipsoid manifold En−1 is a research area on its own; see, e.g., [Per02, Kar13] and references
therein. Instead, we use a simpler choice that consists, for p ∈ En−1 and ξ ∈ TpEn−1, in defining
Rp(ξ) to be the intersection with En−1 of the line segment between p + ξ and the center aell of
the ellipsoid. Specifically,

Rp(ξ) = aell + β
(
p+ ξ − aell

)
= aell + βw = q, (15)

where aell is given by (10) and β ∈ R must be chosen so as to satisfy q ∈ En−1:

q>Bellq + q>bell + cell = 0, (16)

which yields:

β2
(
w>Bellw

)
+ β

(
w>(2Bellaell + bell)

)
+
(
aell>(Bellaell + bell) + cell

)
= 0 (17)

Equation (17) defines a parabola in β. The roots of this parabola correspond to the two intersec-
tions with the ellipsoid of the line going trough aell and (p+ξ) (see q and q′ in Figure 4). Among
these two points, the nearest to (p + ξ) corresponds to the closest root to 1, which is therefore
chosen for β. The fact that Rp is a retraction follows from [AM12, theorem 15].

8

p

q

En−1

TpEn−1

v

aell ξ

q′

1

Figure 4: Illustration of the optimization tools on the ellipsoid manifold En−1. The vector v ∈ Rn
is projected onto the tangent space TpEn−1: ξ = Pp(v). The retraction of the tangent vector ξ is
then computed: q = Rp(ξ).

3.4 Restriction to Sub-Ellipsoids

As will be discussed in Section 4.3, it will prove useful at times to consider the restriction of the
ellipsoid En−1 obtained by fixing some coordinates in p = (p1, . . . , pn)>. Let C ⊂ {1, . . . , n} be
the indices of these constant coordinates with |C| = nc < n, and let P = (P1, . . . , Pnc

)> be the
corresponding constants. The following notation is introduced: given a matrix M , a vector v
and two sets of indices I1 and I2, the sub-matrix [Mi,j]i∈I1,j∈I2 is denoted as MI1,I2 and the
sub-vector [vi]i∈I1 is denoted as vI1 .

We are interested in the following set:

En−1C,P := {p ∈ En−1 : pC = P }.

This set describes a Riemannian manifold which is the intersection of the ellipsoid En−1 with the
intersection of the nc axis-aligned hyperplanes defined by pC = P . This manifold is in fact again
an ellipsoid of dimension (n− nc − 1), as depicted in Figure 5.

p1 p2

p3

Figure 5: Illustration of a sub-ellipsoid for n = 3, with C = {1} and F = {2, 3}.

Letting F = {1, . . . , n} \ C be the set of free coordinates, this sub-ellipsoid is given by the
following equation:

En−1C,P :=
{
p ∈ Rn : p>FB̂

ellpF + p>F b̂
ell +ĉell = 0, pC = P

}
, (18)

9

where

B̂ell = Bell
F,F ,

b̂ell =
(
bellF + 2Bell

F,CpC
)
,

ĉell = p>C
(
Bell
C,CpC + bellC

)
+ cell.

The center of this new ellipsoid is then given by âellF = − 1
2 (B̂ell)−1b̂ell and âC = P .

The ingredients presented in the previous section can now be adapted to the sub-ellipsoid when
needed. In particular, when computing the retraction q = Rp(ξ) of a vector ξ ∈ TpEn−1C,pC , one

expects q to remain on En−1C,pC . With the definition (15) of R, this is not the case since the scaling

factor β affects all of the coordinates of q. However, the following retraction R̂ (where C is omitted
in the notation as it can be deduced from the argument ξ, see (44) for the robustified version) can
be used to ensure the desired property:

R̂p(ξ) = q, with

{
qC = pC ,
qF = â+ β (pF + ξF − â) ,

(19)

where β is computed using (17) with the corresponding B̂ell, b̂ell, ĉell and âell. The difference
between the two retractions R and R̂ is illustrated in Figure 6.

Figure 6: Retraction of the tangent vector ξ at the point p. When using the retraction R given
by (15), the point q′ is obtained, outside of the subellipsoid going through p. When using the
retraction R̂ (19) relative to the center of this subellipsoid, the point q is obtained, belonging to
the subellipsoid.

Noting that R̂p(ξ) = Rp(ξ) when C = ∅, equation (19) will be used whenever a retraction is
needed in the remainder of this paper.

3.5 Respecting the Bound Constraints

So far in this section, we have considered performing optimization on En−1. However, as presented
in Section 2.2, the feasible set Ω is only a portion of En−1, delimited by the bound constraints (2).
In view of the sought property (i) mentioned in the introduction, we want to produce iterates that
remain within these bounds at all times. To this end, a possible approach would be to penalize
the cost function fT with a log barrier term:

f̂T(p) =

{
fT(p) + µkφ(p) if pmin ≤ p ≤ pmax,
+∞ otherwise,

with φ(p) = ln (p− pmin) + ln (pmax − p),

where µk ↓ 0 when k → ∞. This technique aims at repelling iterates from the boundaries of Ω
to avoid premature convergence to nonstationary points. Other techniques to handle the bound

10

constrains include penalty terms and augmented Lagrangian (see, e.g., chapter 17 in [NW06]), but
they do not ensure feasibility of the iterates.

We choose to adopt an alternative to these approaches. The principle consists of computing
the steepest admissible direction dk at the current iterate pk, and then setting pk+1 = R̂p(αkdk)
where αk is selected by means of a line-search technique. In this context, by admissible direction,
we mean the following.

Definition 3.1 An admissible direction at p ∈ Ω is a vector d ∈ TpEn−1 for which there exists

ε > 0 such that R̂p(αd) belongs to Ω for all α ∈ [0, ε].

The computation of the steepest admissible direction will be presented in Section 4 and the line-
search technique will be discussed in Section 5.3

We already mention that, in order to be functional in combination with the chosen basic Armijo-
type line-search technique, the proposed approach requires a robustification mechanism, described
in Section 5.2, both for the capacity constraints (2) and for the nondifferentiable points (7). Oth-
erwise, since the nondifferentiable points and boundary points form a zero-measure set, all the
iterates would be likely to be considered differentiable points that strictly satisfy the bound con-
straints (2), with the consequence that the computed steepest admissible direction would merely
be the projected gradient (20) at all times, yielding unsatisfactory convergence as illustrated by
the squares in Figure 9.

4 Subgradient Descent for the ELDP

This section chiefly concerns the computation of the steepest admissible direction for the ELDP (5).
We will proceed gradually. The concept of subgradient is first recalled in an unconstrained setting
in Section 4.1, then it is generalized to the Riemannian setting in Section 4.2 with a view towards
considering the ELDP cost function on the ellipsoid manifold En−1, which is done in Section 4.3,
before reintroducing the bound constraints in Section 4.4.

As stated in Section 2.3, the cost function fT(p) is piecewise smooth, i.e., differentiable almost
everywhere. Let S, resp. D, denote the set of nondifferentiable points, resp. differentiable points,
of fT in Ω:

S =
{
p ∈ Ω : ∃i s.t. pi = pmini +

kπ

ei
, k ∈ N

}
, D = Ω \ S.

We will also consider the set So, resp. Do, of points of S, resp. D, that are not on the boundary of
the box (2). Note that in ELDP instances, one must expect that both So and S \So are nonempty,
and likewise for Do and D \Do.

For p ∈ Do, the steepest admissible direction gradfT(p) is simply the projection of the gradient
of fT(p) onto TpEn−1:

gradfT(p) = Pp (∇fT(p)) , (20)

where Pp is given by (14) and ∇fT(p) by (8). For all other points q ∈ Ω \ Do, describing the
steepest admissible direction requires more sophisticated developments that we present in the rest
of this section.

4.1 Subgradient Descent

Given a nonsmooth, nonconvex function f : Rn → R, Clarke’s generalized directional derivative is
given by:

f◦(x;d) = lim sup
y→x, t↓0

f(y + td)− f(y)

t
.

The generalized gradient of f , noted ∂f(x), is then defined as the set of the subgradients s of
f◦(x; ·):

∂f(x) =
{
s ∈ Rn : f◦(x;v) ≥ v>s,∀v ∈ Rn

}
.

11

For a general nonsmooth function, this set can be difficult to describe in practice. However, if the
function is locally Lipschitz, which is the case of the ELDP cost function (1), then the generalized
gradient at x is the convex hull of all points s of the form

s = lim
i→∞

∇f(xi),

where {xi} is a sequence converging to x such that f is differentiable at each xi (see [Cla76,
proposition 5]). If moreover, as is the case of the ELDP cost function (1), f : Rn → R can be
expressed as the pointwise maximum of m smooth functions fj : Rn → R, i.e.,

f(x) = max
j=1,...,m

fj(x), (21)

then the generalized gradient can be simply described as

∂f(x) = co {∇fj(x) | j ∈ If (x)} , (22)

where co{·} denotes the convex hull and If (x) denotes the set of indices for which the maximum
in (21) is attained, i.e.,

If (x) = {j ∈ {1, . . . ,m} | f(x) = fj(x)}. (23)

Using this framework, and without considering any constraint for the time being, the steepest
descent direction dk is given by the opposite of the shortest vector in ∂f(xk) [BLO05, lemma 2.1],
which can be obtained by solving the following quadratic programming problem:

min
λj≥0∑
λj=1

∥∥∥∥∥∥
∑

j∈If (xk)

λj∇fj(xk)

∥∥∥∥∥∥
2

. (24)

In practice, when the set ∂f(xk) is composed of a single element∇fj(xk), the subproblem becomes
trivial as the descent direction is simply given by dk = ∇fj(xk). When ∂f(xk) contains at least
two elements, solving the subproblem allows to compute a descent direction even though the
function is not differentiable.

4.2 Riemannian subgradient descent

In order to extend the subgradient descent to a Riemannian manifold setting, one has to redefine
the needed ingredients. Let M be a submanifold of Rn and f : Rn → R a piecewise smooth func-
tion, defined as the maximum of m smooth functions fj . Using the tools presented in Section 3.2,
the projected gradient of each function fj at a point x ∈M is defined as follows:

grad fj(x) = Px(∇fj(x)) ∈ TxM.

The generalized projected gradient is then given by:

grad f(x) = co {grad fj(x) | j ∈ If (x)} (25)

= co {Px(∇fj(x)) | j ∈ If (x)} .
The steepest admissible direction dk is obtained by computing the shortest vector in grad f(xk),
solving the following quadratic program:

min
λj≥0∑
λj=1

∥∥∥∥∥∥
∑

j∈I(xk)

λj grad fj(x
k)

∥∥∥∥∥∥
2

(26)

= min
λj≥0∑
λj=1

∥∥∥∥∥∥
∑

j∈I(xk)

λjPxk(∇fj(xk))

∥∥∥∥∥∥
2

= min
λj≥0∑
λj=1

∥∥∥∥∥∥Pxk

 ∑
j∈If (xk)

λj∇fj(xk)

∥∥∥∥∥∥
2

.

12

The steepest-descent admissible direction is computed as follows:

dk = −Pxk

 ∑
j∈If (xk)

λ∗j∇fj(xk)

 ,

where λ∗ is the solution of (26).

4.3 Application to the ELDP cost function on En−1

In this subsection, we adapt the subgradient descent scheme to the ELDP, temporarily ignoring
the bound constraints (2) until Section 4.4. We first show that the ELDP cost function fT (1) can
be expressed as the pointwise maximum of smooth functions, then we compute the associated gen-
eralized gradient and we formulate the search for a descent direction as a quadratic programming
problem.

Recalling that the ELDP cost function fT(p) is the sum of n functions f i(pi) (i = 1, . . . , n),

let f̂ i(p)
.
= f i(pi). Each of these functions can be decomposed into two components, f̂ iq(p) =

aip
2
i + bipi + ci (the quadratic term) and f̂ is (p) = di sin

[
ei
(
pmin
i − pi

)]
(the sinusoidal term). The

ELDP cost function can then be written as follows:

fT(p) =

n∑
i=1

f̂ iq(p) +
∣∣∣f̂ is (p)

∣∣∣
=

n∑
i=1

max
(
f̂ iq(p)− f̂ is (p), f̂ iq(p) + f̂ is (p)

)
. (27)

Clearly, fT can be expressed as the maximum of 2n functions fT,j , taking all the possible combi-
nations of the maximum arguments in (27):

fT(p) = max
j=1,...,2n

fT,j(p)

= max
j=1,...,2n

(
n∑
i=1

f̂ iq(p) +

n∑
i=1

(−1)

⌊
j%2i

2i−1

⌋
f̂ is (p)

)
= fQ(p) + max

j=1,...,2n
fS,j(p),

where a%b denotes the the remainder of the division a/b.

The set of indices IfT(p) = {j ∈ {1, . . . , 2n} | fT(p) = fT,j(p)} can now be described. Let
S(p) be the set of indices of the entries pi in p that cancel the sine term, and let F(p) be the
other indices of p:

S(p) = {s1, . . . , sns}

=

{
i ∈ {1, . . . , n} | pi = pmini +

kπ

ei
, k ∈ N

}
, (28)

F(p) = {f1, . . . , fnf
}

= {1, . . . , n} \ S(p). (29)

As depicted in Figure 7, the cardinality of IfT(p) is then given by |IfT(p)| = 2ns . If S(p) is empty,
only one function fT,j has to be considered, thus |IfT(p)| = 20 = 1.

As per (25), the generalized projected gradient of fT at p is now defined as follows:

grad fT(p) = co {grad fT,j(p) | j ∈ IfT(p)}
= Pp(∇fQ(p)) + co {Pp(∇fS,j(p)) | j ∈ IfT(p)} . (30)

13

fT(p1)

fT,2(p1)

fT,1(p1)

f
T
(p

1
)

p1

IfT = {2}

IfT = {1, 2}

IfT = {1}

1 2 3 4 5 6 7

100

300

500

700

(a) n = 1

f
T
(p

)

p2p1

IfT
= {1, 2, 3, 4}

IfT
= {1, 2}

IfT
= {2}

IfT
= {4}

IfT
= {1, 4}

IfT
= {1}

50
100

150
200

0
100

200

1500

2500

3500

4500

5500

(b) n = 2

Figure 7: The ELDP cost function fT(p) as the pointwise maximum of 2n functions fT,j(p).

We now consider the quadratic subproblem (26) for the ELDP to determine the descent direc-
tion d at a point p ∈ En−1:

min
λj≥0∑
λj=1

∥∥∥∥∥∥Pp
 ∑
j∈IfT (p)

λj∇fT,j(p)

∥∥∥∥∥∥
2

. (31)

This is a quadratic program with 2ns variables λj . However, as illustrated in Figure 8, the
number of variables can be drastically reduced since the generalized projected gradient grad fT(p)

can actually be described with only ns vectors. Indeed, noting that
∣∣∣f̂ is (p)

∣∣∣ is differentiable for

i ∈ F(p) and recalling that fT is a separable function, grad fT(p) can be advantageously rewritten
in the following way:

grad fT(p) = Pp(∇fQ(p)) +
∑

i∈F(p)

Pp(∇
∣∣∣f̂ is (p)

∣∣∣)
+

 ∑
i∈S(p)

λiPp(∇f̂ is (p)) | λi ∈ [−1, 1]

 . (32)

The quadratic subproblem (31) hence becomes:

min
λi∈[−1,1]

∥∥∥∥∥∥Pp
∇fQ(p) +

∑
i∈F(p)

∇
∣∣∣f̂ is(p)

∣∣∣+
∑
i∈S(p)

λj∇f̂ is(p)

∥∥∥∥∥∥
2

. (33)

Introducing the following notation:

S =
[
Pp(∇f̂s1s (p)) · · · Pp(∇f̂sns

s (p))
]
, (34)

g = Pp

∇fQ(p) +
∑

i∈F(p)

∇
∣∣∣f̂ is(p)

∣∣∣
 , (35)

the quadratic subproblem can be rewritten as a general bound-constrained convex quadratic pro-

14

gradfT,1(p)

gradfT,2(p)

gradfT,3(p)

gradfT,4(p)

b p

(a) grad fT(p) described with 2ns

vectors (30).

Pp

(

∇fQ(p) +
∑

i∈F(p)

∇

∣

∣

∣
f̂ i
s(p)

∣

∣

∣

)

Pp(∇f̂s1
s)

Pp(∇f̂s2
s)

b p

(b) grad fT(p) described with ns vec-
tors (32).

Figure 8: Illustration of the generalized gradient (dashed area). The description of grad fT(p) (30)
using 2ns vectors and the description (32) using ns vectors are equivalent.

gram of the form:

λ∗ = arg min
λ
‖g + Sλ‖2 (36)

= arg min
λ
λ>S>Sλ+ 2λ>S>g

subject to − 1 ≤ λ ≤ 1,

where S>S is positive semidefinite (positive definite if S has full rank). The descent direction d
is then computed as d = −(g + Sλ∗).

4.4 Including the Bound Constraints

Solving the subproblem (36) does not always provide an admissible descent direction for points
on the boundary of the feasible set Ω. Indeed, if the resulting direction d points outside Ω, no
progress can be made by following it. However, the bound constraints can be incorporated into
the quadratic problem in order to ensure an admissible descent direction for all points in Ω. Let
li(p) and ui(p), i = 1, . . . , n, denote the lower and upper bound constraints:

li(p) = −pi + pmin
i ≤ 0,

ui(p) = pi − pmax
i ≤ 0.

Let L(p) and U(p) be the indices of the active constraints, and let B(p) be their union:

L(p) = {l1, . . . , lnl
}

= {i ∈ {1, . . . , n} | li(p) = 0} ,
U(p) = {u1, . . . , unu

}
= {i ∈ {1, . . . , n} | ui(p) = 0} ,

B(p) = L(p)
⋃
U(p). (37)

Noting that ∇li(p) = −ei and ∇ui(p) = ei, we introduce the following notation:

B =
[
Pp(−el1) · · · Pp(−elnl

) | Pp(eu1) · · · Pp(eunu
)
]
. (38)

15

The search for an admissible descent direction can now include the projected gradient of the active
constraints an can thus be expressed as the following quadratic program:

(λ∗,µ∗) = arg min
λ,µ
‖g + Sλ+Bµ‖2 (39)

subject to

{
−1 ≤ λ ≤ 1,
µ ≥ 0.

This is again a convex quadratic problem of dimension |S(p)
⋃B(p)| ≤ n. The steepest-descent

admissible direction is finally computed as follows:

d = −(g + Sλ∗ +Bµ∗). (40)

4.5 First-Order Stationarity Condition

Let f : Rn → R be a nonsmooth (Lipschitz) function to be minimized subject to a set of constraints
ci(x) ≤ 0 (i = 1, . . . ,m). The first order necessary stationarity conditions for this constrained
nonsmooth problem can be stated as follows (see e.g. [Cla76], Section 3):

Theorem 4.1 If x∗ minimizes f(x) locally, then there exist numbers µi (i = 1, . . . ,m) such that:

(a) µi ≥ 0,

(b) µici(x
∗) = 0,

(c) 0 ∈ ∂f(x∗) +
∑m
i=1 µi∇ci(x∗).

Applying this theorem to the ELDP, we obtain the following characterization of its local minimiz-
ers:

Theorem 4.2 If p∗ minimizes fT(p) locally in Ω, then there exist numbers µ−i , µ+
i (i = 1, . . . , n)

such that:

(a) µ−i ≥ 0, µ+
i ≥ 0,

(b) µ−i li(p
∗) = 0, µ+

i ui(p
∗) = 0,

(c) 0 ∈ grad fT(p∗)
+
∑n
i=1

(
µ−i grad(li(p

∗)) + µ+
i grad(ui(p

∗))
)
.

The technique proposed in the previous section to compute admissible descent directions offers
an important advantage over the classical alternatives (barrier term, augmented Lagrangian, etc.).
Computing the direction d = −(g + Sλ∗ + Bµ∗) at a local minimizer point p∗ yields the zero
vector. Therefore, the norm of the direction d can be used as a stopping criterion for the descent
algorithm, ensuring that it will stop at a (numerically) stationary point.

5 Implementation

In the previous sections, all the ingredients needed to perform local optimization of fT(p) in Ω
were introduced. In this section, we present how, given a feasible initial iterate p0 ∈ Ω, the
Riemannian subgradient descent method is applied to produce a sequence of iterates pk ∈ Ω. The
implementation details are now given.

5.1 Generating a feasible iterate

Recalling the geometrical considerations presented in Section 2.2, the feasible set Ω is the intersec-
tion of an axis-aligned box and an ellipsoid surface. From there, a simple approach to generate a
feasible point p ∈ Ω is given by Algorithm 1. The loop is needed because the scaling performed by
R may output a point outside the bounds constraints. Note that Algorithm 1 becomes superfluous
if the proposed local method is combined with a feasible global method (i.e, with iterates on Ω).

16

Algorithm 1 Feasible point generation

Output: p ∈ Ω, a feasible point
repeat

Draw x from the uniform distribution on
[pmin

1 , pmax
1]× · · · × [pmin

n , pmax
n]

p← Rx(0), where R is given by formula (15)
until p ∈ Ω
return p

5.2 Computing the descent direction

The steepest-descent admissible direction at a point pk is described by (40). It can be computed,
provided that the sets S(pk) and B(pk) are available. However, in practice, it is numerically
unlikely for an iterate pk to ever cancel exactly any of the sine terms in fT(pk). Therefore, S(pk)
and its complement F(pk) are approximated in the following way:

Sε(p) =

{
i ∈ {1, . . . , n} :

∣∣∣∣pi − (pmini +
kπ

ei

)∣∣∣∣ ≤ ε} , (41)

Fε(p) = {1, . . . , n} \ Sε(p). (42)

Similarly, the bound constraints indices are approximated as follows:

Bε(p) = {i ∈ {1, . . . , n} | li(p) ≥ −ε or ui(p) ≥ −ε} . (43)

An “ε–steepest-descent ε-admissible direction” is then computed at each iteration, using Algo-
rithm 2. In its nondifferentiable-related aspect, this approach is reminiscent of Goldstein’s ε-
generalized gradient [Gol77]. In its bound-related aspect, it has an active-set flavor.

Algorithm 2 DescentDirection(p,Sε(p),Fε(p),Bε(p)) - Descent direction

Input: p ∈ Ω, Sε(p), Fε(p), Bε(p)
Output: d, an admissible descent direction

Compute S, g and B at p according to (34), (35) and (38), in which S(p), F(p), B(p) are
replaced by Sε(p), Fε(p), Bε(p)
Compute (λ∗,µ∗) solving the quadratic programming sub-problem (39)
d← −(g + Sλ∗ +Bµ∗)
return d

5.3 Computing the step size

Once a descent admissible direction has been computed, the step size must be determined. We
propose to adopt Armijo’s rule with two minor modifications. First, the initial step size is retained
from the previous step size computation. Second, before performing classical backtracking, a few
trials are performed by expanding the previous step size. These two modifications provide possible
faster convergence of the descent algorithm by allowing bigger step sizes. The line search uses the
retraction R̂ defined by (19). In practice, given a vector ξ, the corresponding set C involved in (19)
is approximated as follows:

Cε = {i ∈ {1, . . . , n} | |ξi| ≤ ε}. (44)

The computation of the step size is described in Algorithm 3.

17

Algorithm 3 StepSize(p, g, α0, β, γ, nf , nb) - Line search using Armijo’s rule

Input: p ∈ Ω, g search direction, α0 initial step size, β sufficient decrease constant, γ step size
shrinking factor, nf number of forward steps, nb number of backtracking steps

Output: α, a step size ensuring sufficient decrease

Consider f̃T(p) =

{
fT(p) if (2),

+∞ otherwise.

Step 1 (Forward exploration):
for s = nf → 1 do

if f̃T(R̂p(γ−s g
‖g‖)) < fT(p)− βα0γ

−s ‖g‖ then

return α0γ
−s

end if
end for

Step 2 (Backtracking):
for s = 0→ nb do

if f̃T(R̂p(γs g
‖g‖)) < fT(p)− βα0γ

s ‖g‖ then
return α0γ

s

end if
end for
return 0

5.4 Subgradient Descent for the ELDP

The subgradient descent algorithm can now be completely described and is given by Algorithm 4.
In the taxonomy of optimization methods [NW06], the proposed approached can be considered
an active-set–like feasible ε-subgradient–descent method for nonsmooth nonconvex problems with
both equality and bound constraints.

Algorithm 4 Riemannian Subgradient Descent for the ELDP

Input: p0 ∈ Ω, ε singular point detection tolerance, δ descent direction norm tolerance, β suffi-
cient decrease constant, γ step size shrinking factor, nf number of forward steps, nb number of
backtracking steps

Output: p∗ ∈ Ω, a generalized stationary point
Set k = 0, α0 = 1
Step 1 (Compute the admissible descent direction)

Compute Sε(pk), Fε(pk) and Bε(pk) (41)–(43)
dk ← DescentDirection(pk,Sε(pk),Fε(pk),Bε(pk))
if
∥∥dk∥∥ < δ then
return pk

end if
gk ← dk/

∥∥dk∥∥
Step 2 (Compute the step size)

αk ← StepSize(pk, gk, αk−1, β, γ, nf , nb)

Step 3 (Compute the new iterate)
if αk > 0 then
pk+1 ← R̂pk(αkgk)
k ← k + 1
Go to Step 1

else
return pk

end if

18

6 Numerical Experiments

The Riemannian subgradient descent algorithm presented in the previous section was implemented
in Matlab. The data from four instances of ELDP with valve-point effect were collected, for
dimensions n = 3, 5, 6 and 15 (sources: [Gai03], [MuAWA10], [Gai04], [SHP+10]). (We are not
aware of publicly-available ELDP instances with valve-point effect and a quadratic loss function for
which n is greater than 15.) These data sets contain the following information for each instance:

• the coefficients of fT for the quadratic term:

ai [$/(h.MW2)], bi [$/(h.MW)], ci [$/h],

• the coefficients of fT for the sine term:

di [$/h], ei [1/MW],

• the bound constraints: pmin
i , pmax

i [MW],

• the power demand: pd [MW],

• the transmission loss coefficients:

B [1/MW], B0 [−], B00 [MW].

An important remark about these data sets is that for the cases n = 5 and n = 6, only the first
two dimensions present the valve-point effect (di = ei = 0, i ≥ 2). The consequence is that the
multimodal aspect for these two data sets is much less pronounced compared to the the two other
data sets, for which the valve-point effect is present in all dimensions.
The Matlab code and data sets are available online at http://www.inma.ucl.ac.be/~borckmans/
ELDP. In the following experiments, the default parameters were chosen as follows: ε = 10−8,
β = 10−4, γ = 0.5, nf = 3, nb = 50, δ = 10−12.

(a) Local minima for n = 3

Figure 9: Local convergence illustration for n = 3. The trajectories from 9 starting points (stars)
are depicted. The final iterates obtained using a naive steepest-descent algorithm (squares) and
the proposed Riemannian subgradient algorithm (dots) are represented. The dashed blue lines
correspond to the nondifferentiable sub-ellipsoids.

6.1 Local Convergence

The trajectories generated by Algorithm 4 for different starting points are illustrated in Figure 9
for the case n = 3. Whenever the sequence of iterates approaches a nondifferentiable point, the
projected subgradients are computed, and the descent direction resulting from the quadratic sub-
problem follows the corresponding sub-ellipsoid. These sub-ellipsoids are represented as dashed

19

http://www.inma.ucl.ac.be/~borckmans/ELDP
http://www.inma.ucl.ac.be/~borckmans/ELDP

lines in Figure 9. For comparison purpose, applying a simple Riemannian gradient descent (ig-
noring the nondifferentiable aspect of fT) from the same starting points yields convergence to
nonstationary points.

Algorithm 4 was tested by performing a large number of trials for each ELDP instance, starting
from random points. The final iterates of the trials were tested for the necessary stationarity
condition; the norm of the final descent direction, as computed by Algorithm 2 was smaller than
10−12 for all the trials. Considering two points to be different if their corresponding costs are at
least 10−8 apart from each other, the proposed algorithm was able to consistently converge to a
small set of potential local minima for the cases n = 3, 5 and 6 (9 minima for n = 3, 7 minima
for n = 5, and 7 minima for n = 6). As mentioned earlier, the small number of local minima for
the cases n = 5 and n = 6 is due to the limited valve-point effect. On the other hand, for the
case n = 15, the number of local minima is much higher since the valve-point effect affects all the
dimensions. After 106 trials, the proposed approach consistently identified solutions in a set of
around 2× 105 points.

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.5

f
T
(p
)

function evaluations

0 200 400 600 800
3200

3250

3310

3365

(a) Influence of the scaling factor γ

nf = 3

nf = 1

nf = 0
f
T
(p
)

function evaluations

0 100 200 300 400

3200

3250

3300

3350

(b) Influence of forward exploration

Figure 10: Local convergence properties for n = 3.

ǫ = 10−12

ǫ = 10−8

ǫ = 10−4

f
T
(p
)

function evaluations

0 500 1000

×104

3.36

3.4

3.44

3.46

Figure 11: Influence of ε (n = 15)

20

6.2 Parameter Influence

As depicted in Figure 10(a) and 10(b), the convergence speed is affected by the line search scaling
factor γ and is enhanced when reusing the previous successful step size and allowing forward
exploration (nf steps).
Another important parameter of the proposed algorithm is ε, the tolerance for detecting the
singular entries in (41). Smaller values for ε lead to better precision but at the cost of taking more
function evaluations to detect singularities. This can be observed in Figure 11, where the plateaus
correspond to iterates approaching singular sub-ellipsoids of Ω.

SD

DE

f
T
(p
)

function evaluations

1000 2000

835

850

865

880

(a) n = 5

SD

DE

f
T
(p
)

function evaluations

0 1000 2000 3000 4000

925

940

955

970

(b) n = 6

Figure 12: Using the proposed subgradient descent (SD) algorithm as a post processing tool.
Stopping the DE algorithm progression at some point and refining the output using the proposed
SD algorithm (red curve) provides faster convergence than DE alone (blue curve).

6.3 Global Exploration

The Riemannian subgradient descent presented in this paper is inherently a local optimizer. It is
very efficient at computing a local minimizer in the vicinity of a given starting point in Ω, but
it is not meant to roam around the cost function landscape in search of the global minimum.
On the other hand, the global heuristics that are largely explored in the literature have very
complementary properties: they often provide good exploration of the search space but they tend
to struggle to refine the final iterate and they do not attempt to check stationarity (and even
feasibility in some cases) of their output. This calls for hybrid algorithms that combine the best
of both approaches.

In order to illustrate this idea, we implemented the Differential Evolution (DE) algorithm [SP97]
as proposed in [BC10]. This population-based heuristic is known to provide reasonably good explo-
ration of the search space, relying quite heavily on random updates, combining selected individuals.
As in many heuristics proposed to solve the ELDP, the authors of [BC10] use the concept of a
slack variable to respect the equality constraint (3).

A first approach to hybridize DE with our algorithm, known as sequential approach [Sel11], is
to stop the global exploration at some point before applying the subgradient descent (Algorithm 4).
This post-processing step avoids the slow refinement of the solution and produces in practice a
final iterate that satisfies the stationary conditions from Theorem 4.2. The typical behavior of
such an approach is depicted in Figure 12.

Another option is to integrate the subgradient descent within the global technique, following
the cyclical approach mentioned in [Sel11]. The idea is to refine the best individual produced by
the DE algorithm at each iteration using the projected subgradient descent. The benefit of this
approach is illustrated in Figure 13.

21

hybrid (DE)

hybrid (SD)

DE
f
T
(p
)

function evaluations

0 400 800 1200

3200

3210

3220

3230

(a) n = 3

hybrid (DE)

hybrid (SD)

DE

f
T
(p
)

function evaluations

0 1000 2000 3000 4000

835

845

855

865

(b) n = 5

hybrid (DE)

hybrid (SD)

DE

f
T
(p
)

function evaluations

0 1000 2000 3000 4000

925

935

945

955

965

(c) n = 6

hybrid (DE)

hybrid (SD)

DE
f
T
(p
)

function evaluations ×104
0 2 4

×104

3.32

3.34

3.36

3.38

3.4

3.42

3.44

3.46

(d) n = 15

Figure 13: Benefit of hybridizing DE with the subgradient descent (SD) algorithm. In this cyclical
hybrid approach, DE is used to escape local minima (green curve), then the proposed SD algorithm
is applied to refine the best individual (red curve). The outcome is a faster convergence than when
the DE technique is applied alone (blue curve).

7 Conclusion

In this paper, we showed how the geometrical structure of the ELDP (5) can be exploited to per-
form local optimization of its associated cost function. The canvas of optimization on Riemannian
manifolds was used to maintain feasible iterates at all times. The nondifferentiable nature of the
cost function was handled using Clarke’s generalized calculus. A simple procedure was presented
to compute an admissible descent direction and to perform a curvilinear search along that direc-
tion while satisfying the constraints. The resulting local method is unique in that it possesses the
combination of desirable properties mentioned in the introduction. Finally, we showed that the
multimodal aspect of the ELDP can be addressed by hybridizing the proposed local method with
a global optimization technique.

Acknowledgements

The authors would like to thank Arnaud Browet and Samuel Melchior for their valuable comments
and suggestions that came out of many insightful conversations.

22

References

[ADM+02] Roy L. Adler, Jean-Pierre Dedieu, Joseph Y. Margulies, Marco Martens, and
Mike Shub. Newton’s method on Riemannian manifolds and a geometric model
for the human spine. IMA J. Numer. Anal., 22(3):359–390, July 2002. doi:

10.1093/imanum/22.3.359.

[AKTH02] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa. A hybrid EP and SQP for
dynamic economic dispatch with nonsmooth fuel cost function. Power Engineering
Review, IEEE, 22(4):77, april 2002. doi:10.1109/MPER.2002.4312139.

[AM12] P.-A. Absil and Jérôme Malick. Projection-like retractions on matrix manifolds.
SIAM Journal on Optimization, 22(1):135–158, 2012. doi:10.1137/100802529.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Ma-
trix Manifolds. Princeton University Press, Princeton, NJ, 2008. URL: http:

//www.inma.ucl.ac.be/~absil/amsbook/.

[ASAO10] J. S. Alsumait, J. K. Sykulski, and A. K. Al-Othman. A hybrid GA–PS–SQP method
to solve power system valve-point economic dispatch problems. Applied Energy,
87(5):1773 – 1781, 2010. doi:10.1016/j.apenergy.2009.10.007.

[BC10] A. Bhattacharya and P.K. Chattopadhyay. Hybrid differential evolution with
biogeography-based optimization for solution of economic load dispatch. IEEE Trans-
actions on Power Systems, 25(4):1955 –1964, nov. 2010. doi:10.1109/TPWRS.2010.
2043270.

[BLO05] James V. Burke, Adrian S. Lewis, and Michael L. Overton. A robust gradient sam-
pling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim., 15(3):751–
779, 2005. doi:10.1137/030601296.

[Cla75] Frank H. Clarke. Generalized gradients and applications. Transactions of the Amer-
ican Mathematical Society, 205:pp. 247–262, 1975. URL: http://www.jstor.org/
stable/1997202.

[Cla76] F. H. Clarke. A new approach to Lagrange multipliers. Mathematics of Operations
Research, 2:165–174, 1976.

[CLL+12] Jiejin Cai, Qiong Li, Lixiang Li, Haipeng Peng, and Yixian Yang. A hybrid CPSO–
SQP method for economic dispatch considering the valve-point effects. Energy Con-
version and Management, 53(1):175 – 181, 2012. doi:10.1016/j.enconman.2011.

08.023.

[DHL07] Gunther Dirr, Uwe Helmke, and Christian Lageman. Nonsmooth Riemannian
optimization with applications to sphere packing and grasping. In F. Allgwer,
P. Fleming, P. Kokotovic, A.B. Kurzhanski, H. Kwakernaak, A. Rantzer, J.N.
Tsitsiklis, Francesco Bullo, and Kenji Fujimoto, editors, Lagrangian and Hamilto-
nian Methods for Nonlinear Control 2006, volume 366 of Lecture Notes in Con-
trol and Information Sciences, pages 29–45. Springer Berlin / Heidelberg, 2007.
doi:10.1007/978-3-540-73890-9_2.

[EAS98] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms
with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1998.
doi:10.1137/S0895479895290954.

[Gai03] Z. L. Gaing. Particle swarm optimization to solving the economic dispatch consid-
ering the generator constraints. IEEE Transactions on Power Systems, 18(3):1187–
1195, AUG 2003. doi:10.1109/TPWRS.2003.814889.

23

http://dx.doi.org/10.1093/imanum/22.3.359
http://dx.doi.org/10.1093/imanum/22.3.359
http://dx.doi.org/10.1109/MPER.2002.4312139
http://dx.doi.org/10.1137/100802529
http://www.inma.ucl.ac.be/~absil/amsbook/
http://www.inma.ucl.ac.be/~absil/amsbook/
http://dx.doi.org/10.1016/j.apenergy.2009.10.007
http://dx.doi.org/10.1109/TPWRS.2010.2043270
http://dx.doi.org/10.1109/TPWRS.2010.2043270
http://dx.doi.org/10.1137/030601296
http://www.jstor.org/stable/1997202
http://www.jstor.org/stable/1997202
http://dx.doi.org/10.1016/j.enconman.2011.08.023
http://dx.doi.org/10.1016/j.enconman.2011.08.023
http://dx.doi.org/10.1007/978-3-540-73890-9_2
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1109/TPWRS.2003.814889

[Gai04] Z. L. Gaing. Closure to discussion of particle swarm optimization to solving the
economic dispatch considering the generator constraints. IEEE Transactions on
Power Systems, 19(4):2122–2123, 2004. doi:10.1109/TPWRS.2004.831708.

[Gol77] A. A. Goldstein. Optimization of Lipschitz continuous functions. Math. Program-
ming, 13(1):14–22, 1977. doi:10.1007/BF01584320.

[HM94] Uwe Helmke and John B. Moore. Optimization and Dynamical Systems. Communi-
cations and Control Engineering Series. Springer-Verlag London Ltd., London, 1994.
With a foreword by R. Brockett.

[Kar13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87:43–55, 2013.
doi:10.1007/s00190-012-0578-z.

[MuAWA10] Tahir Nadeem Malik, Azzam ul Asar, Mudasser F. Wyne, and Shakil Akhtar. A
new hybrid approach for the solution of nonconvex economic dispatch problem with
valve-point effects. Electric Power Systems Research, 80(9):1128 – 1136, 2010. doi:
10.1016/j.epsr.2010.03.004.

[NI08] Nasimul Noman and Hitoshi Iba. Differential evolution for economic load dispatch
problems. Electric Power Systems Research, 78(8):1322 – 1331, 2008. doi:10.1016/
j.epsr.2007.11.007.

[Nik10] Taher Niknam. A new fuzzy adaptive hybrid particle swarm optimization algorithm
for non-linear, non-smooth and non-convex economic dispatch problem. Applied
Energy, 87(1):327 – 339, 2010. doi:10.1016/j.apenergy.2009.05.016.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in
Operations Research and Financial Engineering. Springer, New York, second edition,
2006.

[Per02] A. M. Perelomov. A note on geodesics on ellipsoid, 2002. arXiv:math-ph/0203032.

[PLSL05] Jong-Bae Park, Ki-Song Lee, Joong-Rin Shin, and K.Y. Lee. A particle swarm
optimization for economic dispatch with nonsmooth cost functions. Power Systems,
IEEE Transactions on, 20(1):34 – 42, feb. 2005. doi:10.1109/TPWRS.2004.831275.

[Roc03] R. T. Rockafellar. A property of piecewise smooth functions. Comput. Optim. Appl.,
25(1-3):247–250, March 2003. doi:10.1023/A:1022921624832.

[SCC03] N. Sinha, R. Chakrabarti, and R. K. Chattopadhyay. Evolutionary programming
techniques for economic load dispatch. IEEE Transactions on Evolutionary Compu-
tation, 7(1):83–94, feb 2003. doi:10.1109/TEVC.2002.806788.

[Sel11] A. Immanuel Selvakumar. Enhanced cross-entropy method for dynamic economic
dispatch with valve-point effects. International Journal of Electrical Power & Energy
Systems, 33(3):783 – 790, 2011. doi:10.1016/j.ijepes.2011.01.001.

[SHP+10] Nidul Sinha, Kaustabh Moni Hazarika, Shantanu Paul, Himanshu Shekhar, and Am-
rita Karmakar. Improved real quantum evolutionary algorithm for optimum eco-
nomic load dispatch with non-convex loads. In Bijaya Panigrahi, Swagatam Das,
Ponnuthurai Suganthan, and Subhransu Dash, editors, Swarm, Evolutionary, and
Memetic Computing, volume 6466 of Lecture Notes in Computer Science, pages 689–
700. Springer Berlin / Heidelberg, 2010. doi:10.1007/978-3-642-17563-3_81.

[SP97] Rainer Storn and Kenneth Price. Differential evolution a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Optimization,
11:341–359, 1997. doi:10.1023/A:1008202821328.

24

http://dx.doi.org/10.1109/TPWRS.2004.831708
http://dx.doi.org/10.1007/BF01584320
http://dx.doi.org/10.1007/s00190-012-0578-z
http://dx.doi.org/10.1016/j.epsr.2010.03.004
http://dx.doi.org/10.1016/j.epsr.2010.03.004
http://dx.doi.org/10.1016/j.epsr.2007.11.007
http://dx.doi.org/10.1016/j.epsr.2007.11.007
http://dx.doi.org/10.1016/j.apenergy.2009.05.016
http://arxiv.org/abs/math-ph/0203032
http://dx.doi.org/10.1109/TPWRS.2004.831275
http://dx.doi.org/10.1023/A:1022921624832
http://dx.doi.org/10.1109/TEVC.2002.806788
http://dx.doi.org/10.1016/j.ijepes.2011.01.001
http://dx.doi.org/10.1007/978-3-642-17563-3_81
http://dx.doi.org/10.1023/A:1008202821328

[VJ04] TAA Victoire and AE Jeyakumar. Hybrid PSO-SQP for economic dispatch with
valve-point effect. Electric Power Systems Research, 71(1):51–59, SEP 2004. doi:

10.1016/j.epsr.2003.12.017.

[VJ05] T. A. A. Victoire and A. E. Jeyakumar. Deterministically guided PSO for dynamic
dispatch considering valve-point effect. Electric Power Systems Research, 73(3):313–
322, MAR 2005. doi:10.1016/j.epsr.2004.07.005.

[WS93] D. C. Walters and G. B. Sheble. Genetic algorithm solution of economic dispatch
with valve point loading. Power Systems, IEEE Transactions on, 8(3):1325 –1332,
aug 1993. doi:10.1109/59.260861.

[YÖ11] Celal Yaşar and Serdar Özyön. A new hybrid approach for nonconvex economic
dispatch problem with valve-point effect. Energy, 36(10):5838 – 5845, 2011. doi:

10.1016/j.energy.2011.08.041.

[YWZY09] Xiaohui Yuan, Liang Wang, Yongchuan Zhang, and Yanbin Yuan. A hybrid dif-
ferential evolution method for dynamic economic dispatch with valve-point ef-
fects. Expert Systems with Applications, 36(2, Part 2):4042 – 4048, 2009. doi:

10.1016/j.eswa.2008.03.006.

[YYH96] Hong-Tzer Yang, Pai-Chuan Yang, and Ching-Lien Huang. Evolutionary program-
ming based economic dispatch for units with non-smooth fuel cost functions. Power
Systems, IEEE Transactions on, 11(1):112 –118, feb 1996. doi:10.1109/59.485992.

25

http://dx.doi.org/10.1016/j.epsr.2003.12.017
http://dx.doi.org/10.1016/j.epsr.2003.12.017
http://dx.doi.org/10.1016/j.epsr.2004.07.005
http://dx.doi.org/10.1109/59.260861
http://dx.doi.org/10.1016/j.energy.2011.08.041
http://dx.doi.org/10.1016/j.energy.2011.08.041
http://dx.doi.org/10.1016/j.eswa.2008.03.006
http://dx.doi.org/10.1016/j.eswa.2008.03.006
http://dx.doi.org/10.1109/59.485992

	Introduction
	ELDP Considering Valve-point Effect
	Problem Statement
	Geometry of the Feasible Set
	Structure of the Optimization Landscape
	Summary of the Optimization Challenges

	Optimization Exploiting the Geometry of
	The Ellipsoid Manifold
	Riemannian Optimization Ingredients
	Optimization Ingredients on En-1
	Restriction to Sub-Ellipsoids
	Respecting the Bound Constraints

	Subgradient Descent for the ELDP
	Subgradient Descent
	Riemannian subgradient descent
	Application to the ELDP cost function on En-1
	Including the Bound Constraints
	First-Order Stationarity Condition

	Implementation
	Generating a feasible iterate
	Computing the descent direction
	Computing the step size
	Subgradient Descent for the ELDP

	Numerical Experiments
	Local Convergence
	Parameter Influence
	Global Exploration

	Conclusion

