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Abstract

In a seminal paper, Racine and Li, (Journal of Econometrics, 2004) introduce a tool
which admits discrete and categorical variables as regressors in nonparametric regres-
sions. The method is similar to the smoothing techniques for continuous regressors but
uses discrete kernels. In the literature, it is generally admitted that it is always better
to smooth the discrete variables. In this paper we investigate the potential problem
linked to the bandwidths selection for the continuous variable due to the presence of
the discrete variables. We find that in some cases, the performance of the resulting
regression estimates may be deteriorated by smoothing the discrete variables in the
way addressed so far in the literature, and that a fully separate estimation (without
any smoothing of the discrete variable) may provide significantly better results, and we
explain why this may happen. The problem being posed, we then suggest how to use
the Racine and Li approach to overcome these difficulties and to provide estimates with
better performances. We investigate through some simulated data sets and by more ex-
tensive Monte-Carlo experiments the performances of all the proposed approaches and
we find that, as expected, our suggested approach has the best performances. We also
briefly illustrate the consequences of these issues on the estimation of the derivatives of
the regression. Finally, we exemplify the phenomenon with an empirical illustration.
Our main objective is to warn the practitioners of the potential problems posed by
smoothing discrete variables by using the so far available softwares and to suggest a
safer approach to implement the procedure.
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1 Introduction

Rapid advance of computing power and wider availability of large data sets encouraged

many researchers to substantially increase their attention to various non-parametric methods

for estimating regression relationships. One of the most popular of such non-parametric

methods appears to be the local polynomial least squares method, considered by Stone

(1977), Cleveland (1979), Cleveland and Delvin (1988), Fan (1992, 1993), Fan and Gijbels

(1992), Ruppert and Wand (1994) and popularized by Fan and Gijbels (1996). This method

received even greater appeal when it was substantially empowered by the seminal work of

Racine and Li (2004), who suggested a neat way to deal with discrete regressors in the

context of nonparametric regression.1 This work inspired many interesting applications in a

wide range of areas, for example, by Stengos and Zacharias (2006), Maasoumi et al. (2007),

Parmeter et al. (2007), Eren and Henderson (2008), Walls (2009), Hartarska et al. (2010),

Henderson (2010), to mention just a few. In these and other works that used Racine and Li

(2004) approach, researchers were able to obtain new insights with much more confidence, as

their approach was free from imposing any parametric form on the regression relationship,

while using both continuous and discrete regressors without splitting the sample into sub-

samples for each value of the discrete variables. In all the empirical as well as theoretical

studies and software codes that use Racine-Li approach that we are aware of, the way this

approach is applied is in its “default” or simple form that we will describe below.

Indeed, it became somewhat common to smooth the discrete regressors in local poly-

nomial least-squares almost automatically, perceiving that one should obtain better results

than if the estimator is applied to each group, identified by the discrete variable, separately

(see Li and Racine, 2007 and the references therein). For instance, in Racine and Li (2004,

p.113), one can read:

“One should expect that the smoothing method outperforms the frequency method
in general, since the former includes the latter as a special case (when λ =
0). However, when the sample size is very large, the computational cost can be
high for the cross-validation-based smoothing method. Therefore, in practice one
may want to use the frequency method when the sample size is much larger than
the number of discrete cells due to the computational simplicity of the frequency
method. But even in such a situation the efficiency gain of the smoothing method
over the frequency method can be substantial because the cross-validation method
may choose large values of λ for some discrete variables (e.g., Insik et al., 2002).”

While this statement appears to hold in various cases and is supported by all simulations

of Racine and Li (2004) for the case of local constant fitting, in this article we illustrate

that in some cases it may not be the case and smoothing the discrete variables can actually

1They extended the Aitchison and Aitken (1976) ideas for smoothing discrete variables and provided all

the asymptotic theory. Other basic references on smoothing discrete variables are Titterington (1980) and

Wang and Van Ryzin (1981).
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deteriorate substantially the resulting estimator of the regression function. In some situa-

tions even, a fully separate estimation for each group identified by the discrete (categorical)

variable may give much more accurate results (e.g., in terms of Mean Squared Error, MSE)

than the approach with smoothing over the discrete variable. In these cases, the reduction

in variance, or the efficiency gain due to smoothing of the discrete regressors, can be well

outweighed by a substantial bias introduced due to this smoothing. This may happen both

for small as well as for relatively large samples, and so, for such cases, it may be preferable

to make a fully separate estimation for each group.

We will see below that the source of the problem comes from the bandwidth structure

suggested by the basic or “default” method appearing in all papers in the literature we are

aware of (see some references above) and the various softwares implementing the Racine-Li

approach. In this basic approach, a “simple” bandwidth scheme is proposed for the con-

tinuous variables, in the sense that the same bandwidth vector is taken across the various

subgroups determined by the discrete variables and then, the bandwidths for the continuous

and for the discrete variables are simultaneously determined. So that, even if the result-

ing estimator of the bandwidths for a discrete variable takes a value zero (i.e., implying no

smoothing of this discrete variable with separate estimation by groups), the resulting band-

widths for the continuous variables are still restricted to be common to the various categories

of this discrete variable. This may lead in some cases to “over-smoothing” in some groups

and “under-smoothing” in the others.

To fix the ideas, suppose that we use local constant kernel method (Nadaraya-Watson)

and that we have two groups of observations (determined by one discrete variable) and only

one continuous variable. Suppose in addition that in one group, the variable is relevant

(derivatives of the regression w.r.t. this variable are not zero) and in the other it is not

relevant. In the later group, the optimal bandwidth would converge to infinity (see e.g.,

Hall et al., 2007), whereas in the first group, it has to converge to zero. A fully separate

analysis (“no smoothing” the discrete variable) will capture this feature whereas the “simple

smoothing”, suggested by the basic implementation of Racine and Li technique that appears

in all applications we are aware of, will miss this feature. The latter approach will provide a

common bandwidth for the continuous variable that will under-smooth the regression in the

group where the variable is irrelevant and over-smooth the regression in the group where it is

relevant. This extreme case seems obvious but apparently it has been overlooked in practice.

We can also imagine less extreme situations where the phenomenon would be similar: small

influence of the continuous variable in one group and more complex structure in the other.

Now, using local polynomial smoothing, the same problem may appear if in one group the

local polynomial approximation is not far from the true regression, but the structure in the
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other is globally much more complex (e.g., for local linear case, if the true regression is linear,

the optimal bandwidth has to converge to infinity, see Li and Racine, 2004). Obviously, the

problem can even be more severe when estimating the derivatives of the regression. We

will briefly illustrate this in one example below, showing the bad consequences the simple-

smoothing could lead to. To the best of our knowledge, this phenomenon has never been

analyzed in the literature using smoothing techniques for discrete variables. It is one of the

objective of our paper to investigate the empirical consequences of these issues.

There is a simple way to improve the method and overcome these potential difficulties.

One can allow, in the bandwidth selection procedure, different bandwidth parameters for

the continuous variables in each category of the discrete variables. We will call this method

the “complete-smoothing” approach to contrast it to the default “simple-smoothing” used

so far in the literature and to the “no-smoothing” approach where the groups are treated

fully separately. This richer approach is of course at a cost of computational complexity, but

we will see below that the gain in precision of the regression estimate can be substantial.

We will limit the presentation to the case of categorical discrete variables, so each value of

the discrete variables determines a group category.

More generally and beyond the extreme cases described above, whether the bias beats the

variance, or not, essentially depends on the degree of difference of curvatures of the regression

relationship pertinent to each group identified by the discrete variable and to some extent

also depends on other aspects of the DGP (Data Generating Process), such as the size of the

noise, etc. Thus, in general, a priori it is not clear whether it is better to smooth the discrete

variables or to do a fully separate estimation (unless the latter is hardly reliable or impossible

due to very small data in a given group) and, so far, there appears to be no formal rule of

thumb for deciding on this dilemma. The complete-smoothing approach, that we suggest

below, allows for smoothing the discrete variables but also uses different bandwidths for each

group for the continuous variable. Since this encompasses both the no-smoothing approach

(fully separate estimation procedure) and the simple-smoothing technique as special cases,

we can expect theoretically better performances of the complete-smoothing approach.

Because a priori it is not clear whether all categories of a discrete variable must have

a common bandwidth, our finding is very important for practitioners, as it warns against

an automatic use of smoothing over the discrete regressors in a simple way (as provided by

the available softwares), without considering that this might actually produce less accurate

estimation results. More importantly, we hope our paper will stimulate further research in

this area to find some theoretically justified ways (e.g., statistical tests or rules of thumb) for

deciding whether “to smooth or not to smooth” over the discrete regressors and whether or

not to go with the more general, but more computationally demanding, method we suggest
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in this paper.

Our paper is organized as follows: Section 2 recalls the basic notations and results of Local

Linear Least-Squares (LLLS) methods which we use to illustrate the issue;2 Section 3 focuses

on the potential source of problems when smoothing the discrete variables and suggests

an extension that would, in theory, provide better performances; Section 4 illustrates how

severe can be the problem by some simple visualized examples and by some more extensive

Monte-Carlo experiments and how the complete-smoothing approach outperforms the other

approaches; Section 5 illustrates the issue with a real data set and finally, Section 6 concludes

and summarizes our main findings.

2 Description of the Method

The point we stress in this paper is a general phenomenon linked to nonparametric regression,

but we illustrate it on a method that appears to be the most popular in practice, the local

linear least squares (which is a particular case of Local Polynomial Least Squares, LPLS). We

summarize here the basics of the method and we refer to textbooks for details (e.g., see Li and

Racine, 2007, Fan and Gijbels, 1996 or Pagan and Ullah, 1999). The idea of local polynomial

smoothing is to allow flexible form for approximating locally the true unknown regression.

Formally, we assume that the dependent endogenous variables Yi ∈ R, i = 1, . . . , n, are

generated according to the following regression model:

Yi = m(Xi) + εi, (2.1)

where Xi = (Zi, Z
d
i ), with Zi ∈ R

p being continuous and Zd
i being a L-dimensional discrete

variable. We will focus on the presentation for categorical unordered variables, but the same

could be done for naturally ordered variables by using appropriate kernels, see Racine and Li

(2004) for details. In addition, we make the standard assumptions on the errors, εi, that they

are independent random variables with E(εi | Xi) = 0, E(εiXi) = 0 and V (εi | Xi) < ∞,

although the phenomenon we will discuss may apply to more sophisticated setups.

The flexibility of the model is related to the fact that the unknown regression function

m(·) is not specified. No particular assumptions are made on m itself except for some

smoothness properties on m(·, zd). For the sake of simplicity, we will assume that m(·, zd)
is twice continuously differentiable in its first p continuous arguments. Finally, we need also

2Our remarks and suggestions could obviously be applied also when using higher order local polynomial

smoothing or other non-parametric kernel-based regression methods, such as local-non-linear least squares

(see Gozalo and Linton, 2000) or local maximum likelihood techniques with discrete variables as in Park et

al. (2010), etc.
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some regularity (smoothness) of the density fZ|Zd(·; zd) with respect to the p continuous

arguments.

The main idea of LPLS is to approximate m(u, v) for all (u, v) in a neighborhood of a

given point (z, zd) by a local polynomial of degree r in the direction of z and then select the

parameters of this local polynomial by minimizing the resulting sum of the squared errors.

A degree r = 0 would provide the local constant (Nadaraya-Watson type) estimator. For

simplicity of notation, we will limit our presentation to the case of local linear approximations

(r = 1). Extension to higher orders follows the same ideas but at a cost of notational

complexity. So we take the following local approximation:

m(u, v) ≈ αz,zd + β ′
z,zd(u− z), (2.2)

where αz,zd ∈ R and βz,zd ∈ R
p are quantities to be estimated that, in general, vary with

(z, zd). To take only neighboring observations around (z, zd), or to give more weights to

them, when evaluating the least-squares criterion, the kernel approach is used. For the

continuous variables we use a product kernel (but many other multivariate kernels would

also work), i.e.,

Kh(Zi − z) =

p∏

j=1

1

hj

Kj

(
Zi,(j) − z(j)

hj

)
, (2.3)

where h = (h1, . . . , hp) is a vector of bandwidths, z(j) is the jth component of z and Kj(·) is
a standard univariate kernel function (e.g., univariate standard Gaussian density). For the

discrete variables we use the Racine and Li (2004) kernel, i.e.,

Λλ(Z
d
i , z

d) =

L∏

ℓ=1

λ
1I(Zd

i,(ℓ)
6=zd

(ℓ))
ℓ , (2.4)

where 1I(A) is the indicator function, with 1I(A) = 1 if A holds, and 0 otherwise, and

λℓ ∈ [0, 1] are bandwidths for the discrete variables ℓ = 1, . . . , L. The local least squares

criterion at a given point (z, zd) measuring the quality of the approximation is thus given by

Cn(αz,zd, βz,zd; z, z
d) =

n∑

i=1

(
Yi − (αz,zd + β ′

z,zd(Zi − z))
)2

Kh(Zi − z)Λλ(Z
d
i , z

d), (2.5)

We note that if for a particular ℓ, we have λℓ = 0 (with the convention that 00 = 1),

then there is no smoothing of this ℓth discrete variable; i.e., the evaluation in (2.5) is done

separately for each subsample determined by this discrete variable, with a common h. At

the other limit, if λℓ = 1, we do not take into account this discrete variable in the analysis;

i.e., all the sample points have weight in (2.5) independent from the value of Zd
i,(ℓ).
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Let α̂z,zd and β̂z,zd minimize the criterion Cn at (z, zd), then the proposed estimator of

the regression function at the point (z, zd), denoted by m̂(z, zd), is given by α̂z,zd whereas

β̂z,zd gives an estimate of the first partial derivatives of m with respect to the continuous

variables z evaluated at (z, zd).

The selection of appropriate bandwidths (h, λ) can be done by Least-Squares Cross Val-

idation (LSCV) method, although many other approaches can be adopted (e.g., corrected

AIC method as also considered by Li and Racine, 2004, etc.). When adopting the LSCV

approach, the values ĥ and λ̂ are the values that minimize

CV (h, λ) =
n∑

i=1

(
Yi − m̂(−i)(Zi, Z

d
i )
)2

M(Zi, Z
d
i ), (2.6)

where M(Zi, Z
d
i ) is a weight function trimming out boundary observations and m̂(−i)(Zi, Z

d
i )

is the leave-one-out kernel estimator of m(Zi, Z
d
i ), i.e., estimated by using (2.5), but leav-

ing the ith observation out of the sample. The properties of the final resulting estimator

m̂(z, zd) when using these bandwidths are described in Racine and Li (2004) (see Theo-

rem 2.3) for the local constant case (r = 0) and in Li and Racine (2004) for the local

linear approximations (see Theorem 2.2). It is important to notice that, as common in all

these smoothing approaches, these theorems assume that hj → 0 for all j = 1, . . . , p, and

nh1 . . . hp → ∞ as n → ∞. As pointed out above, if λ̂ℓ = 0 for all ℓ = 1, . . . , L we have

Λλ(Z
d
i , z

d) = 1I(Zd
i = zd), so that the estimation in (2.5) is done only with the data having

this value zd, so the estimation of the regression function is done separately for each group,

with common h.

The argument generally admitted in the literature so far is that it is always better to

smooth the discrete variable in (2.5), because the separate analysis (called the frequency

method by Racine and Li, 2004) on each separate subsample defined by the categorial vari-

ables Zd would correspond to the particular case when all λℓ = 0, j = 1, . . . , L (see e.g., the

quote in the introduction above). We indicate in the next section that it might not be the

case in all situations, including very simple ones.

3 Over- and Under-Smoothing Problem and A Simple

Solution

To simplify the argument, let us suppose that we have only one discrete variable defining two

groups of observations (the argument would be the same when considering all the subgroups

defined by the L ≥ 1 categorical variables Zd). Suppose that in addition, the DGP in the

two groups have different characteristics (shape of the regression function, or curvature, or
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size of the noise, etc.). Extreme cases of such differences have been shortly described in the

introduction. Unless the sample size within one of the group is very small, the bandwidth

selection procedure described above may provide small values of λ̂ (for relevant discrete

regressor), resulting in the frequency method in the limiting case where λ̂ = 0 (two separate

samples), and a common h for different groups.

As pointed out above for the extreme cases, this could be inappropriate in many situations

where some important characteristics of the DGP are quite different in the two subgroups.

In such instances, having common bandwidths ĥ for different groups identified by zd, may

force under-smoothing (over continuous variables) for one group while over-smoothing for

the other. While this may not matter asymptotically (as long as the common ĥ has the

proper order), it happens to matter in finite samples (small and even relatively large ones),

sometimes substantially, as illustrated in our examples in the next section. So, in this case,

it might be better to do fully separate estimation within each subgroup, allowing the vector

of bandwidths for continuous variables to vary across the different groups (no smoothing at

all for the discrete variables). As pointed out by Racine and Li (2004), this may increase

the variance but this will lower the bias; at the end, it could provide estimators with smaller

MSE, than the case with smoothing over the discrete variable, even if the smoother-selection

procedure leads to λ̂ ≈ 0. We will show in the next section that the loss in accuracy of this

default “simple-smoothed” estimator may be dramatic. Of course, if the sample size in one

group is too small one cannot hope to get sensible results with a separate nonparametric

estimation. So, a solution is needed.

A natural way to overcome these problems of over- and under-smoothing in subgroups is

to allow smoothing over the discrete variables, as in Racine and Li (2004), but to proceed to

what we call a complete-smoothing, i.e., to allow also different bandwidths for the continuous

variables in the two groups. Formally, in the case of two groups defined by one discrete

variable, the equation (2.5) defining the estimator could be replaced by

Cn(αz,zd, βz,zd; z, z
d) =

n∑

i=1

(
Yi − (αz,zd + β ′

z,zd(Zi − z))
)2

×
[
Kh1(Zi − z)1I

(
Zd

i = zd(1)
)
+Kh2(Zi − z)1I

(
Zd

i = zd(2)
)]

Λλ(Z
d
i , z

d), (3.1)

where zd(k), k = 1, 2 are the two values of zd defining the two subgroups (e.g. zd(1) = 1,

zd(2) = 0). For simplicity, we keep the same kernel function in the two groups, but we allow

potentially different bandwidths h1 and h2 for these groups. Optimal bandwidths (ĥ1, ĥ2, λ̂)

could be derived in a similar way as above in (2.6) but at a computational cost if p is large

and if product kernels are used for the continuous variables or if L or the number of groups

identified by the discrete variables is large.

7



It must be clear that the general formulation we propose in (3.1) encompasses both the

fully separate analysis by groups (this is, in our complete-smoothing setup, the case when

λ = 0), and the simple-smoothing approach (this is, imposing h1 = h2 in our complete-

smoothing setup). So, in theory, we could only improve the performances of the resulting

estimator relative to these two particular cases. Note also that the mixture of two kernel

functions we use in (3.1) shares (under the same regularity conditions) the same properties

as the kernel used for continuous variables in Racine and Li (2004) and Li and Racine (2004).

So, all the asymptotic results derived there remain valid, as long as the bandwidths h1 and

h2 have the appropriate sizes when both sample sizes in each group go to infinity.

In the next section we will illustrate and visualize the problem discussed here in some

simple examples. We will investigate the finite sample properties of the different approaches.

This will confirm the expected theoretical performance of our extension over the traditional

smoothing approach and over the fully separate approach. We find that the gain of precision

may be substantial in practice.

4 Illustration

We first present some very simple examples that allow us vividly illustrating the issue raised

in the preceding section. We will provide “typical” pictures resulting from particular sim-

ulated samples (generated according to the scenarii described below). Of course we cannot

conclude general statements about one simulated sample but the idea is to provide visualiza-

tion of the problem. Afterwards, we will confirm what we see by a more detailed Monte-Carlo

experiment. In all presented simulations, we considered the following regression relationship

(although we tried many others and obtained the same conclusions)

Yi = a1 + a2Z
d
i + b1Zi + b2Z

d
i Zi + b3Z

2
i + b4Z

d
i Z

2
i + b5Z

d
i sin(πZi) + εi. (4.1)

Varying the choice of the parameters will provide the various examples explored in this

section.3

3It is worth to mention that in the simulations we used the Aitchison and Aitken (1976) discrete kernel,

which is equivalent to the Racine and Li kernel used in Section 2 (see for details, Racine and Li, 2004). Here

the discrete smoothing parameter λ takes its values in [0, 0.5] in place of [0, 1]. Note also that since the range

of Z is [−2, 2], we limit the search of optimal bandwidths of Z (h, h1 and h2) in the range (0, 20]. This does

not change the picture and the MC results. In all the cases, the bandwidths h, h1 and h2 have been scaled

by sZ , the empirical standard deviation of Z. So the bandwidths h, h1 and h2 used while optimizing (2.5)

and (3.1) are the values reported in the Figures and the Tables below, multiplied by sZ .
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Example 1: linear vs. periodic regression

For the first example presented, we set a1 = 1, a2 = −1, b1 = 1, b2 = 0.1, b3 = 0, b4 = 0, b5 =

2, with εi ∼ N(0, σε,i, where σε,i = 2− Zd
i . Here, for each simulation, the Zi ∼ U(−2, 2) for

the continuous variable Z and the discrete variable Zd was set randomly at 1 if W > 0.25

and set at 0 if W ≤ 0.25, where W ∼ U(0, 1). So, we randomly obtained about 75% of

observations for group 1 (with Zd
i = 1) and about 25% for group 2 (with Zd

i = 0).4

In this first example, in group 2 (zd = 0) we have a linear model with more noisy data

and smaller sample size and for group 1 (zd = 1), we have a linear model (slightly different

intercept and slope) plus a cyclic component. In Figure 1, we present a typical result of

the estimation by using the 3 approaches described above: Approach 1 is a fully separate

estimation of the two subsamples (no-smoothing of the discrete variable), Approach 2 is

the simple-smoothing, i.e., smoothing the discrete variable, with common bandwidth for

the continuous regressor Z and Approach 3 is the complete-smoothing, i.e., smoothing the

discrete variable but keeping potentially different bandwidths for the continuous variable.

Figure 1 presents typical results just for one sample of a moderate size n = 100 and one

sample with a large size n = 400 (similar pictures have been obtained for other sizes, see the

Monte-Carlo experiment below).

Looking first to the left panels (n = 100), we can see that the simple-smoothing (Ap-

proach 2) suffers from a serious drawback in this scenario and that the no-smoothing es-

timation (Approach 1) gives much better results both for n = 100 and n = 400. The

complete-smoothing of Approach 3, encompassing the 2 preceding ones, does as well as

the fully separate analysis for these samples. The fully separate estimation substantially

outperforms the estimation with simple-smoothing over the discrete regressor, as the latter

approach under-smoothes for the group 1 and slightly over-smoothes for the group 2. Note

that for this example, the under-smoothing is more pronounced because the group 1 domi-

nates in the pooled sample by its larger size and so the common bandwidth selected in the

CV optimization for (h, λ) is relatively close to what is optimal for the group 1 in the sepa-

rate estimation, while for the group 2, the true optimal bandwidth must in fact go to infinity

to attain the correctly specified parametric model. Of course the complete-smoothing (Ap-

proach 3), allowing different bandwidths for the continuous regressor Z in the two groups,

corrects for this.

One may argue that this is a small sample problem, in fact it is not. We see clearly in

the left panel of Figure 5 that when n = 1000, the final estimator of the regression lines by

using Approach 2 still behaves poorly in group 2, due to the persistent under-smoothing. Of

4Most conclusions remain the same for other compositions (e.g., 50% vs. 50%, etc.).
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course, with such large samples, allowing different bandwidths for the continuous variable

in the two groups gives close to a perfect fit, both with Approach 1 and Approach 3. We

cannot say the same about Approach 2 even for larger samples.

Results of the Monte-Carlo experiment summarized in Table 1 confirms what has been

seen for two particular samples illustrated in Figure 1. Allowing n going from 50 to 400, we

did 200 Monte-Carlo (MC) replications in each case. The table provides AMSE, the mean

of the Approximate Mean Squared Error (AMSE) of each sample, obtained over the 200

MC replications. For one MC sample, the AMSE is defined as

AMSE =
1

n

n∑

i=1

(
Yi − m̂(Zi, Z

d
i )
)2

.

The table also gives the estimated standard deviation of the Monte-Carlo estimate of the

mean, defined as

stdMC =
1√
M

√√√√ 1

M − 1

M∑

k=1

(
AMSEk − AMSE

)2
,

where AMSE = (1/M)
∑M

k=1AMSEk and M is the number of MC replications. This stdMC

allows to check if the differences observed in the table for the AMSE are significant.

We remark that all the figures appearing in Table 1 vary as expected when n increases.

It is worth noting that in all the simulations for this scenario, the CV yielded λ̂ that is very

close to zero for both Approach 2 and Approach 3, and that Approach 3 gives systematically

less weight to the smoothing of the discrete variable than Approach 2.

We can see in Table 1 that over many replications, the overall AMSE is always (sig-

nificantly) smaller for the Approach 1 than for Approach 2 (often twice smaller), and that

this does not vanish when the sample size increases. Note that the difference in AMSE is

much larger for the smaller group, where as also is seen from the figures and as explained

above, the problem of under-smoothing is more sever due to domination of the larger group

in the CV selection of the common bandwidth of the traditional Racine-Li approach. The

AMSE for Group 2 is significantly smaller for Approach 1 and 3 than for Approach 2, and

this is true even for small samples, as small as n = 50 (with on the average, n2 ≈ 12) and

the difference being about three times for n = 100, 200, 400. Looking to the median of the

bandwidth selected by the different approaches, we see clearly that the Racine-Li Approach

2 under-smoothes the data of Group 2. We see also that complete-smoothing Approach 3 is,

as expected and explained above, very safe here since it gives the same results as Approach

1 (no significant differences here). Note also that, as a consequence of the theory provided

by Racine and Li (2004) and Li and Racine (2004), in all the cases, the AMSE reduces

10
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Figure 1: Example 1: Left panel, n = 100 and right panel, n = 400. From top to bottom:

Approach1 (no-smoothing the discrete variable), Approach2 (simple- smoothing), Approach3

(complete-smoothing).

as n increases and that the optimal bandwidths (except ĥ2 when computed separately) go

to zero as n goes to infinity. Again, the LSCV procedure for Approach 3 gives very sim-
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ilar bandwidths for h1 and h2 to those obtained by Approach 1, while the estimate of λ

is persistently smaller than for the Approach 2, indicating that Approach 2 suggests more

similarities between groups than suggested by Approach 3.

Example 2: linear vs. quadratic regression

It may look like the phenomenon we notice is pertinent only to cases with radically different

curvatures. So, for the second example we take much more similar regression lines for the

two groups. In equation (4.1) we selected the values a1 = 1, a2 = −1, b1 = 1, b2 = 0.1, b3 =

0, b4 = 1, b5 = 0, all the other elements of the scenario of the first examples are the same. So

here, in group 1 (Zd
i = 1) we have replaced the periodic part by a quadratic term, implying

some curvature. The scenario for group 2 (Zd
i = 0) remains the same (i.e., linear) as in the

first example.

Figure 2 below shows typical examples with the resulting fits of the 3 approaches, with

n = 100 and n = 400. The pictures tell us the same story as in Example 1, although

the difference in curvature is not so radical. This is also confirmed by the Monte-Carlo

experiments (200 MC replications) and the results are displayed in Table 2. To summarize

and to save place, we can say that most of the comments coming from Example 1 can be

replicated. Here again, Approach 1 gives always better results than the simple-smoothing

Approach 2. The complete-smoothing Approach 3 is much safer here as well: it is always

better than Approach 2 and in most of the cases, is even significantly better than Approach

1, for all sample sizes. Here, the CV-estimated values of λ are larger for Approach 3 than

Approach 2, indicating that leaving more flexibility to the choice of the bandwidth for the

continuous variable in the two groups increases the gain of precision while smoothing the

discrete variable. This is because the two regression lines are not so different as they were

in Example 1.

Example 3: linear vs. very similar quadratic regression

We shortly describe another scenario where the quadratic regression is quite similar to the

linear one: we diminish the size of the shift (intercept) from -1 to -0.5 and the coefficient

of quadratic term is decreased from 1 to 0.25. So, in equation (4.1) we selected the values

a1 = 1, a2 = −0.5, b1 = 1, b2 = 0.1, b3 = 0, b4 = 0.25, b5 = 0, all the other elements of the

scenario are the same. We do not present the pictures because the two regression lines are so

close that we do not learn too much by looking to a particular sample realization. However,

the Monte-Carlo presented in Table 3 is not without interest.

Globally, and as expected here, the simple-smoothing technique (Approach 2) behaves

12
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Figure 2: Example 2: Left panel, n = 100 and right panel, n = 400. From top to bottom:

Approach1 (no-smoothing the discrete variable), Approach2 (simple-smoothing), Approach3

(complete-smoothing).

barely significantly better: for small sample size (n = 50) it outperforms the no-smoothing

case (Approach 1), mostly due to the gain of precision in estimating the regression relation-
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ship for the group 2. The gain of variance is larger than the loss due to bias. However, the

dominance of Approach 2 over Approach 1 vanishes very quickly as n increases (no more

significant differences from n = 100). But the most interesting result is that even in this

scenario, favorable to Approach 2, the results obtained by using the complete-smoothing

technique (Approach 3) always suggest significantly better performance for the two other

approaches. This is true even for n = 50 (mostly for better estimation in group 2) and this

does not vanishes when n increases.

Example 4: quadratic vs. quadratic regression

In this scenario, both regression relationships are quadratic and so, the theoretical optimal

values of the bandwidths in both groups should converge to zero when the sample size

increases. We keep a difference in the shift between the two regressions as in Example 1 and

2, a slight difference of the linear component but one regression has a quadratic component

which is two times larger than the first. Specifically we have in equation (4.1) the values

a1 = 1, a2 = −1, b1 = 1, b2 = 0.1, b3 = 0.15, b4 = 0.15, b5 = 0, all the other elements of the

scenario of the first examples are the same. So we expect in this example to have a better

behavior of the simple-smoothing technique (Approach 2) than Approach 1, because the

curvatures of the two regressions are quite similar.

Figure 3 below shows typical examples with the resulting fits of the 3 approaches, with

n = 100 and n = 400. We see indeed that Approach 2 behaves relatively well compared

to the two others, although, the group 2 seems again to be under-smoothed for the same

reasons explained above for Example 1 and 2. Looking to the right panel of Figure 4, we see

that even for larger samples (n = 1000), Approach 2 does not provide estimators so close to

the true regressions, as Approaches 1 and 3 do. The disappointing behavior of the estimators

resulting from Approach 2 becomes clearer when looking to the Monte-Carlo experiment for

this scenario. Table 4 indicates that Approach 2 does as well as Approach 1 when the total

AMSE is considered, but at a cost of balancing a better behavior for group 2 and a worse

behavior for group 1. Here again, Approach 3 is certainly the safest, in all the cases it shows

similar or better performances than the two other approaches.

Example 5: quadratic vs. periodic regression

Finally, we tried a quadratic vs. a periodic regression in the two groups: this is similar

to Example 1, except that now the linear model is wrong in both groups. We select in

equation (4.1) the values a1 = 1, a2 = −1, b1 = 1, b2 = 0.1, b3 = 0.25, b4 = 0, b5 = 2, all

the other elements of the scenario of the first examples are the same. Typical samples and

14
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Figure 3: Example 4: Left panel, n = 100 and right panel, n = 400. From top to bottom:

Approach1 (no-smoothing the discrete variable), Approach2 (simple- smoothing), Approach3

(complete-smoothing).

results of estimation are displayed in Figure 5 and the full picture is given in the Monte-

Carlo Table 5. We see indeed that in this case the difference between Approach 2 and the
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Figure 4: Left panel, Example 1 with n = 1000 and right panel, Example 4 with n = 1000.

From top to bottom: Approach1 (no-smoothing the discrete variable), Approach2 (simple-

smoothing), Approach3 (complete-smoothing).

two other approaches is not so dramatic as in the previous examples (because here, in both

groups, the optimal bandwidth for the continuous component should converge to zero when
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n increases). Yet, looking to the MC results in Table 5, we confirm the general comments

given for Example 1. Approach 1 has always better performance than Approach 2 and again,

Approach 3 is the safest way to approach the estimation in this scenario (with significantly

better performances).

Consequences on the estimation of derivatives

Obviously, the problem of derivatives estimation is contaminated by the phenomenon we

describe. To save space we only illustrate this in the case of the scenario described in

Example 1. Figure 6 displays one typical sample and the resulting estimates of the first

partial derivatives using the 3 approaches. This figure illustrates clearly that the estimation

of derivatives and the related estimates of marginal effects, elasticities, etc. can be even more

severely flawed by using the simple-smoothing approach. Indeed, as one can clearly see from

Figure 6, with simple smoothing one obtains radically varying and even changing the sign

estimates of the derivatives for the group where their true values are constant or vice versa.

The problem sustains whether the total sample size is 100 or 400 (or more). This means that

research conclusions, policy implications and, consequently, the real policy decisions based

on such estimates can be misleading, wrong and perhaps even damaging. Note that for this

same example, the complete-smoothing approach produced much better results, very close

to the true values. We also did a more complete Monte-Carlo experiment that confirmed

largely these expected results, but to save space we omit them from the paper.

Concluding remarks from the MC experiments

While we presented only particular examples here, there are of course many others, some

of which we also tried, where the same phenomenon is observed. We presented here some

cases, like Example 1, where one relationship is periodic while the other is linear just for

vividly illustrating the point, showing how substantial could be the difference in performance.

But we also observed that the same phenomenon may still be present when the degree of

non-linearity is not very different across groups, i.e., linear vs. quadratic, as well as when

both are quadratic but with different curvatures or when one is periodic and the other

is quadratic. In our simulations, we also observed that the problem of over and under-

smoothing in different groups reduces when the difference in non-linearity or non-smoothness

in regression relationship across groups reduces but such information can hardly be known

in practice. In other words, the “default” Racine-Li approach (simple-smoothing) implicitly

restricts the groups to have similar “degree of smoothness”, which is less restrictive than

parametric assumptions, yet it is more restrictive than fully non-parametric estimation.
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Figure 5: Example 5: Left panel, n = 100 , and right panel, n = 400.From top to bottom:

Approach1 (no-smoothing the discrete variable), Approach2 (simple- smoothing), Approach3

(complete-smoothing).

This issue appears to have been overlooked in previous studies, in particular in the context

of local linear fitting.
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Figure 6: Derivative Estimates for Example 1: Left panel, n = 100 and right panel, n = 400.

From top to bottom: Approach1 (no-smoothing the discrete variable), Approach2 (simple-

smoothing), Approach3 (complete-smoothing).

We have also seen that if the difference between the DGP of the two groups is rela-

tively small, e.g., as in Example 3, the simple-smoothing of the discrete variable is working

well. But even there, as expected, the extended Racine-Li approach provides significantly

better fit. It is thus clear that, even for fairly small samples, there are cases where fully

separate estimation, without smoothing the discrete variable, performs significantly better

than the simple-smoothing with common bandwidths for the continuous variables across

groups. In all the cases we considered, the complete-smoothing approach behaves better,
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but at a computational cost. We also mentioned that the problem of derivatives estimations

is contaminated by the same phenomenon, with all the consequences this may lead to.

5 Empirical Illustration

The goal of this section is to make an illustration of the phenomenon we discussed above

for the context of a real data. To do so, we will use a data set from a study of Kumar

and Russell (2002), about patterns of convergence or divergence in economic growth in the

world.5 We choose this data and the context because the topic of economic growth has

remained interesting for a wide audience for centuries that past and, perhaps, the centuries

that follow, and so we hope it would be interesting to a general audience.

This data consists of observations on 57 countries in the world, containing such variables

as GDP, labour and capital of each country in 1965 and in 1990, and was originally extracted

from the Penn World Tables. We will use this data to estimate regression relationship

between the growth in GDP per capita (between 1965 and 1990) of countries in the world

(used as dependent variable here) and the initial levels of GDP per capita of these countries

(used as the continuous explanatory variable). Such a regression and many of its variations

are often performed in empirical economic growth studies on convergence.

Often, an hypothesis of interest in such studies is that the growth rates of poorer coun-

tries are, on average, higher than those of the richer countries, and so the poorer countries

eventually must catch-up with or converge to the levels of GDP per capita of the richer

countries. This is often referred to as the (unconditional) “beta-convergence” phenomenon.

Earlier works on this issue employed parametric regressions and some studies found that

the slope coefficient (the “beta”) in such regressions, is negative and significantly different

from zero, thus supporting the “beta-convergence” hypothesis. Yet, other studies found

that the “beta” is insignificantly different from zero (i.e., no convergence) or even positive

(“beta-divergence”) and significantly different from zero for different samples or for distinct

groups of countries within a sample or when additional explanatory variables are accounted

for.6 Clearly, any of such results might also depend on the parametric assumptions on the

regression relationship and so this is where using non-parametric regression methods may

give some useful insights. Below we will use the local linear least squares estimator (LLLSE),

with the three approaches discussed above, to see whether they suggest the same or similar

5This data set (or its extended version) was also used in many other applications, e.g., in Henderson and

Russell (2005), Simar and Zelenyuk (2006), Henderson and Zelenyuk (2007), Badunenko et al. (2008), etc.
6For a recent detailed review of this topic, e.g., see Maasoumi et al. (2007), Weil (2008) and references

cited therein.
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stories for the following regression relationship,

yi = m(zi, z
d
i ) + εi, i = 1, . . . , n

where yi is growth in GDP per capita of country i between 1965 and 1990, zi is the natural

log of GDP per capita of country i in 1965, while zdi is a discrete variable (defined below)

and εi is statistical noise, for which we assume that E(εi|zi, zdi ) = 0 and V (εi|zi, zdi ) < ∞ for

all i.
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Figure 7: Illustration with GDP data. From left to right and top to bottom, Panel (a)

Approach 0 (only one group of data), Panel (b): Approach1 (no-smoothing the discrete

variable), Panel (c): Approach 2 (simple-smoothing), Panel (d): Approach 3 (complete-

smoothing).

The result of the estimations are shown in Figure 7 including some information on the

resulting bandwidths obtained by the different approaches. As a starting point, in panel

(a) of Figure 7 we present results of LLLSE estimation without the discrete variable (where
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h is estimated with LSCV). From this figure one may get a feeling that there are might

be different groups within the sample that have different regression relationships (in terms

of intercept or slope or both). Indeed, in various studies in the context of cross-countries

analyses, researchers often distinguish various groups of countries, allowing them to have

different regression relationships. An objective grouping criterion often used in practice,

for example, is an indicator whether a country is OECD member or not (e.g., Racine et

al. (2006), Simar and Zelenyuk (2006), Maasoumi et al. (2007), Henderson and Zelenyuk

(2007), etc.), and so we also use it as our discrete variable, zdi , that has value 1 if country i

was a member of OECD in the year 1965 and zero otherwise.7

In panel (b) of Figure 7 we present results of LLLSE estimation for Approach 1 (i.e., sep-

arate estimation for each group, with h estimated via LSCV for each group separately), and

one can see that the estimated relationships for the two groups are very different not only

in the intercept but also in the slope. Specifically, note that the relationship for the larger

(non-OECD) group is virtually flat, with very slight inverted-U -shape curvature. On the

other hand, note that the relationship for the smaller (OECD) group has a more pronounced

inverted-U -shape (or rather “inverted hockey-stick” shape) curvature. Note that such cur-

vature may suggest an important economic implication: it hints that OECD countries with

very low initial GDP per capita are expected to have higher growth rates in GDP per capita

than those with very high initial GDP per capita, yet the highest rates are expected to be

not at the lowest level of GDP per capita but somewhat larger.

On the other hand, panel (c) of Figure 7 presents results of LLLSE estimation for Ap-

proach 2 (i.e., original Racine-Li approach with OECD variable, where h and λ are estimated

jointly via LSCV for the entire sample). One can see that the estimated relationships here are

also very different between the two groups, but also somewhat different from the story sug-

gested by the Approach 1 in panel (b). Specifically, note that the relationship for the larger

(non-OECD) group has slightly more pronounced inverted-U -shape curvature, although it

still remains relatively flat. On the other hand, note that the relationship for the smaller

(OECD) group has much less curvature than was observed from Approach 1 in panel (b),

which is not an inverted-U -shape at all. That is, Approach 2 suggests that for OECD coun-

tries there is almost linear and negative relationship between the growth in GDP per capita

and the initial level of GDP per capita. In other words, with the simple-smoothing approach

we get some under-smoothing for the larger group and over-smoothing for the smaller group

relative to the Approach 1 (separate estimation). This is similar to what we have observed

7Clearly, in a detailed analysis, one may want to condition for many other potentially important explana-

tory variables, yet we will limit our illustration to the case of one continuous and one discrete explanatory

variable for the sake of ease of graphical representation of the phenomenon.
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for simulated data sets, except that now we do not know how the true relationships look

like.

Some additional insight is provided by the Approach 3, i.e., the complete-smoothing

method, where we allow for each group identified by the discrete variable to have its own

bandwidth but also smooth the discrete variable and so use the full sample in one estimation.

Panel (d) of Figure 7 visualizes the results of the estimation from Approach 3 and one can

see that it gives almost identical results to those from Approach 1. Again, this is similar

to what we have observed for simulated data sets, yet now we do not know what the true

relationship is. Indeed, with such small samples, it could be that the left-most observation in

group 1 is kind of ‘accidental’ and so omitting it for Approach 1 and 3 may give results very

similar to Approach 2. However, it also could be the case that there are other data points

not available in our sample that are similar to this left-most observation in group 1 and

including them would make the inverted U -shape curvature even more pronounced. Since

we do not know the true relationship, unlike in the simulated samples, it is hard to judge

which of these arguments is likely to be right or wrong and we do not do so, but only point

out that Approach 1 and Approach 3 gave almost identical results, which are different from

Approach 2. Since the Approach 3 encompasses the other two approaches, taking the best

features from each, and that our simulations suggested that Approach 3 was never worse

than the other two, and sometimes better than at least one of them, Approach 3 appears

to be the safest approach for a practitioner to trust in this context and, perhaps in general,

whenever it is computationally feasible.

Finally, it might be worth emphasizing again that in this section we had not intended to

resolve the puzzles of economic growth across countries as such study would require larger

data set, more variables, etc. Our goal was just to give a concise and vivid illustration of

the phenomenon we discussed above and, in particular, to compare the three approaches,

not only for simulated data sets, but also for a real data, for a context that appears to be

interesting for a wide audience.

6 Conclusion

In this article we pointed out and illustrated that the reduction in variance or the efficiency

gain due to smoothing of the discrete regressors with common bandwidth for the continuous

variables across groups, as is frequently done in applied studies so far, can be well outweighed

by the substantial bias introduced due to this smoothing, both for small and for relatively

large samples. For such cases, even fully separate estimation for each group, if feasible, might

be preferred. We have shown that the extended smoothing technique (allowing different

23



bandwidths for the continuous variables in each group) overcomes this difficulty and thus is

much more safe: it outperforms the two other approaches, but at an additional computational

cost.

In general, whether it is better to smooth or not to smooth the discrete variable or

whether “the bias beats the variance”, or not, essentially depends on the degree of difference

of the DGPs in the different groups: curvatures of the regression relationship, variation in

the error term for each group, variation in the continuous regressors, size or proportion of

one group relative to another in the sample, etc. . . The safe approach is indeed an extension

of the “default” Racine and Li method, but at a cost of additional computational complexity

that could quickly become problematic either if the number of continuous variables increases

(and we use a multiplicative kernel) or when the number of categories determined by the

discrete variables is too large or both. The numerical burden is linked to the determination

of optimal bandwidths by solving nonlinear optimization problem in very high dimensions.

This burden can be reduced if one is willing to make additional assumptions on common

“degree of smoothness” of the regression function in some subgroups, and so have common

h for these groups, but at the same time be flexible for other groups. Clearly, such decisions

impose additional structure on the model, which is more flexible than in the parametric

approaches, yet it is more restrictive than in a fully non-parametric estimation, and so may

need some out-of-sample information and justifications.

In this respect, we can also say that by using the default or simple smoothing of dis-

crete variables in non-parametric regression one automatically (or implicitly) imposes the

assumption of similar degree of smoothness of the regression relationships in all the groups

of the sample identified by the discrete variables, which might be far from reality. As we

illustrated with several examples, such restriction can significantly deteriorate estimation

results, increasing bias in the estimates of the true regression relationship. This same prob-

lem can also substantially or even radically distort estimates of derivatives and the related

estimates of marginal effects, elasticities, etc. that are used to draw policy implications. For

example, with simple smoothing one could obtain radically varying and even changing the

sign estimates of derivatives while their true values (and the values estimated via complete-

smoothing or separate estimation) could in fact be constant or vice versa. This means that

research conclusions, policy implications and consequently the real policy decisions based on

such estimates can be misleading or wrong. Therefore, this implicit assumption about com-

mon h is especially important to realize and explicitly acknowledge as ’an extra price to pay’

for using the simple smoothing, instead of fully separate or complete-smoothing approaches.

It is also important to recognize that even if from a theoretical point of view, the extended

Racine and Li smoothing of the discrete variable is preferable and offers a suitable solution

24



to the problem, it is still an open question in practice, for a real data set, if we have to

smooth or not to smooth the discrete variables, particularly when the computational cost

of the extended method is prohibitive. Further theoretical work is thus needed to develop

and justify a method (a statistical test, a rule of thumb, . . . ) that would help justifying a

decision whether to smooth or not to smooth over some or all discrete variables. The issue

of relevance of some categorical predictors in nonparametric regressions has been analyzed

in Racine et al. (2006). They consider testing the hypothesis λℓ = 1, but to the best of our

knowledge nothing has been done, at the other extreme of the scale (λℓ = 0), including the

issue of common bandwidths for the continuous variables. Another extension of our work

would be to investigate whether the complete-smoothing we proposed in this paper can also

improve performance of various tests that employ discrete smoothing (e.g., see Racine et al.

(2006), Hsiao et al. (2007), etc.), as it would be a natural consequence of what we find in

the present work. It was the purpose of this paper to warn the practitioners of the caveats

of the simple-smoothing method, to suggest a safer procedure, when it is doable in practice,

and to call for complementary theoretical efforts to address these imperative issues.
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Table 1: Monte-Carlo Results for Example 1, over 200 MC replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3

AMSE all 0,3904 0,5789 0,3578 0,2030 0,3861 0,2206 0,1083 0,2180 0,1156 0,0636 0,1307 0,0649

stdMC all 0,0150 0,0175 0,0115 0,0062 0,0095 0,0066 0,0029 0,0050 0,0033 0,0019 0,0028 0,0018

AMSE gr1 0,3065 0,3641 0,2888 0,1632 0,2090 0,1806 0,0923 0,1130 0,1004 0,0544 0,0659 0,0585

stdMC gr1 0,0166 0,0189 0,0104 0,0047 0,0068 0,0058 0,0025 0,0034 0,0027 0,0014 0,0020 0,0017

AMSE gr2 0,7200 1,2890 0,5888 0,3391 0,9326 0,3473 0,1558 0,5430 0,1639 0,0918 0,3249 0,0845

stdMC gr2 0,0515 0,0564 0,0341 0,0244 0,0402 0,0208 0,0091 0,0179 0,0097 0,0063 0,0105 0,0053

median ĥ1 0,2159 0,2056 0,2159 0,1874 0,1897 0,1879 0,1632 0,1566 0,1632 0,1421 0,1395 0,1421

median ĥ2 20,000 0,2056 20,000 20,000 0,1897 20,000 20,000 0,1566 20,000 20,000 0,1395 20,000

median λ̂ - 0,1095 0,0986 - 0,0755 0,0533 - 0,0535 0,0195 - 0,0357 0,0110
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Table 2: Monte-Carlo Results for Example 2, over 200 MC replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3

AMSE all 0,2949 0,3588 0,2245 0,1526 0,2288 0,1299 0,0816 0,1295 0,0732 0,0466 0,0740 0,0429

stdMC all 0,0128 0,0137 0,0098 0,0064 0,0082 0,0051 0,0035 0,0040 0,0027 0,0020 0,0022 0,0017

AMSE gr1 0,1381 0,1766 0,1490 0,0764 0,1006 0,0921 0,0403 0,0570 0,0546 0,0250 0,0307 0,0296

stdMC gr1 0,0063 0,0087 0,0072 0,0033 0,0048 0,0040 0,0015 0,0024 0,0021 0,0009 0,0012 0,0012

AMSE gr2 0,8370 0,9307 0,4510 0,3994 0,6190 0,2434 0,2049 0,3524 0,1291 0,1121 0,2031 0,0830

stdMC gr2 0,0572 0,0524 0,0329 0,0282 0,0337 0,0162 0,0133 0,0156 0,0082 0,0076 0,0084 0,0050

median ĥ1 0,3631 0,4514 0,3672 0,3250 0,3976 0,3758 0,2758 0,3589 0,3263 0,2292 0,3095 0,2846

median ĥ2 20,000 0,4514 20,000 20,000 0,3976 20,000 20,000 0,3589 20,000 20,000 0,3095 20,000

median λ̂ - 0,1308 0,2179 - 0,0940 0,1822 - 0,0570 0,1511 - 0,0413 0,1065
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Table 3: Monte-Carlo Results for Example 3, over 200 MC replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3

AMSE all 0,2445 0,2142 0,1540 0,1264 0,1325 0,0916 0,0633 0,0709 0,0493 0,0385 0,0474 0,0299

stdMC all 0,0116 0,0139 0,0084 0,0055 0,0083 0,0044 0,0026 0,0034 0,0020 0,0017 0,0018 0,0011

AMSE gr1 0,1083 0,1161 0,1119 0,0602 0,0766 0,0694 0,0320 0,0461 0,0411 0,0207 0,0271 0,0231

stdMC gr1 0,0055 0,0053 0,0054 0,0030 0,0033 0,0032 0,0015 0,0020 0,0017 0,0009 0,0012 0,0010

AMSE gr2 0,7200 0,5371 0,2801 0,3391 0,3063 0,1601 0,1558 0,1447 0,0739 0,0920 0,1079 0,0502

stdMC gr2 0,0515 0,0580 0,0285 0,0244 0,0344 0,0144 0,0091 0,0123 0,0063 0,0063 0,0066 0,0034

median ĥ1 0,8029 1,0263 0,8322 0,6914 0,8789 0,6409 0,5427 0,6541 0,4950 0,4214 0,5381 0,3956

median ĥ2 20,000 1,0263 20,000 20,000 08789 20,000 20,000 0,6541 20,000 20,000 0,5381 4,0017

median λ̂ - 0,3859 0,4190 - 0,3329 0,3652 - 0,2879 0,3124 - 0,2503 0,3000
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Table 4: Monte-Carlo Results for Example 4, over 200 MC replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3

AMSE all 0,2917 0,2815 0,2132 0,1598 0,1810 0,1382 0,0873 0,0948 0,0714 0,0508 0,0621 0,0447

stdMC all 0,0131 0,0144 0,0081 0,0071 0,0084 0,0049 0,0038 0,0038 0,0027 0,0021 0,0022 0,0016

AMSE gr1 0,1156 0,1283 0,1256 0,0623 0,0862 0,0774 0,0326 0,0473 0,0391 0,0211 0,0274 0,0229

stdMC gr1 0,0058 0,0058 0,0057 0,0031 0,0038 0,0036 0,0015 0,0021 0,0017 0,0009 0,0012 0,0009

AMSE gr2 0,8943 0,7655 0,4830 0,4709 0,4723 0,3246 0,2497 0,2402 0,1716 0,1397 0,1664 0,1103

stdMC gr2 0,0587 0,0577 0,0275 0,0314 0,0339 0,0171 0,0150 0,0147 0,0095 0,0078 0,0084 0,0057

median ĥ1 0,7071 0,8612 0,7277 0,6194 0,7351 0,5277 0,4995 0,6556 0,4437 0,3879 0,5296 0,3775

median ĥ2 3,2648 0,8612 20,000 20,000 0,7351 1,7982 2,1567 0,6556 4,0005 1,7787 0,5296 1,3333

median λ̂ - 0,1864 0,2255 - 0,1374 0,1406 - 0,0890 0,0770 - 0,0698 0,0514

31



Table 5: Monte-Carlo Results for Example 5, over 200 MC replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3 Appr 1 Appr 2 Appr 3

AMSE all 0,4381 0,5716 0,3909 0,2429 0,3856 0,2556 0,1383 0,2178 0,1375 0,0812 0,1307 0,0853

stdMC all 0,0159 0,0166 0,0119 0,0074 0,0095 0,0084 0,0040 0,0050 0,0038 0,0022 0,0028 0,0021

AMSE gr1 0,3066 0,3533 0,2872 0,1632 0,2098 0,1814 0,0924 0,1136 0,1022 0,0544 0,0662 0,0601

stdMC gr1 0,0165 0,0172 0,0101 0,0047 0,0068 0,0057 0,0025 0,0034 0,0027 0,0014 0,0020 0,0017

AMSE gr2 0,9175 1,2926 0,7276 0,5025 0,9282 0,4829 0,2754 0,5403 0,2456 0,1616 0,3239 0,1609

stdMC gr2 0,0585 0,0563 0,0395 0,0312 0,0402 0,0308 0,0149 0,0178 0,0143 0,0078 0,0105 0,0071

median ĥ1 0,2159 0,2051 0,2159 0,1874 0,1898 0,1879 0,1632 0,1566 0,1632 0,1421 0,1392 0,1421

median ĥ2 2,2241 0,2051 2,4473 3,7253 0,1898 1,7338 1,3449 0,1566 1,3761 1,0003 0,1392 0,9094

median λ̂ - 0,1111 0,0972 - 0,0766 0,0572 - 0,0540 0,0270 - 0,0360 0,0192
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