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Abstract

We are interested in the estimation of a parameter f that maximizes a certain
criterion function depending on an unknown, possibly infinite dimensional nuisance
parameter h. A common estimation procedure consists in maximizing the cor-
responding empirical criterion, in which the nuisance parameter is replaced by a
nonparametric estimator. In the literature, this research topic, commonly referred
to as semiparametric M-estimation, has received a lot of attention in the case where
the criterion function M satisfies certain smoothness properties. In certain appli-
cations, these smoothness conditions are however not satisfied. The aim of this
paper is therefore to extend the existing theory on semiparametric M-estimation
problems, in order to cover non-smooth M-estimation problems as well. In partic-
ular, we develop ‘high-level’ conditions under which the proposed M-estimator is
consistent and has an asymptotic limit. We also check these conditions in detail for
a specific example of a semiparametric M-estimation problem, which comes from
the area of classification with missing data, and which cannot be dealt with using
the existing results in the literature.
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1 Introduction

Consider the estimation of a parameter of interest ¢y that maximizes a criterion function
M (0, hg), where hq is the true value of an unknown, possibly infinite dimensional nui-
sance parameter h. A common estimation procedure consists in maximizing an empirical
criterion function Mn(Q,/l“\L), where M, is an estimator of the unknown function M and h
is a nonparametric estimator of the unknown nuisance parameter hy. In the literature,
this research topic, commonly referred to as semiparametric M-estimation, has received
a lot of attention in the case where the criterion function M satisfies certain smoothness
properties. In certain applications, these smoothness conditions are however not satis-
fied. The aim of this paper is therefore to extend the existing theory on semiparametric
M-estimation problems, in order to cover non-smooth M-estimation problems as well. In
particular, we develop ‘high-level’ conditions under which the proposed M-estimator is
consistent and has an asymptotic limit. We also check these conditions in detail for a
specific example of a semiparametric M-estimation problem, which comes from the area
of classification with missing data, and which cannot be dealt with using the existing
results in the literature.

In the literature it is often assumed that M (6, h) can be written as
M(6,h) = E[m(Z,0,h(Z,0))], 1)

where m is a known function and A is allowed to depend on # and on a random vector
Z taking values in some space F. A common estimation procedure consists then in
maximizing the corresponding empirical criterion:

M, (6,7) = %im(z,-,e,ﬁ(zi,e)), (2)

with respect to 6, where the random vectors Z1, ..., Z, have the same distribution as Z.
We assume in the remainder of this paper that for all § the functions m(-, 8, h(-,0)) and
m(-, 0, ho(-,0)) are measurable. When the function m(z, 8, h(z,6)) is differentiable with
respect to § and when M (6, hg) is concave in 6, then the M-estimation problem can be
reduced to a Z-estimation problem, by solving the equation 8Mn(9,/l“\b) /00 = 0 (or by
minimizing the norm of aMn(G,/ﬁ) /00 if a solution would not exist). A general result on
semiparametric Z-estimators can be found in Chen, Linton and Van Keilegom (2003).
In that paper high-level conditions are given under which the estimator of 6, is weakly

consistent and asymptotically normal. The criterion function m /90 is not required to be



smooth in @ nor in h. See also Van der Vaart and Wellner (2007) for high-level conditions
for the stochastic equicontinuity in semiparametric Z-estimation problems. For specific
examples of semiparametric Z-estimation problems we refer (among others) to Chen and
Fan (2006), Linton, Sperlich and Van Keilegom (2008), Escanciano, Jacho-Chavez and
Lewbel (2010, 2011), Mammen, Rothe and Schienle (2011) and the references therein.
On the other hand, when either m(z, 0, h(z,0)) is not differentiable with respect to 0,
or when M (0, hy) has more than one (local) maximum, then the M-estimation problem
can not be reduced to a Z-estimation problem, and we need to use other procedures.
In the parametric case where no infinite dimensional nuisance parameter is present, we
refer to Kim and Pollard (1990) for a general result on parametric M-estimators that
have n'/3-rate of convergence, and to Van der Vaart and Wellner (1996) for a result on
both estimators that converge at n'/?-rate in the smooth case, and at a rate slower than
n'/2 for non-smooth functions. See also Groeneboom and Wellner (1993), Groeneboom,
Jongbloed and Wellner (2001), Goldenshluger and Zeevi (2004), Mohammadi and Van de
Geer (2005) and Radchenko (2008), among others for important contributions on results
for specific parametric M-estimation problems with slower than n'/?-rate of convergence.
The problem becomes more difficult when the model is semiparametric. Basically
two main approaches can be considered in that case. In the first approach M, (0, h) is
maximized jointly with respect to # and h, and then the criterion function is modified in
order to obtain an estimator of #, converging at n'/?-rate. The second approach, which
we will follow, consists in maximizing M, (0, ﬁ) with respect to 6, where hisa preliminary
estimator of hy. When the m-function is in some sense ‘smooth’ (usually differentiable or
Lipschitz continuous in L,-norm) several contributions on both approaches can be found
in the literature. See e.g. Van der Vaart and Wellner (1996), Van de Geer (2000), Ma
and Kosorok (2005), Kosorok (2008), Kristensen and Salanié (2010) and Ichimura and

1/2_consistent, even when the nuisance

Lee (2010). In these cases, the estimator of y is n
parameter is estimated at slower rate. This rate is obtained thanks to the regularity of
the criterion function m.

However, in numerous situations we are faced to semiparametric M-estimation prob-
lems, where the function m does not satisfy the smoothness property that makes the
estimator of §, n'/?-consistent. Examples can be found in classification problems with
variables missing at random (see Section 6), or in the selection of the most informative
interval for an additional variable in regression. This context has, to the best of our knowl-

edge, not been considered so far in the literature. It is substantially more difficult than



the ‘smooth’ case. This can be understood e.g. from the fact that it leads to non-standard
asymptotics and to estimators of 6, that are not n'/?-consistent and that converge to non-
normal limits. The results that we will obtain allow to show that in the case where m is
not smooth (e.g. when m includes an indicator function), we can obtain the same rate of
convergence (and sometimes even the same asymptotic distribution) as in the case where
the nuisance parameter would be known, even when the nuisance parameter is estimated
at slower rate.

The approach followed in this paper consists in developing high-level (or primitive)
conditions, under which the estimator of 6, satisfies certain asymptotic properties. As
explained before, non-smooth semiparametric M-estimation problems form an unsolved
open problem in the literature. We aim at filling this gap in the literature by combining
results for non-smooth parametric M-estimation problems with smooth semiparametric
M-estimation problems. However, as will be seen later, the problem requires much more
than ‘simply’ combining ideas from these two domains. In fact, delicate mathematical
derivations will be required to cope with estimators of the nuisance parameters inside
non-smooth criterion functions.

The paper is organized as follows. In the next section we introduce some notations and
give the formal definition of the M-estimator. In Section 3 we show under which conditions
the estimator of #, is weakly consistent. Section 4 deals with the development of the rate
of convergence of the estimator, whereas in Section 5 we state the asymptotic distribution
of the estimator. In Section 6 a particular example of a non-smooth semiparametric M-
estimation problem is considered, for which we check the conditions of the asymptotic

results in detail. Finally, the Appendix contains the proofs of the asymptotic results.

2 Notations and definitions

Throughout the paper we assume that the data Zi,..., 7, are identically distributed
random vectors. In many applications the vector Z; (i = 1,...,n) will consist of a ran-
dom vector Y; (representing a response) and a random vector X; (representing a vector
of explanatory variables). The set © denotes a compact parameter set (usually but not
necessarily of finite dimension ) with non empty interior and H denotes an infinite dimen-

sional parameter set. Suppose there exists a non-random measurable real-valued function

M : © x H — IR, such that
0o = argmaxyco M (0, ho(-,0)),
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and suppose # is unique and belongs to the interior of ©. Let 6y and hy € H be the true
unknown finite and infinite dimensional parameters. We allow that the functions h € H
depend on the parameters 6 and the vector Z, but for notational convenience we will often
suppress this dependence when no confusion is possible. For instance, we often use the
following abbreviated notations : (6, h) = (6, h(-,0)), (0, ho) = (0, ho(-,8)), and (0y, ho) =
(Bo, ho(-,6p)). The sets © and H are supposed to be metric spaces. Their metrics are
denoted by d and dy respectively. Since the nuisance parameter is allowed to depend on ¢
we implicitly define dy(h, ho) uniformly over 6, i.e. dy(h, ho) := supgee d3,(h(.,0), ho(.,0))
for some metric dj,.

Suppose there exists a random real-valued function M,, : © x H — IR depending on
the data Zy,...,Z,, such that M, (0, hy) is an approximation of M (6, hy) (the precise
conditions on M,, will be given in the next sections). In many applications we have that
M(0,h) = Eim(Z,0,h)] and M,(0,h) = n~'>""  m(Z;,0,h), where m is a measurable
real-valued function such that 6y = argmax,.q E[m(Z, 0, hy)]. However, the conditions on
M,, do not impose this particular structure and allow for more general situations as well.
Suppose that for each # there is an initial nonparametric estimator ﬁ(, 6) for ho(-,0). This
nonparametric estimator depends on the particular model, and can be based on e.g. ker-
nels, splines or neural networks. Again for notational ease we let (0,};) = (9,}2(-, ). We
estimate 0y by any 9 € O that ‘approximately solves’ the sample maximization problem:

max M, (6,h). (3)

In the set of conditions given in the next sections we will formalize what we mean with

‘approximate solution’.

3 Consistency

We focus in this section on the development of sufficient conditions under which the esti-
mator 8 is weakly consistent. This consistency will be used as a preliminary step for the
subsequent sections, where we will deal with the rate of convergence and the asymptotic
distribution of the estimator. In the remainder of the paper the notations P* and E*
will be used to denote outer probabilities and outer expectations, to take into account
potential measurability issues (see e.g. Van der Vaart and Wellner (1996) for a deeper

discussion).



Consider the following assumptions:
(A1) 6 € © and M, (8, h) > M, (6o, h) + op-(1).

(A2) For all € > 0 there exists a d(¢) > 0 such that d(6,60y) > € implies M (g, ho) —
M (0, hg) > 6(e).

(A3) P(h € H) — 1 as n — oo and dy(h, he) 2 0.

(A4)

sup |Mn(‘97 h) - Mn(907 h) — M(ea h) + M<907 h)‘

—o0p«(1).
oD T [0 (6, h) — My (8o, 1)] + |M(0, ) — MG, 1)] 7Y

(A5) limdﬂ(}hho)_)o supeee |M(0, h) — M(Q, h0)| = 0

Below we illustrate and interpret these conditions, and we give some remarks, exten-

sions, sufficient conditions, etc., that are useful for verifying these conditions in practice.

Remark 1

(i) In assumption (A4), we take the supremum with respect to h over the whole family
‘H. However, it is enough to assume the same type of convergence only for h = h
or for {h : dy(h,hy)} < &, for some 6, — 0 such that dy(h, ho)d;! = op«(1).

Assumption (A5) could be changed in the same way.

(ii) Assumption (A4) is closely related to the compactness of the sets © and H and is
automatically fulfilled when the following standard assumption holds:
sup |M,(0,h) — M(0,h)| = op(1).
0€0, heH
This last condition holds when the family F = {m(.,0,h),0 € ©,h € H} is

Glivenko-Cantelli (see for instance Van der Vaart and Wellner (1996)) and M (6, h) =
E[m(Z,0,n)).

(iii) We do not require here that M is the mean of the random function m(Z, ., .).
We only require that assumption (A4) holds. Moreover, we do not impose any
smoothness assumptions on M,. We only require that the function M satisfies

assumptions (A2) and (A5).



(iv) In this section we do not assume that 6 belongs to an Euclidean space. It is possible
that 6 and h belong to general metric spaces. Theoretically, it is also possible to
consider semimetric spaces, however, this only allows to get the consistency (without

rate of convergence) with respect to the corresponding semimetrics.

(v) The assumption that the variables Z; are independent is not necessary here. Our
result could be used even for dependent data as soon as it is possible to fulfill
assumptions (A1), (A3) and (A4).

(vi) Assumption (A1) is trivially fulfilled when Mn(a7 /l{) > SUPgeo Mn(e,ﬁ) + op+(1),
which allows to deal with approximations of the value that actually maximizes
0 — M,(0,h).

Theorem 1 Under assumptions (A1)-(A5) we have that
d(6,6y) — 0.

The proof is given in the Appendix.

4 Rate of convergence

In the previous section we have shown the consistency of general M-estimators. We are
now interested in going one step further and give their convergence rates. In this section,
the consistency of our estimators is used as a preliminary assumption. Of course, Theorem

1 can be used to obtain this consistency. We introduce the following assumptions:
(B1) d(6,6,) 250 and Undae(h, ho) = Op-(1) for some sequence v, — oo.

(B2) For all 4; > 0, there exist a < 2, K > 0, §o > 0 and ng € N such that for all n > ny
there exists a function ®,, for which § — ®,,(0)/d* is decreasing on (0, o] and for
all 0 < (50,

D, (0
E* sup (M, (6, 1) — Moy (8o, h) — M(0, ) + M8, 1| | < K22
d(0,00)<8.d3 (h,ho)< 21 Vn

(B3) There exist a constant C' > 0, a sequence 7, — oo, and variables W,, = Op«(r;!)
and (3, = op«(1), such that for all § € O satisfying d(0, 6y) < do:

M(6,1) — M(6,h) < Wod(8, 6p) — Cd(8,60)> + Bd(6, 6,)>.



(B4)

Under the above assumptions, we will prove that the estimator 0 is T,

M,(0, 1) > My(6,h) + Op«(r2) and 72, (r1) < /.

L_consistent.

Hence, the sequence 7, plays an important role in the above assumptions and should be

chosen in the sharpest possible way. Before stating and proving this result, we first discuss

the above assumptions in more detail.

Remark 2

(i)

Assumption (B1) is a ‘high-level” assumption. Many asymptotic results allow to
get such conditions on both the M-estimator f and the nuisance estimator h. In
general the rate of convergence of the nuisance estimator is slower than the best
convergence rate of the M-estimator. We are interested in studying cases where
the convergence rate of the M-estimator is not affected by the fact that we need to

estimate the nuisance parameter.

Assumption (B2) is also a ‘high-level’ assumption. Assume that for any z the
function (0,h) — m(z,0,h(z,0)) — m(z,6y, h(z,0y)) is uniformly bounded on an
open neighborhood of (0, ko), i.e. on {(0,h) : d(0,0y) < 0o, dg(h,hy) < 01} for
some &g, 07 > 0. Let us consider the class Fs5 = {m(.,0,h(-,0)) —m(., 0, h(-,0)) :
d(8,00) < 9, dy(h,hg) < 61} for any 0 < dp and denote its envelope by M;s . For
any 41, we have §;v,;' < §] for n large enough. Then, under entropy conditions on

Fs.s, as for instance
01

1
sup/ \/1 + log N[](E”M6,5’1|’L2(IF’*)’ ./—"5751, LQ(P))dE < +00 (4)
0

6<dp

(where Njj denotes the bracketing number (see e.g. Van der Vaart and Wellner
(1996) for the definition), there exists a positive constant K; (not depending on 4)
such that for all 6 < dy,

Ex[M; 51]

vn
(see Theorems 2.14.1 and 2.14.2 in Van der Vaart and Wellner (1996)). Hence, in
this case, the last part of (B2) holds if ®,,(9) can be chosen such that

FK, W0 < by - (B[ M2 ] < Ko®,(0). (5)

E*

sup |M,,(0,h) — M, (09, h) — M(6,h) + M(0y, h)]] < K,
d(0,00)<8,dy (h,ho) <67



The function ®,(9) is closely related to the ‘smoothness’ of the functions 6 —
m(z,0,h(z,0)). When these functions are Lipschitz (respectively Holder of order )
uniformly over z and h, it is possible to take ®,,(0) = ¢ (respectively ®,(d) = §7).
In other situations, for instance when m contains an indicator function involving 6,
such regularity assumptions may fail but it is possible to state (B2) with ®,,(6) = v/§

(see Section 6).

(iii) The way ®,(9) decreases when 0 tends to zero has a crucial impact on the con-
vergence rate r, through the condition r2®,(r; ') < \/n. When ®,(8) = ¢, this
last condition is equivalent to r, < y/n and we may obtain y/n convergence rates.
However, when ®,,(§) = 67 with v < 1, this condition is equivalent to r2=7 < \/n
and hence only N rates may be considered. In the case of non continuous cri-
terion functions (involving e.g. indicator functions) a ns convergence rate may be
obtained, analogously to the case of parametric M-estimation, see e.g. Kim and
Pollard (1990) and Van der Vaart and Wellner (1996).

(iv) Assumption (B4) is automatically fulfilled under the following classical assumption:

M,,(8,1) > sup M, (0, h) + Op-(r;,?).
0O

As in the previous section, this allows to consider approximations of the value that

actually maximizes the empirical criterion.
(v) Assumption (B3) is automatically fulfilled when the following conditions hold:

(a) © C RF for some k, and d(6;,0) = ||0; — 0o, where || - || is the Euclidean norm.

(b) There exists do > 0 such that for any h satisfying dy(h, ho) < d2, the function
0 — M(0,h) is twice continuously differentiable on an open neighborhood of
0. Hereafter, I'(0y, h) and A(6y, h) denote respectively its gradient and Hessian

matrix for 0 = 6,. Moreover,

lim sup |0 — 6ol|7*|M (8, h) — M (6, h) — T(6o, 1) (6 — by)

”0790”*>0 d'H(h,ho)S(;Q

—%(«9 —00)" A6, h) (0 — 6y)| = 0.

() [T (8o, h)|| = Op-(r;") and T'(do, ho) = 0.
(d) A(bo, ho) is negative definite, and h +— A(fp, h) is continuous in hy (i.e.
lim gy, (h,ho) 0 SUPyern Juj=1 [|(A(0o, ) = Ao, ho))ul| = 0).

9



Now denote the greatest eigenvalue of A(6y,ho) by Am. When dy(h, hy) < 6,
assumptions (a)-(d) above imply that
M (0, h) — M (6o, h)

= (T (B0, F), 20} + 5(20)" B, ho)(30) + o= (1) + o[l

~ Am
<T@, Mllllvell + = vell* + [1ol*op- (1) + ollol),

where 75 = 0 — 6y and where the notation o(|ys]|*) means limj., | O(HHJ;HH;) = 0. By

taking dy such that [|6 — 6p|| < do, the last term above is bounded by —22(|6 — 6p||%,
and hence (B3) holds with W, = [|[[(6y, h)|| and C = —2=.

(vi) Finally, it is possible to modify slightly the proof of the following theorem by con-

sidering the following extensions of assumptions (B3) and (B4):

(B3') There exist 9 > 0, and two positive and non-decreasing functions ¥; and W
on (0, 7] such that for all € satisfying d(0,6y) < no:

M(0,h) — M (69, h) < W, W1 (d(0,600)) — (1 + op- (1)) Ua(d(6, 65)).

Moreover, there exist 8, > «, 81 < B2, & > 0 such that § — W;(§)0~"" is
non-increasing and § ~— Wy(3)d~"2 is non-decreasing on (0, &), and such that

Uy (r YW, = Op«(W¥y(r; 1)) for some sequence r, — co.

(B4) M,(6,R) > My,(6,h) + O,(¥a(r; 1)) and @, (r; 1) < /nWy(r;b).

It is possible to consider the case where ) = (3 if we assume that ¥y (r; )W, =
0p(Wa(r; ).

We are now ready to state the rate of convergence of the estimator 0. The proof of

this result can be found in the Appendix.

Theorem 2 Under assumptions (B1)-(B/4) we have that

rad(8,60) = Op-(1).

5 Asymptotic distribution

In the previous section, we have shown that r,d(6,6) = Op-(1). Our aim is now to

study the asymptotic distribution of rn(é\ — 6y). We will assume throughout this section
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that © is equipped with the Euclidean norm || - ||. We start with introducing a number
of notations. For any # € © and h € H, let B,(0,h) = M,(0,h) — M,(6y, h) and
B(60,h) = M(0,h) — M(0y, h), and define

M(S() > sup |m('797h0> _m('7907h0>|
[[0—60]|<d

for any 0 > 0. Also, let
M5 = {m(.,@, h()) - m(.,907 h()) : ||€ — 60” S (5}

Finally, for any p € N, for any f : © — IR and for any v = (7, ..., 7,) € ©P denote
o= fon) s )™

We introduce the following assumptions:

(C1) rnHé\— 0|| = Op«(1) and Und'}.t(/ﬂ, ho) = Op+«(1) for some sequences 1, — oo and

vV, — 00.

(C2) 6y belongs to the interior of © and © C (E, || - ||), where E is a finite dimensional

Euclidean space (i.e. E = R* for some k).

(C3) For all 6,05 > 0,
B8, h) — B(6,h) — B(6, ho) + B(0. ho)]

sup _ = OP*(].).
HGfGngf—?,dy(h,ho)gS& Tn2 + |Bn(87 h>| + |BN<07 h0>| + |B(07 h)| + |B(07 h0)|

(C4) For all K,n >0,

A A

" [Mi} =0(1) and “E [Mg 1{T%MTL>W}] = o(1).
(C5) For all K > 0 and for any 71, — 0,

4 2
sup T—”E[m(Z,Qo—i-k,ho) —m(Z,(%—i-E,ho)} = o(1).
Iy =r2ll<mm I lIVilell<K T "n n

(C6) For all z € F, the function 6 — m(z, 0, ho(z,0)) and almost all paths of the process

0 — m(z, 9,/}2(9, z)) are uniformly (over #) bounded on compact sets.

(C7) There exist 5, = op+«(1), a random and linear function W,, : £ — IR, and a
deterministic and bilinear function V : F x E — IR such that for all § € ©,

B(6, 1) = Wo(v) + V (0, 70) + Bull7ell* + o(|[96]%)

11



and
B(0, ho) =V (ve, v0) + o(|[76 ),

(e ll*)

where 79 = 6 — 6y and the notation o(||vs||*) means lim,, o O”W = = 0.
Moreover, for any compact set IC in F,
W, Viv,y) = V({H,
Ir, 6, >0, r, sup | (7), =Op+(1) and  sup V(r.7) 07 < 00.
YEE,§<47, 57— 'y,'y/ElC,tsS&l, (ST
I71l<d ly—'II<é

(C8) For all K > 0, there exists ng € N such that for all n > n,

My, 1) > sup M6, 1)+ op(r;2).

K
19—00 | < £

(C9) There exists a deterministic continuous function A and a zero-mean Gaussian process
G defined on E such that for all p € N and for all v = (y1,...,7,) € EP,

Pl + 128, (00 + o) 5K, + G,
T

n v
Moreover, G(7) = G(7') a.s. implies that v = v/, and P*(limsupy.; (A, + G,)
<sup,ep(A, +G,)) = 1.

(C10) There exists a dp > 0 such that

/ sup \/log <NH<EHM5HP*72, M, ]LZ(P)))de < +o00.
0

6<do

We will show below that rn(é\— y) converges to the unique maximizer of the process
v+ A(7) + G(v), where A and G are defined in (C9). However, let us first discuss the

above assumptions.

Remark 3

(i) The first part of assumption (C1) can be obtained from Theorem 2. If in addition
we assume that assumption (B2) holds with ®, = ® not depending on n and
continuous, and if we take r, — +o0o such that r2®(r ') = y/n, then assumptions
(C4) and (C5) are implied by the following ones: there exists a §, > 0 such that for
all § < 0y, E*(M}) < K®%(9) for some K > 0,

o B (M1 05505292 (5))]

s 22(5) =0

12



(i)

(i)

for all n > 0, and

o E[m(Z, 00 + 10, ho) — m(Z, 60 + 720, ho)]?
lim lim sup 5 =0
=060 |13, _ypi<e, [ lIVIv2l <K $2(9)

for all K > 0, using the same arguments as in the proof on Theorem 3.2.10 in Van
der Vaart and Wellner (1996).

Note that assumptions (C4)-(C6) and (C10) are the same as in the ‘parametric case’
where hy is known (see Theorem 3.2.10 in Van der Vaart and Wellner (1996)).

Assumption (C6) ensures that for any compact K C E the processes y — 72 B,, (6o +
%,ﬁ) and v = 172 Bu(00 + 7=, ho) + Wi () take values in £°(K) (assumption
(C7) is also used for the second process). This assumption is not very restrictive.
Moreover, because we deal with asymptotic results, we actually only require the
latter properties for n > nx (where ng only depends on K). It follows directly from
(C1) and (C2) that there exists ng such that 6y + % C © for n > ni. Hence it is

only necessary to state (C6) on the compact set ©.

Assumption (C3) is automatically fulfilled under the following slightly more restric-

tive (but common) assumption: for all dy, d3 > 0,

sup |Bn(0,h) — B(6,h) — Bn(0, ho) + B(6, ho)| = op«(r;?).

5 5
10001 < 22 s (h,ho) < 25

The latter condition holds whenever the following one is fulfilled: there exists a

function f and a constant dy > 0 such that for all ds, 03 < o,

5y 0
(2 =) = olva),
and
E* su B (9h)—B(9h)—B(9h)+B(9h)|]<f(f_i’gi)
p n\U, ) n\U, o y o)l = \/ﬁ

5 s
10—00]1< 72 ,d3e (h,ho)< 32

This last bound may be obtained using arguments that are similar to those discussed
in Remark 2(ii).

Now assume that assumptions (a)-(d) from Remark 2(v) hold. Following the same
ideas as in this remark it is easy to show that (C7) is fulfilled with E = R*, W, (vy) =

~

(D(60,1),7) and V(3,7) = 227 Ao, ho)y whenever sup,cge i [A(Fo, ho)ul| <

13



(viii)

+00. Moreover, in that case, if b is computed from a dataset independent of

(Zy1,...,2Z,), it is sufficient for (C9) to assume the weak convergence of each term

?”an,Y and riBn(Go + = ho)y separately. The convergence of the second term can
be obtained as in the parametric case (see Theorem 3.2.10 in Van der Vaart and

~

Wellner (1996)). Note also that if r,I'(6p, h) — W in distribution, the marginals of

the process v — <7“n1“(90,/f2), 7) tend in distribution to the marginals of v — (W, 7).
Furthermore, if r,, = y/n, it is common to assume that F(Go,ﬁ) =n 130 Uin +
Op+ (n_l/ 2), where the variables U; ,, are independent and centered. The convergence

then follows from Lindeberg’s condition.

Assumption (C8) allows to consider estimators 0 that are approximations of the

value that actually maximizes the map 0 — Mn(e,ﬁ).

Let K be an arbitrary compact subset in E. Assumption (C9) is used to derive the
weak convergence (in the (*°(K) sense) of the process v +— r,W,(7) + 72 B, (0o +
yry ', ho) from the fact that it is asymptotically tight. If ry sup, cxc o0 [Wa ()77l
= op«(1), we are in the same situation as in the parametric case and we obtain the
convergence of the marginals whenever
nll_{glo %E{ [m(Z, o + Z—;, ho) - m(Z, Oo + :—j, ho)}g} =E[(G(n) - G(%))ﬂ

for all v1,72, by noting that the remaining term is a sum of an array of random
variables that fulfill Lindeberg’s condition (see Van der Vaart and Wellner (1996)
p. 293-294). The last assumption on the process v — A, + G, is used to ensure
almost all sample paths have a supremum which is only related to their behaviour on
compact sets. The dominant term of the deterministic part I' is usually a negative

definite quadratic form and hence exponential inequalities could lead to such result.

Finally, assumption (C10) is exactly the one used in the parametric case in Van
der Vaart and Wellner (1996), where weaker conditions and alternatives based on
covering numbers are also discussed (see Theorems 2.11.22, 2.11.23 and 3.2.10). This
assumption is used to show that v+ r2B,,(0y + 7, ', ho) is asymptotically tight.

We are now ready to state the main result of the paper about the asymptotic distri-

bution of 6 — 0y. As before, we refer to the Appendix for the proof.

Theorem 3 If assumptions (C1)-(C10) hold, then for all K > 0 the process v
72 B, (00 + %,/f;) converges weakly to v +— A(y) + G(vy) in (=2(K) with K = {y € E :

14



|7l < K}. Moreover, for any such K almost all paths of the limiting process have a
unique mazximizer vy on K. Assume now that 7y is measurable. Then, the random se-

quence rn(g— o) converges in distribution to .

6 Example : Classification with missing data

In this section we illustrate the theory, and in particular the verification of the assump-
tions, by means of an example coming from the area of classification with missing data.
Consider i.i.d. data X; = (X1, X;2) (¢ = 1,...,n) having the same distribution as X =
(X1, X3). We suppose that these data come in reality from two underlying populations.
Let Y; be j if observation i belongs to population j (7 = 0,1), and let Y be the population
indicator for the vector X. Based on these data, we wish to establish a classification rule
for new observations, for which it will be unknown to which population they belong. The
classification consists in regressing X, on X; via a parametric regression function fy(-),

and choosing # by minimizing the criterion
P(Y: 17X2 ng(Xl))+P(Y:O,X2 < fg(Xl)) (6)

Let 6y be the value of 6 that maximizes (6) with respect to all § € ©, where O is a
compact subset of IR*, whose interior contains 6.

We suppose now that some of the Y;’s are missing. Let A; (respectively A) be 1 if
Y; (respectively Y') is observed, and 0 otherwise. Hence our data consist of i.i.d. vectors
Zi = (X, Y;A;, Q) (1 = 1,...,n). We assume that the missing at random mechanism

holds true, in the sense that
P(A = 1|X1,X2,Y) = P(A = 1|X1> = p()(Xl)

Note that (6) equals

I(A=1)
E[m{w = 1,X > fo(X0) + 1Y = 0,X, < fy(X0) }].
Hence, it is natural to define
I(A=1)
m(Z,0,p) = W{I(Y = 1,X2 2 fo(X0) + 1Y =0,X; < fo(X0) . (7)

where the nuisance function p(-) belongs to a space P to be defined later, and where
Z = (X, YAA). Also, let

M(0,p) = E[m(Z,0,p)] and  M,(,p) =n""Y _ m(Z,0,p).

=1
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Finally, define the estimator 0 of 0y by

0 = argmaxy.o M, (6,p)

where for any xq,

~ - k(21 — Xin)

P =2 5 o — ) 2= )
where k is a density function with support [—1,1], kp(u) = k(u/h)/h and h = h,, is an
appropriate bandwidth sequence.

We will now check the conditions of Theorems 1, 2 and 3. Suppose d(f,6) is the
Euclidean distance ||-||. Let P be the space of functions p : Rx, — IR that are continuously
differentiable, and for which sup,,cp, (1) < M < 00, sup,,cg, [P'(z1)] < M and
inf; ery, P(x1) > n/2, where n = inf,,ery, po(1) is supposed to be strictly positive, and
where Ry, is the support of X;, which is supposed to be a compact subspace of IR. We
equip the space P with the supremum norm : dp(py, ps) = SUD,, Ry, |p1 (1) — pa(zq)]| for
any pi, pa.

First of all, (A1) is verified by construction of the estimator f. Condition (A2) is
an identifiability condition, needed to ensure that 6, is unique, whereas (A3) holds true
provided the functions pg and k are continuously differentiable. Next, for (A4) is suffices by
Remark 1(ii) to show that the class F = {m(-,0,p) : 6 € ©,p € P} is Glivenko-Cantelli.
For this we will show that for all € > 0, the bracketing number Njj(e, F,Li(P)) is finite
(see Van der Vaart and Wellner (1996), Theorem 2.4.1). First, note that it follows from
Corollary 2.7.2 in Van der Vaart and Wellner (1996) that Njj(e, P, Li(P)) < exp(Ke ™).
In a similar way we can show that Njj(e,{fs : 0 € ©},L1(P)) < exp(Ke!), provided
x1 — fp(z1) is continuously differentiable and the derivatives are uniformly bounded over

6. From there it can be easily shown that the class
T ={(x1,22) = I(x3 > fo(x1)) : 0 € O}

satisfies Njj(e, T, L1 (P)) < exp(Ke '), provided sup,, ,, fx,(x, (#2]71) < co. By combin-
ing the brackets for P and 7 we get that Njj(e, F,L;(P)) < exp(Ke ') < oo for some
K < co. Finally, condition (Ab) is straightforward, and hence the weak consistency of )
follows.

Next, we verify the B-conditions. Condition (B1) holds with v;' = K[(nh)~'/?(logn)'/?
+ h]. For (B2), it suffices by Remark 2(ii) to show that (4) and (5) hold true. Equation
(5) holds true for ®,,(§) = 6'/2. Indeed the envelope Ms s, of the class Fss can be taken

16



equal to (for notational simplicity we suppose throughout that 6 is one-dimensional)
2
M5,5'1 (Z) = EI(fGO(Xl) —Ad <Xy < fao(Xl) + Aé)’

where A = supy,, |2 fo(x1)], which we suppose to exist and to be finite. Hence, (5) is
easily seen to hold provided X is absolutely continuous and sup, fx(z) < oco. For (4) note
that

4
| Mss |17,y = ﬁE Fxy1x, (foo (X1) + A0 X1) — Fxyx, (foo (X1) — A5|X1)]

8AS. .,
> me Ixox, (@2|21) =: K125,

which we suppose to be strictly positive, where inf* is the infimum over all (xy, z5) such
that |29 — fo,(z1)| < Ad. Tt follows that Njj(e|| Mss || Lo (p); Fssr, L2(P)) is bounded above
by Njj(K1€6'2, Fss;, Lo(P)). We will first construct brackets for the set G := {fp : 6 €
©,|0—0| < &}. Note that fp can be written as fo = [3(fo — fa,)]0+ fo,. If we assume that
xry — % fo(x1) is twice continuously differentiable in z; for all 6, it follows from Corollary
2.7.2 in Van der Vaart and Wellner (1996) that r. := Njj(e?, D, Ly(P)) < exp(Ke™ ') with
D ={3(fo—fa) :0 € O,]0—0p| <6} Letdf <dY,...,d~ < dl bethe ¢*-brackets for D.
It then easily follows that Njj(€%6, G, Lo(P)) = r., and that the e*-brackets for G are given
by g} = d}0+ fo, < dY o+ fo, = g% Moreover, s := Njj(e, P, Loo(P)) < exp(Ke™'). Let
hf < h?, ey hSLe < hi{ be the e-brackets for P defined in such a way that for 1 < k < s,

infiepy hy <n. We now claim that
Ny (el Mss; || pys Fosys La(P)) < rese < exp(Ke™). (8)

Indeed, define for 1 < j <r.and 1 <k < s,

(A =1)
hi (X1)

FI(Y = 0) [J(X2 < g (X)) — I(X, < ng(Xl))] }

L(Z) = {[(Y =1) [[(Xz > gY(X1)) — I(Xo > feo(Xl))}

17



and define in a similar way the upper bracket f]%(Z ). Then,

1£5:(2) = F(2)13

1 1
< 4F —
= ( [h,{{ (X1)  hE(X

_|_)P(X2 < gjL(Xl)]Xl) — P(Xy < fo,(X1)[X1)

)r HP(XQ < g7 (X1)|X1) — P(X2 < fo (X1)| X1)

)

# B (PO < g (0)1X0) - P(Ya < gH(XDIX))

160
<~ s I () = B sup fp, (eafoea) B[ (60)] + [ ()

Tl 1,22

4
4o sup fopx (ralen) [ () = (X))

x1,T2

< Cé*,

for some 0 < C' < co. Moreover, for each function in the class Fss5 there exists a bracket

[ffi» [51] to which it belongs. This shows (8). It now follows that

1
gug)/ \/1 + log Ny (€l Mss; || £o(pys Fss;, La(P)) de < oo,
<0 J0

which shows (4) and hence (B2).

For (B3) we check conditions (b)-(d) of Remark 2(v). It is easily seen that (b) holds
with

E(60.) = B[E {1 = 2P0 = 130 X0} e (X0 g ()]
and
Ao p) = B[BE 1= 220 = 130 X0 H P U (X0) (g 60)

2
U (50) o),
and provided the derivatives in A(fy, p) all exist. Next, by assuming that I'(6y, py) = 0
and that A(6y, po) is negative, and by noting that [|[T'(6y,D)|| = Op(r;!) if r, satisfies
ra[n "2 4+ h+ (nh)~tlogn)] = O(1), it follows that (c) and (d) are also valid. It remains
to check condition (B4), which easily holds provided r, = O(n'/3). The two conditions
on 7, and the fact that r, should be chosen as large as possible, are reconcilable provided
nh? = O(1) and (nh*?)~'(logn)*? = O(1). Note that it is possible to weaken the first
condition to nh® = O(1) if we assume that po(-) is twice continuously differentiable. Note

however that the rate v;! of p would then be O((nh)~'/2(logn)*/? 4+ h?), which is faster
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than the rate r;! = Kn~/3 of 8 provided nh3 — co. Hence, the latter case is of lower
level of complexity than the case where pg is only once differentiable, and we therefore do

not consider it further. To conclude, we have that
é\— 90 = Op*(n_1/3).

Finally, we check the conditions needed for establishing the asymptotic distribution of
§. Condition (C1) follows from Theorem 2 and condition (B1), whereas (C2) is immedi-
ately satisfied. For (C3) a similar proof as for condition (B2) can be given, which we omit
for reasons of brevity. For (C4) and (C5), first note that the function ®,(§) = K¢6'/? in
condition (B2) is independent of n and continuous. Hence, (C4) and (C5) hold provided
the three conditions stated in Remark 3(i) are verified. For the first one, we have that
M5 satisfies

My(2)] < %1(f90<X1) A5 < X < fo,(X0) + AD).

Hence, E*(M?) < K§ for some K < oo. In a similar way the second and third condition
can be proved, from which (C4) and (C5) follow. Next, (C6) is obviously satisfied since
for fixed p and z, our function m(z, -, p) consists of indicator functions. Next, following
Remarks 2(v) and 3(v), condition (C7) follows provided |A(6p, po)| < co. By construction
of the estimator 6, condition (C8) holds true. For (C9), first note that r,W,(y) =
(00, D)y = op(1) provided nh® = o(1) and (nh3?)~'(logn)*? = o(1), using what
has been shown already for (B3). Next,

TiBn(eo + Tlmo) 9)

1
= 72 [ M6 + = po) = Mo (0. po) = M(8 + = po) + M(60. po) | + 5A(60, o)y + o(1).

since I'(6y, po) = 0. Hence, A(y) = 2A(fy, po)y*. The first terms on the right hand side of
(9) are exactly the same as in the parametric case. Hence we can follow the same steps
and get the convergence of the marginals using Lindeberg condition and Remark 3 (vii)
under some regularity assumptions on fx,x, and 6 — fy.Finally, condition (C10) can be
proved in a similar way as (B2). The asymptotic distribution of r,,(6 — 6y) now follows

from Theorem 3.

Appendix: Proofs

In this Appendix we give the proofs of the asymptotic results, namely we prove the con-

sistency, the rate of convergence and the asymptotic distribution of our M-estimator 0.
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Proof of Theorem 1. Our aim is to show that
M (6o, ho) — M (0, ho) = op-(1). (1)

Indeed, the result we want to obtain is a direct consequence of (1) and assumption (A2).

It is easy to show that assumptions (A3) and (A4) imply that

|M,,(8,h) — M, (6o, h) — M(8,h) + M (6, h)|
1+ [ My, (8, h) — M, (6o, h)| + |M (8, h) — M(6o, h)|

= op-(1), (2)

since é\belongs by construction to ©. Consider the following decomposition:

M (0o, ho) — M (8, ho)
= M(0,h) — M(D, ho) + M (6, ho) — M (6, k) + M(0g, h) — M (0, h)
< M, (6o, h) — M, (8, h) + 25up | M (6, ho) — M(6,h)]
0cO
+| M, (0, h) — M (8, h) — My, (89, ) + M (0o, 1)|-

This, together with (2) leads to the following inequality:

M (0, ho) — M(0, ho))(1+ op=(1))

(
< (M, (6o, h) — My, (8, h))(1 + op-(1)) + 4325 IM (6, ho) — M(0,h)| + op-(1).

Now, the quantity (1 + op«(1)) on the left hand side in the above inequality is positive
on a set A, whose outer probability tends to one when n tends to infinity. On A,, a

reformulation of the previous inequality gives:

M (6, ho) — M(8, ho) (3)

< (My(0o, h) — M, (8, h))(1 + op-(1)) + 4328 IM (6, ho) — M (6, h)|(1 + op-(1)) + op-(1).

Assumptions (A3) and (A5) imply that
sup [ M (6, ho) = M(0, h)| = op-(1), (4)
9€6
and assumption (A1) gives that
My, (80, h) — My, (8,1) < op-(1). (5)

It now follows directly from (3)-(5) that

0 < M (6o, ho) 20M (8, ho) < op«(1).



Proof of Theorem 2. We borrow ideas given in Van der Vaart and Wellner (1996)
for the case of parametric M-estimators. Let &, be the Op«(r,?)-quantity involved in

assumption (B4). We introduce the sets
Sin = {0271 < rd(6,00) <2},

and observe that ©\ {6y} = szof Sjn. Our aim is to prove that for any € > 0 there exists
7. > 0 such that

P*(r,d(8,60) > 7.) < ¢ (6)
for n sufficiently large. From now on we work with an arbitrary fixed positive value of e.

For any 9, 6;, M, K, K’ > 0, we obtain the following bound using assumption (B4):
P <rnd(§, 0y) > 2M>

< Y P sup [Ma(0.F) = Ma(6o, )] = —Kr,2, A,)

i>M,2i<br,  0SSin

P <2d(§, b

~—

> 5) 4P (rgygn\ > K) 4P <rn\Wn| > K’)
+ P (s, ho) > ﬁ) (7)

n

o Q

+]P’*<]6n| >

where A, = {r,|W,| < K', |5,

< % dy (/fz,ho) < g—l} Indeed, we can write
P* (rnd<§a 00) > 2M7 2d(§7 90) < 57 r721|§n| S K> An)

< > P S el < K, A)

G>M,2i<8rp

< Y P( sup [M(0,) = My(80. 1)) = &, 1216l < K, A,)
G>M,20 <6rp 0ES).n

< ¥ IP’*( sup [M,(0,7) — My, (60, )] > — K72, An).
G>M,20 <6rp 0ES).n

Assumption (B1) implies that for all § > 0 there exists n. such that

P*(2d(8, 60) > ) < — (8)

for n larger than n.. Then, by definition of &, and W,, and because of (B1), there exist
three positive constants d;, K. and K such that

[=p}

P <r§|gn| > Kg) < % <rn|w > K') < 6
]P’*(]Bn| > %) < % and P* (dH (h, ho) > 5—) 9)
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for n larger than some n; € N. We fix § < ¢y and suppose that n > max(ng, n1,n.) to get
that assumptions (B2) and (B3) are fulfilled on all S;,, such that 2/ < dr,,.

Now, it follows directly from assumption (B3) that for each fixed j such that 27 < ér,,
one has for all § € S, ;:

M, (6,h) — M, (6o, h)
< M(0,h) — M(6o,h) + sup | M, (0,h) — M, (0o, h) — M(6, h) + M (6, h)|

d(6,00)< 2

22] 2
< [Wa !— —(C=Bn)

+ sup  [M,(0,h) — My (69, h) — M(60,]) + M(6g, h)].

n d(6,00)< 2

Consequently, we obtain the following inequality:

P*( sup [Ma(0,5) = M0, )] > ~ Koy, Ay)

GES]',TL
< P*< sSup |Mn<07h) _Mn(907h) —M(@, h)+M(907h)|
d(0,00)< 2, dyy (h,ho) < 2L
2272 (O
>

(5

Now, there exists M, such that for all j > M, one gets
C ki g C
2 ¢ ¢ 4
Consequently, if M > M., using assumption (B2) and Chebychev’s inequality we have

that

_ K192 K€22‘2j)>.

2
L

S P ({ sup Ma(0,R) — My (00, 1)) > —Kori? b0 A,)

>M,2i <ér, 0€Sim

< > 7 sup | M (0, 1) = My (60, ) — M (6, ) + M (6o, h)| >
§>M, 29 <8rp d(&%)é%,dv{(ﬁ,ho)ﬁ%

4K7’72L (I)n(%)
C'\/_ Z 92j—2

j>M 21 <81

— 2j—-2
C\/_ G>M, 29 <érp, 2%

_ 16K Z —y

j>M

Finally, since a < 2, the series ) isM 27(2=2) converges and hence there exists M/ > M,
such that

16K22]a2§

j>M!

€
6 .
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This finishes the proof showing (6) with 7, = 2V¢. 0

Proof of Theorem 3. The proof is somewhat similar to the proof of the asymptotic
distribution of parametric M-estimators (Theorem 3.2.10 in Van der Vaart and Wellner
(1996)). The main difficulty lies in the presence of an estimated nuisance parameter. The
first step consists in showing the weak convergence of the process v + r2 B, (6 + %,/};)
This is shown in Lemma 4 (given below).

The remainder of the proof is based on the same arguments as those used to state the
Argmax theorem in Van der Vaart and Wellner (1996). First note that E' is a o-compact
metric space since E = U2, K; with IC; = {y € E : ||y]| < a;} for any positive sequence
(a;)ien+ tending to infinity.

Then deduce from assumption (C9) together with Lemmas 5 and 6 given below, that
almost all paths of the limiting process v — A(7y) + G(v) attain their supremum at an
unique point vy, following similar ideas to what is done in the parametric case (see Theo-
rem 3.2.10 in Van der Vaart and Wellner (1996)). Assume now that 7 is measurable. The
weak convergence of rn(g— o) to 7o is equivalent to the next statement (Portmanteau’s

theorem) :
limsup,,_, P~ (rn(a— 6o) € C) < IP’(’yO € C), for every closed set C.

Let C' be an arbitrary closed subset of £ and fix € > 0. The random variable vy is tight
because it takes values in E, which is o-compact. Combining this tightness and the first
part of (C1), it is possible to find K, > 0 and hence a compact set K. := {7 : [|7|| < K.}
such that

P (10 ¢ k) <
It follows easily from (10) that

g, and P* (rn(é— 6y ¢ /ce) < % (10)
limsup,,_, ., JP* <rn(§— 6y) € C)
< P* <rn(§— By) € CN K., 70 € ICe) + hmsupn%op*({rn(é— By) & I} U (o ¢ /ce})
S}P’*(rn(@\—@o) e CNKe Y €/C6> + €. (11)
Now using Lemma 4 and assumption (C8) we obtain
limsup,_,P* (rn@— 0y) € CNK., € /ce)

< limsupn%OOIP’*< sup 2B, <90 + l,?z) > sup 2B, (6’0 + l,ﬁ) +op(1), v € /CE>
yeCNKe Tn YEK Tn

<P'( sup (A+G)(7) > sup(A+G)(7), % € Ko ), (12)

veCNKe yeK,
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by Slutsky’s lemma and Portmanteau’s theorem. On the other hand, for every open set

G containing vy, we have:

(A+G)() > sup (A+G)(7).

YEGENK,

This together with (12) leads to
limsup,,_,_P* (rn(é— 8y) € CNK., ~ € /ce) <P (% e 0). (13)
Consequently, it follows from (11) that for all € > 0,
limsup,,_, ., JP* (rn(g— 6y) € C) < P (70 € C) + €. (14)

Since the right hand side of (14) holds for all € > 0, it also holds for e = 0. The result

now follows from Portmanteau’s theorem. g

We end this section with three lemmas that were needed in the proof of Theorem 3.

Lemma 4 For all K >0, let K= {y € E : ||y]| < K} be a compact subset of E. Then,
under the assumptions of Theorem 3, for any such K, the process v — 12 B, (6o + %,ﬁ)
converges weakly to the process vy — A(7v) +G(y) in £°(K). Moreover, almost all paths of

the limiting process are continuous (uniformly on every compact KC) with respect to || - ||.

Proof. The weak convergence of the process v — 72B, (0 + %,/fl) in (>°(K) follows
directly from Slutsky’s theorem and Lemmas 5 and 6. On the other hand, || - || makes
totally bounded (since it is compact) and v — r2B,,(6y + o+ ho) + oWy (7) is asymptoti-
cally uniformly || - ||-equicontinuous in probability, asymptotically tight, and it converges
weakly to v — A(7) + G(v) in () (see proof of Lemma 6). Thus almost all paths of
the limiting process are uniformly || - ||-continuous on K (see Theorem 1.5.7 in Van der
Vaart and Wellner (1996)). Moreover, because E may be covered by a countable sequence
of such compact sets, almost all paths of the limiting process are || - ||-continuous on FE.
O

Lemma 5 Let K ={y € E : ||y|| < K}. Then, under the assumptions of Theorem 3, for
all v € K, there exist §on, &1,y San, such that sup. e [§5n] = op<(1),7 =0,1,2, and

2B (0 + L R) (1 o) = [r2Ba (0 + 2 b ) + V()] (L4 610) + G

T Tn
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Proof. Let us introduce the following notations :

O B0, )| + | Ba(6, ho)| + |B(6, h)| + | B(6, ho)|
Sn.h(7y) = sign [Bn <90 + rl’ h)],

Sh(V)::fﬂgn[f3<904'i%,h>},

with 0 = 6y + /7.

Because the compact K is bounded and 6, belongs to the interior of ©, there exists

ni such that for all n > ng and for all v € I, the quantity 8y + % is in ©. Then, for all
~v € K entails that

Bn<90 4 l,ﬁ)

n

- Bn(eo + l,ho) + B(QO + 1,%) . B(@O + l,h0>

+agn(y) (r;Q + ‘Bn (00 + Tlﬁ) ‘ + ‘Bn (90 + rl ho)

H[B o+ B B0 Smo)])

n

(15)
This can be reformulated as

B (90 + %@ (1 - Oéo,n(v)sn,z(v)>

=B, (90 + %7 ho) (1 + Oéo,n(’V)Sn,ho(’V)> + 7’7213<90 + %ﬁ) (1 + Oéo,n(’Y)Sﬁ(“Y))
—r2B(00+ - o) (1= a0a()s10(1)) + a0.a(2).

(16)
Then use assumptions (C1) and (C7) to get
2
v o~ v v
B0+ L) - B0+ L) = raia) ol + o200
raWa () + a1, (7). (17)
Combining (16) and (17) we obtain
2 07
PBu(f0 + 1 R) (Lt €0(7)
= [12Bu (00 + = o) + raWa()] (1 + €00(1) + &2.0(7), (18)
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with

Son(V) = —a0n(7)8,5(7);
51,71(7) - O‘O,n(/y)sn,ho('}/%

) = a0ale) 1 (Vi) 420 (L)) 554 s0)0)

(rWa(3) + €1 (85, = 500 (V)] + Q10 (N (1 + 1)

It can be easily shown that sup. . [£n(7)] = op-(1) for j = 0,1,2 using assumptions
(C3) and (CT7). O

Lemma 6 Let K = {y € E : ||7|| < K}. Then, under the assumptions of Theorem
3, the process v — r2B,(0y + L. ho) + raWa(7) is asymptotically tight, asymptotically
uniformly equicontinuous with respect to || - || on IC, and it converges weakly to the process

v = A(Y) + G(v) in £2(K).

Proof. The main idea of this proof consists in writing the process Ty, : v + 72 B, (6 +
L ho) +1, Wi () as the sum of two processes 11, = v+ 15 (Bn(6o+ 7L, ho) — B(6o+ 5, ho))
and Ty, : v — 12 B(0y + L, ho) + 1, Wy (7) and studying separately the properties of T3,
and T ,. However, in some specific cases it could be possible to state the weak convergence
of T, without this decomposition. Let us first note that assumption (C7) implies that for
n sufficiently large (only depending on ) so that 6y + % C O, the processes 11, and T,
take values in £*°(KC).

The process T} ,, does not depend on the estimation of the nuisance parameter. Hence,
following exactly the same ideas as in the parametric case we get from assumptions (C4),
(C5) and (C10) the asymptotic uniform equicontinuity of 73, with respect to || - || on K
(as a sub-product of the proof of Theorem 2.11.9 in Van der Vaart and Wellner (1996)).
On the other hand, for n large enough, § + ;- € © (see the proof of Lemma 5). Assume

now that n is large enough and use assumption (C7) to conclude that for all 0 < § < 4y,

sup Ton(7) = Ton()]
VY ER V=<6

_ A . It 2 "7"2 HV”F
= sup Wo(vy =) +V(v,7) =V Y) +rmlol —5— ) +ol —5—
’y,’y/EK:,H’yf’y/HS(S rn Tn
w, Vv, ) =V,
< 5T(Tn sup (v)’ n sup V(v,7) = V(v 7)|> b
YeE,6<61, [yl<s | 07 VA EE, 6561, = [| <6 o7
= 57—0571 + bn7 (19)

26



where b, < sup, i ]ri(o(%) + 0(%))] — 0 as n tends to infinity, and a,, = Op«(1)
uniformly over § < §;. Let € and n be arbitrary positive constants. It is clear that, for

any 0 < 6 < 47 and any positive constant K, (19) leads to

limsupnﬁooP*< sup Ton(7) — Ton(Y)] > 6)

v €L vy II<8

< limsup,,_, P ((Vozn +b, > €60, < K, |by| < g) + limsup,,_, . P~ (ozn > K)

< limsup,,_,  P* ((57 > %) + limsup,,_, ., P* (an > K).

1

Finally choose K, such that the last term is smaller than 7, and take § < d; A (2;(”)?.

It then follows that 75, is asymptotically uniformly equicontinuous in probability with

respect to || - || on K.

Hence, the same is also true for the process T,,, since it is the sum of two such pro-
cesses. The asymptotic tightness and hence the weak convergence of T, to A + G in
(>(K) now follows from Theorems 1.5.7 and 1.5.4 in Van der Vaart and Wellner (1996),
together with assumption (C9) and the fact that K is totally bounded with respect to the
|| - ||F-norm (since it is compact). Moreover, using Addendum 1.5.8 in the same book, al-

most all paths of the limiting process on K are uniformly continuous with respect to ||-||. O
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