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Abstract

Generating survival data with a clustered and multi-state structure is useful to study multi-state

models, competing risks models and frailty models. Simulations should allow to introduce dependence

between times of different transitions and between those of grouped subjects. At the same time they

should allow to control the probability of each competing event, the median time to each transition, the

effect of covariates and the type and magnitude of heterogeneity.

We propose a simulation procedure based on a copula model for each competing events block, allowing

to specify the marginal distributions of time variables.

The effect of simulated frailties and covariates can be added in a proportional hazards way.

The tuning of parameters is done by numerical minimization of a criterion function based on the

ratios of target and observed values of median times and of probabilities of competing events.

An example is provided of simulation of data mimicking those from a multicenter study on head and

neck cancer, where the interest is in studying both time to local relapses and to distant metastases before

death. We show that our proposed method reaches very good convergence to the target values.

1 Introduction

The focus of many clinical trials is on the time to some event of interest and on how given factors can

accelerate or delay the process under study. In these contexts, survival analysis techniques are used and the
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Cox proportional hazards model [1] is certainly one of the most widespread tools. Many extensions of it

have been developed to deal with more complex problems. Among them, competing risks and multi-state

models have known growing interest for ten years, since they allow a deep understanding of duration data

in the presence of several endpoints with complex links to each other [2, 3]. Also, they are useful in clinical

practice to evaluate the patient-specific risks and to assess prognosis.

Clustering is another key feature of clinical data. It consists in the presence of groups of observations

that cannot be considered as independent. This aspect is of particular relevance in multicenter clinical trials:

to study diseases with long occurrence times and small incidence it is more and more common to include

patients from several hospitals. This allows to get a sufficient sample size in a reasonably short period, but

it increases considerably heterogeneity and dependence [4]. Other examples of clustered data are repeated

measures on the same patient or recurrent events [5, 6], paired organs from the same organism [7, 8], patients

who are relatives, etc. Shared frailty models [9, 10] are getting more and more popular as they allow to

analyse duration data accounting for dependence among clustered data. In particular they give the greatest

advantage on stratified Cox models in the presence of a large number of clusters of relatively small size [11].

Another asset of frailty models is that they do not simply handle dependence, they allow to really study the

heterogeneity over clusters, which might also be of interest.

The possible integration of frailties into multi-state models could provide sophisticated survival models

accounting for dependence in the framework of multi-state structures. Some attempts have been done in

applied statistics in recent years [12, 13], while theoretical research is still taking its first steps [14].

Simulation studies are a powerful means to evaluate the performance of analysis methods [15] and they

are particularly useful when developing new models. To this aim, generating survival data from proportional

hazards models is quite simple and a very general and flexible method was proposed by Bender et al. [16].

Simulated data from frailty models can be obtained by first generating the frailty terms from their distribution

and then by using a Cox model, conditionally on them. See, for an example, Section 5 of reference [17].

In the context of competing risks, Beyersmann et al. [18] developed a method based on the cause-

specific hazards as defined by Gray [19]. If Weibull hazards with a common shape parameter are used, the

probabilities of competing events can be analytically expressed in terms of location parameters. However,

this is no more possible if covariates are introduced, neither is it in general. Most importantly, there is no

general way to control any location measure of time variables.

Simulation of multi-state data raises more problems and most of the examples in the literature are based

on real data (see, as examples, [3, 20, 21]). The above mentioned method for competing risks [18] can be
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extended to multi-state models, but it is not possible to compare the simulation parameters, concerning

cause-specific hazards, to the results of the analyses, based on marginal hazards. In some cases data are

simulated by assuming independence between times of different transitions of the same subject (see [22],

for instance). Farlie-Gumbel-Morgenstern copula models [23] are suited for bivariate models [24, 25] but, if

extended to K > 2 events, they give times which are (K − 1)-wise independent. Ad hoc solutions can be

obtained for simple structures (see Section 4 of [26], for an example), but with a lack of generality.

We propose a general simulation procedure for clustered multi-state survival data based on a copula

model for each group of competing events. Thanks to it, any parametric form can be chosen for the marginal

distributions, whereas the dependence structure is automatically induced by the copula. This structure

allows to introduce and tune many features; the most important ones are (i) the dependence between times

of competing events, (ii) the dependence between times of successive events, (iii) the dependence between

times of clustered subjects and (iv) the event-specific covariate effects. Frailties and covariates are inserted

in a proportional-hazards way, this being a very good property since most of the analysis models rely on this

assumption. Both random and administrative censoring can be added, too.

The particular case of Clayton copulas and Weibull marginals is interesting as many expressions become

very simple. Another advantage of it is that Weibull or Exponential distributions are often assumed in

parametric modelling, so a direct comparison between simulation parameters and estimates given by analysis

methods is possible under a very standard setting.

In addition we propose a numerical procedure to find appropriate values of parameters to simulate data

according to given requirements. This means that the researcher is able to fix parameters to obtain chosen

target values for clinically meaningful quantities such as median times and for probabilities of censoring and

of competing events.

The paper is organized as follows. In Section 2 we propose the simulation procedure, while in Section

3 the case of Clayton copulas and Weibull marginals is presented in more detail. The procedure developed

to find appropriate parameter values is presented in Section 4. Despite this tuning method is quite general,

we concentrate in Section 4.1 on the Weibull case. The example in Section 5 shows that this procedure

automatically brings on an excellent convergence to target values.
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2 General copula model

2.1 The model.

Consider a general acyclic multi-state structure, with N states and M possible transitions between them; let

S = {s1, . . . , sN} be the set of the states and T = {T1, . . . , TM} be the set of the transition time variables.

For each state si, the set of its children C(si) ⊂ S is defined as the set of the states to which a direct

transition from si is possible.

As an example, consider the multi-state structure in Figure 1, corresponding to the possible event history

of patients in a cancer study. The set of states is S = {NED, LR,DM,De}, corresponding to no evidence

of new disease, occurrence of local relapse, occurrence of distant metastases and death, respectively. The

children sets of the four states are C(NED) = {LR,DM,De}, C(LR) = {De}, C(DM) = {De} and C(De) = ∅.

The occurrence of both adverse intermediate events (LR and DM) is not considered here in order to have

a simpler model and because it is reasonable to assume that after the occurrence of one adverse event, the

occurrence of another one is not biologically very relevant.

For each transition time variable Tj , let Fj(t) be an arbitrarily chosen (marginal) distribution, with fj(t)

the corresponding density function. The associated (marginal) survival function is then Sj(t) = 1−Fj(t). The

joint survival function of a given set of transition times {Tj}j∈J ⊆ T is denoted by SJ(tJ) = P [∩j∈J(Tj >

tj)], with tJ = (tj , j ∈ J). As long as we want to avoid the independence assumption, this joint survival

function is not uniquely determined by the marginal survival functions {Sj(t)}j∈J , but they can be combined

into a joint survival function thanks to a copula [27].

We define a competing risks (or events) block as the set of the transitions into all the children of a state.

In the example, three competing events blocks are present: {T1, T2, T3}, {T4} and {T5}. The two latter

are degenerate competing risks blocks, as they both have only one possible event. The proposed simulation

method adopts a copula model for each competing risks block.

First transitions. Consider first {Tj}j∈J0 , the competing risks block of transitions from the starting state.

A copula function [27] is used to combine the marginal survival functions into the joint survival function

SJ0(tJ0) = Cθ (Sj(tj), j ∈ J0) , tJ0 = (tj , j ∈ J0) (1)

with Cθ(·) the copula function and θ the dependence parameter.

Within the block J0, the joint survival function of the first k times (the order has no importance) is
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Figure 1: States and transitions structure. NED: No Evidence of new Disease, LR: Local Relapse, DM:
Distant Metastases, De: Dead
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SJ0
(
t(1), . . . , t(k), 0, . . . 0

)
, with (j) the order indices. In particular we have SJ0

(
t(1), 0, . . . , 0

)
= S(1)

(
t(1)
)
.

The conditional survival function of the k-th time, given the k − 1 previous ones, is

S(k)|(1),...,(k−1)
(
t(k)|t(1), . . . , t(k−1)

)
=

∂k−1

∂t(1)···∂t(k−1)
SJ0

(
t(1), . . . , t(k), 0, . . . , 0

)
∂k−1

∂t(1)···∂t(k−1)
SJ0

(
t(1), . . . , t(k−1), 0, . . . , 0

) k = 2, . . . ,#(J0), (2)

with #(J0) the size of J0.

The method is valid for any choice of copula function and number of competing and successive events.

Nevertheless, for ease of notation and of presentation, consider the example of Figure 1, where J0 = {1, 2, 3},

with a Clayton copula [28]. In this case equation (1) is

SJ0(tJ0) =

1 +
∑
j∈J0

[
Sj(tj)

−θ − 1
]−1/θ , J0 = (1, 2, 3), (3)

with θ > 0 and one can easily show by induction that the derivatives are of the form

∂i

∂t(1) · · · ∂t(i)
SJ0(tJ0) =

i∏
h=1

[
(1 + (h− 1)θ) (Sh(th))

−θ−1
]

(SJ0(tJ0))
1+iθ

.

Therefore equation (2) becomes

S(k)|(1),...,(k−1)
(
t(k)|t(1), . . . , t(k−1)

)
=

(
SJ0

(
t(1), . . . , t(k), 0, . . . , 0

)
SJ0

(
t(1), . . . , t(k−1), 0, . . . , 0

))1+(k−1)θ

=

(
1 +

Sk(tk)−θ − 1

1 +
∑k−1
j=1 (Sj(tj)−θ − 1)

)1−k− 1
θ

k = 2, 3. (4)

The survival functions S1(t1), S2|1(t2|t1) and S3|1,2(t3|t1, t2) can be used in sequence to simulate the

times in J0 from their joint survival function (3).

Second and following transitions. Once a subject has moved to another state, it is known which

transition has just occurred. Another copula model can now be adopted for this incoming transition and

all the competing events from the new present state. In the example we are considering, we use again the

copula (3) for {1} ∪ J1, with J1 = {4}, and for {2} ∪ J2, with J2 = {5}. Thus we have

S{1,4}(t{1,4}) =
(
S1(t1)−θ + S4(t4)−θ − 1

)−1/θ
and S{2,5}(t{2,5}) =

(
S2(t2)−θ + S5(t5)−θ − 1

)−1/θ
,
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which give

S4|1(t4|t1) =

[
1 +

(
S1(t1)

S4(t4)

)θ
− S1(t1)θ

]−1/θ−1
and S5|2(t5|t2) =

[
1 +

(
S2(t2)

S5(t5)

)θ
− S2(t2)θ

]−1/θ−1
. (5)

If the multi-state structure had other further transitions, the same approach should be replicated.

Time values originated by Si|j(t|tj) range from 0 to∞ and must be added to those of Tj ; this corresponds

to the so-called ‘clock reset’ approach (See Sec. 4.2.2 of [3]). In the case the ‘clock forward’ approach is

more appropriate, the truncated survival function Si|j(t|tj ;Ti > tj) = Si|j(t|tj)/Si|j(tj |tj) must be used.

The obtained values of Ti, which are necessarily greater then tj , do not have to be added to those of the

first transition.

2.2 Simulation Algorithm.

In this section we illustrate the simulation algorithm which implements the model in Section 2.1 for the

considered example. The adaptation to a different setup is trivial. The expression S−1j (·) is used to denote

the inverse of a marginal survival function Sj(·).

Algorithm.

1 I Generate a value for T1 from its marginal survival function

T1 = S−11 (U1), U1 ∼ U(0, 1). (6)

2 I Conditionally on the value t1 of T1, generate a value for T2 from the conditional survival function (4)

with k = 2:

T2|t1 = S−12|1(U2|t1)

= S−12

({[
U
− θ

1+θ

2 − 1

]
S1(t1)−θ + 1

}−1/θ)
, U2 ∼ U(0, 1). (7)

3 I Conditionally on the values t1 and t2 of T1 and T2, generate a value for T3 from the conditional survival
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function (4) with k = 3:

T3|t1, t2 = S−13|12(U3|t1, t2)

= S−13

({[
U
− θ

1+2θ

3 − 1

] [
S1(t1)−θ + S2(t2)−θ − 1

]
+ 1

}−1/θ)
, U3 ∼ U(0, 1). (8)

4 I Generate a censoring time TC0 from an arbitrary distribution FC0(·) and compute min(TC0 , T1, T2, T3)

which is the observed time of censoring or transition from state NED; it will also give the information

on the possible arrival state.

5 I If transition into state LR or DM is observed, generate a value for T4 or T5 respectively, from the

conditional survival function (5):

T4|t1 = S−14|1(U4|t1) = S−14

({[
U
− θ

1+θ

4 − 1

]
S1(t1)−θ + 1

}−1/θ)
, U4 ∼ U(0, 1), (9)

T5|t2 = S−15|2(U5|t2) = S−15

({[
U
− θ

1+θ

5 − 1

]
S2(t2)−θ + 1

}−1/θ)
, U5 ∼ U(0, 1), (10)

a censoring time TC1 or TC2 from an arbitrary distribution FC1(·) or FC2(·) and compute min(TC1 , T4)

or min(TC2
, T5). Note that if the ‘clock forward’ approach is adopted, it is sufficient to use Ti|tj =

S−1i|j (UiSi|j(tj |tj)|tj) instead of Ti|tj = S−1i|j (Ui|tj).

The variables Ui’s are assumed to be all independent.

2.3 Frailty terms and covariates.

The proposed model can easily accommodate the effect of clustering and of simulated covariates, in a

proportional-hazards way.

Let Z = (Z1, . . . , ZM )T the vector of the frailty terms for the M transitions. Let FZ(z) be its multivariate

distribution, by means of which many constraints can be imposed; independence, full collinearity and linear

correlation are some examples. Let finally X ∼ FX(x) be the (possibly multidimensional) covariate.

For each time variable Tj a parametric form is arbitrarily chosen for the baseline hazard h0j(t) corre-

sponding to x = 0 and zj = 1; the associated baseline survival function is directly obtained as S0j(t) =

exp{−
∫ t
0
h0(u)du}. The conditional cumulative hazard, given the values of Zj and X, is Hj(t|zj , x) =

zj exp{βT
j x}

∫ t
0
h0(u)du, with βj the transition-specific vector of the regression coefficients. Then, the
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marginal survival function of transition time Tj , conditional on (Zj = zj , X = x), is

Sj(t|zj , x) = exp{−Hj(t|zj , x)} = S0j(t)
zj exp{βT

j x}. (11)

The conditional distributions (2) are unchanged, except that in the final expressions (like (4) and (5)

of the example) each Sj(tj) is replaced by Sj(tj |zj , x). As a consequence, in the case of clustering and/or

covariates, the algorithm in Section 2.2 can be used conditionally on previously simulated X and Z without

need of modifications.

3 Clayton–Weibull model

The method proposed in Section 2 is very general and any copula functions and parametric forms for

marginal distributions can be chosen. Here we restrict our attention to a special case: Clayton copulas

and Weibull marginal distributions. These assumptions have two main advantages: the expressions of

the conditional distributions (see (2)) are particularly simple and the marginal distributions, conditional

on frailties and covariates, (see (11)) are still Weibull, making the addition of frailties and covariates even

simpler. Furthermore, the use of the Weibull family (including the Exponential) is in line with most common

parametric models, allowing a simulation–analysis comparison under one of the most popular assumptions.

Let each time variable be marginally distributed as a Weibull random variable Wei(λj , ρj) with its own

shape ρj and location λj parameters. Thus, each marginal survival function is Sj(t) = exp{−λjtρj} and

its inverse is S−1j (u) = (− log u/λj)
1/ρj . Let the parameter θ, controlling the dependence structure of the

copula, be fixed to 1. This is not essential but yields a further simplification of the conditional survival

functions.
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Then, the quantities (6)–(10) used in the simulations simplify to

T1 =

[
− log(U1)

λ1

]1/ρ1
, (12)

T2|t1 =

(
1

λ2
log
{(
U
−1/2
2 − 1

)
exp{λ1tρ11 }+ 1

})1/ρ2

, (13)

T3|t1, t2 =

(
1

λ3
log
{(
U
−1/3
3 − 1

)
(exp{λ1tρ11 }+ exp{λ2tρ22 } − 1) + 1

})1/ρ3

, (14)

T4|t1 =

(
1

λ4
log
{(
U
−1/2
4 − 1

)
exp{λ1tρ11 }+ 1

})1/ρ4

, (15)

T5|t2 =

(
1

λ5
log
{(
U
−1/2
5 − 1

)
exp{λ2tρ22 }+ 1

})1/ρ5

. (16)

Frailty terms and covariates. Under the assumption of the Weibull marginal distributions, the baseline

(marginal) survival function of each Tj is S0j(t) = e−λjt
ρj

and hence the survival function (11) is

Sj(t|zj , x) = exp{−(λjzje
βT
j x)tρj}.

This means that Tj |Zj , X ∼ Wei(λjZje
βT
j X , ρj), i.e. the distribution, conditional on Zj and X, is still

Weibull and only the location parameter is concerned. Therefore, simulations can still be done by means of

expressions like (12)–(16) with changed parameters {λj}.

4 Tuning simulation parameters

When the researcher designs a simulation study, he typically wants to reproduce some precise situations.

In the context of multi-state data, what one would like to control are the probabilities of competing events

and some location measure of transition times. The median is the usual location index for time variables,

but it cannot be estimated in the case that too many observations are censored. For this reason we use the

median of uncensored times, always observable. Note that any other location measure can be used without

consequences on the rest of the procedure.

The quantities to control depend on the choice of Π, the set of the parameters of the marginal distributions

of transition and censoring times. Since no general way exists to express them as a function of the target

values, a trial-and-error procedure is needed. Such a numerical procedure must try several values of Π and

compute an index of the distance from the target of the “observed” probabilities of competing events and

median times.
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Let pj and mj , with j = 1, . . . ,M , be the target values of the probabilities of competing events and of the

median of uncensored times of each transition. Let p̂j(Π) and m̂j(Π) be their observed values in a dataset

simulated with parameters Π. The censoring probability is not considered, as it directly follows from the

other probabilities as one minus their sum.

The parameters in Π must be chosen in such a way that the ratios

pj
p̂j(Π)

and
mj

m̂j(Π)
, j = 1, . . . ,M,

are as close as possible to 1, that is equivalent to require that the non-negative quantities

[
log

pj
p̂j(Π)

]2
and

[
log

mj

m̂j(Π)

]2
, j = 1, . . . ,M,

are as small as possible. Therefore we propose the criterion function

Υ(Π) =

M∑
j=1

{[
log

pj
p̂j(Π)

]2
+

[
log

mj

m̂j(Π)

]2}
(17)

to minimize over the space of Π. Note that the criterion function (17) is the sum of non-negative terms,

each of which is a function of only the parameters of one competing events block:

Υ(Π) =
∑
Jk

∑
j∈Jk

{[
log

pj
p̂j(ΠJk)

]2
+

[
log

mj

m̂j(ΠJk)

]2}
=
∑
Jk

ΥJk(ΠJk), (18)

with Jk the competing events blocks. In the example of Figure 1 these are J0 = {1, 2, 3}, J1 = {4} and

J2 = {5}.

Thanks to decomposition (18) into non-negative terms, the complex problem of the minimization of

the criterion function can be decomposed into the subproblems concerning each competing events block.

Therefore, the optimization of Υ on Π can be done by first minimizing ΥJ0 on ΠJ0 and then the following

ones, conditionally on parameters chosen for the previous transitions.

Note that the criterion function Υ uses empirical estimates p̂j(Π)’s and m̂j(Π)’s based on a (random)

dataset simulated with the present candidate parameter values, which continuously change during the opti-

mization. It implies that the minimization procedure deals with a function which is not deterministic. This

makes the procedure very unstable; nevertheless the interest is not in the exact minimum point but only in

finding reasonable values for simulating data sufficiently similar to requirements.
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4.1 Tuning parameters of Weibull marginal distributions.

Consider again the example in Figure 1 with Weibull marginal distributions Wei(λj , ρj) and Exponential

censoring distributions Exp(λCk). The parameters set of each competing events block is ΠJk = {λCk} ∪

{λj , j ∈ Jk} ∪ {ρj , j ∈ Jk}. The minimization of Υ should be done on the space of Π, of size 13, but it can

be decomposed into the subproblems concerning ΥJ0 , ΥJ1 and ΥJ2 of sizes 7, 3 and 3 respectively, which

are much more affordable.

The dimension of each subproblem is further reduced by alternating, until convergence, the minimization

over the scale parameters {λj} and the shape parameters {ρj}; at each step the optimization is done on one

subset while fixing provisional values for the other. The tuning algorithm for each competing events block

Jk is

I Set λ(0) = {λ(0)Ck} ∪ {λ
(0)
j }j∈Jk = {1, . . . , 1}, ρ(0) = {ρ(0)j }j∈Jk = {1, . . . , 1} and K = 1

I Repeat until K = maxit or ΥJk(λ(K−1), ρ(K−1)) < th

– Obtain λ(K) by minimizing ΥJk(λ, ρ(K−1)) over λ

– Obtain ρ(K) by minimizing ΥJk(λ(K), ρ) over ρ

– Set K = K + 1

with maxit and th arbitrary termination parameters.

5 Example

We consider a dataset from a multicenter study concerning patients treated with radiotherapy for head and

neck cancer in five Italian hospitals [29]. The radioprotector Amifostine is administrated in order to protect

the salivary glands and prevent xerostomia. The data contain information on the times of occurrence, after

the beginning of the therapy, of local relapse (LR), distant metastasis (DM) and death (De). The multi-state

structure is shown in Figure 2, together with the observed frequencies.

It is clear that even though this structure is very suited for exploring competing risks models, multi-state

models, frailty models and their possible integration, the number of patients, 44, is a strong limitation.

Nevertheless the information provided by these data can be valuable for correctly building a simulation

study. Observed frequencies of competing events and median times of uncensored transitions can serve as

benchmark to generate realistic data.
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NED

LR

DM

De
22

0

8

14

4

15

3

4

7

Tot: 44

Figure 2: States and transitions structure of real data. NED: No Evidence of new Disease, LR: Local Relapse,
DM: Distant Metastases, De: Dead. The numbers on the arrows are the frequencies of each transition; those
in the boxes are the numbers of patients ending the study in each state.

We want to generate a dataset of size 3000 for the multi-state structure of the real data, with dependence

between patients belonging to the same hospital [4]. The number of hospitals is fixed to 40, whereas their

dimensions are randomly generated. The clustering effect due to hospitals is simulated by means of a frailty

term Z, common to all the transition times of all patients in the same group. A one-parameter Gamma

distribution is used, with dispersion parameter θF = V ar(Z) = 0.5.

Two covariates are simulated: a dichotomous one, Treat ∼ Bin(0.5), and a continuous one, Age ∼

N(60, 7). Regression coefficients are fixed to

βj,Treat =


log(0.3) j = 1,

0 j = 2,

log(1.2) j = 3, 4, 5.

and βj,Age =


log(0.8)/10 j = 1,

log(0.9)/10 j = 2,

log(1.2)/10 j = 3, 4, 5.
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These values represent a treatment Treat, as can be the case of radiotherapy, which reduces by 70% the

hazard of LR, increases by 20% the risk of De and does not affect that of DM. Concerning Age, 10 more

years of age reduce by 20% and 10% the hazard of LR and DM respectively and increase by 20% the risk of

De.

Based on real data characteristics, we want to simulate data with the following features.

• Starting from state NED

- 50% of probability of censoring, 34% of LR occurrence, 9% of DM occurrence and 7% of dying

- median uncensored times for LR, DM and De of 6, 10 and 3 months respectively.

• Starting from state LR

- 53% of probability of censoring and 47% of dying

- median uncensored De times of 3.25 additional months.

• Starting from state DM

- 5% of probability of censoring and 95% of dying

- median uncensored De times of 0.5 additional month.

In the real data, the patients experiencing DM are only 4 in total and all of them die during the study.

Nevertheless a patient is not necessarily prevented from having the De time censored after DM, so the

frequency 0 for the path censoring after DM is only accidental and its risk has to be considered strictly

positive.

5.1 Results.

First, the parameters of the transitions times {Tj}j∈J0 , J0 = {1, 2, 3}, are chosen by minimizing the criterion

function ΥJ0 , conditionally on the frailties and the covariates. Each substep of the tuning procedure is

iterated 10000 times with datasets of size 10000. Termination criteria are set to: maxit = 10 and th = 0.1.

In our case, the procedure takes several hours.

Then, for simulated patients passed to LR or DM, the two following degenerate blocks J1 = {T4} and

J2 = {T5} are considered for optimization of ΥJ1 and ΥJ2 , respectively. The number of parameters is now 3,

instead of 7, so the criterion function is the sum of fewer terms and a more restrictive threshold th is needed;

we set it to 0.05. At the same time we expect that convergence is reached faster, so we fix maxit = 6, even if

not strictly needed. The optimization for transitions from LR and from DM took few hours. Table 1 shows

the chosen values for the parameters.
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To provide a complete comparison between target and observed values in a simulated dataset of size 3000

with chosen parameters, we replicate 10000 times the simulation and we provide the 2.5th, the 50th and

the 97.5th percentiles of quantities of interest, together with target values (Tab. 2, 3 and 4). A graphical

representation is shown in Figure 3.
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Figure 3: Probabilities of competing events (Fig.’s [a], [c] and [e]) and median uncensored times (Fig.’s [b],
[d] and [f]) for transitions from state NED (Fig.’s [a] and [b]), from state LR (Fig.’s [c] and [d]) and from
state DM (Fig.’s [e] and [f]). Comparison between target values (O) and the 2.5th ([), the 50th (|) and the
97.5th (]) percentiles in 10000 simulated datasets of size 3000.

Initial values of the parameters were fixed to 1, as shown in Section 4.1; further simulations (not presented

here), with initial values ranging from exp(−2) ≈ 0.14 to exp(2) ≈ 7.39, showed that these results are quite

robust with respect to the initial values of the parameters.
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6 Conclusion

Simulating survival data is not a simple task when one needs to introduce dependence between times of

different transitions, a clustering structure and the effect of covariates. Most of all, it is hard to choose

appropriate values for simulation parameters in order to obtain data which are reasonably close to given

requirements.

Usually when one wants to choose marginal distributions, independence is assumed between variables;

this is a very strong restriction. Other solutions are available only for some specific cases.

The method proposed here (Sec. 2), based on copula models, allows to choose the marginal distributions,

while a dependence structure is induced without need of any more effort by the researcher. In addition,

even though only some joint distributions are handled (the ones of competing events blocks and of successive

event times), dependence is induced between all the time variables within a subject.

Clustering can be simply added upstream, as well as covariates, that can be simulated and added in a

proportional-hazards manner without altering the rest of the procedure.

A method for tuning simulation parameters is provided, too. The use of the criterion function (17) aims

at maximizing the closeness of the simulated data to research needs in terms of location of times and of

probabilities of competing events.

The proposed procedure is very general from many points of view. Any parametric forms can be chosen

for the marginal distributions and any copula functions for the joint distributions. No restriction is needed

neither on the frailty distribution nor on the number and sizes of groups. The choice of the location measure

in the tuning procedure is totally free, even though we recommend to use the median of uncensored times.

The use of Clayton copula and Weibull marginal distributions (Sec. 3), very common in parametric

modelling, yields a particularly simple model in terms of both conditional distributions and of addition of

frailties and covariates.

The example in Section 5 shows that the tuning procedure automatically leads to very good values.

The R code [30] for this example is available upon request from the first author, whereas a more general

code will soon be available as an R package (simfms). The present implementation of the tuning procedure

is computationally demanding, requiring many hours, but this seems to be a minor problem, as tuning is

typically done only once; the simulation procedure, possibly needed to be used intensively, takes only few

seconds.

We are grateful to Prof. Monica Chiogna for the valuable advice and suggestions. The research work was

done during a visit of the first Author at the Institut de Statistique, Biostatistique et Sciences Actuarielles,
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Université Catholique de Louvain.
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Table 1: Values of simulation parameters chosen by the tuning procedure.

T1 T2 T3 C0 T4 C1 T5 C2

Location λ 0.276 0.019 0.013 0.031 0.029 0.099 0.192 0.039
Shape ρ 0.851 1.076 0.569 — 1.078 — 1.000 —

Table 2: Values of the median of the uncensored times and of the probabilities of competing events. First
competing events block J0 = {T1, T2, T3}. Target values are on the first line, the second to fourth lines show
the 2.5th, 50th and 97.5th percentiles of values observed in 10000 datasets of size 3000, simulated with the
chosen parameters (Table 1, columns 2–5).

pi mi

LR DM De C LR DM De

Target 0.34 0.09 0.07 0.50 6.00 10.00 3.00

2.5% 0.26 0.09 0.07 0.44 5.31 7.45 1.93
Simulated 50% 0.31 0.11 0.08 0.50 6.32 9.19 2.67

97.5% 0.35 0.12 0.10 0.57 7.53 11.26 3.69

Table 3: Values of the median of the uncensored times and of the probabilities of competing events. Degen-
erate competing events block J1 = {T4}. Target values are on the first line, the second to fourth lines show
the 2.5th, 50th and 97.5th percentiles of values observed in 10000 datasets of size 3000, simulated with the
chosen parameters (Table 1, columns 6–7).

pi mi

De C De

Target 0.47 0.53 3.25

2.5% 0.41 0.50 3.04
Simulated 50% 0.45 0.55 3.57

97.5% 0.50 0.59 4.21

Table 4: Values of the median of the uncensored times and of the probabilities of competing events. Degen-
erate competing events block J2 = {T5}. Target values are on the first line, the second to fourth lines show
the 2.5th, 50th and 97.5th percentiles of values observed in 10000 datasets of size 3000, simulated with the
chosen parameters (Table 1, columns 8–9).

pi mi

De C De

Target 0.95 0.05 0.50

2.5% 0.93 0.02 0.44
Simulated 50% 0.96 0.04 0.58

97.5% 0.98 0.07 0.77
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