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Abstract

We consider the estimation of the slope function in functional linear regression, where
a scalar response Y is modeled in dependence of a random function X, when Y and only
a panel Z1, . . . , ZL of noisy observations of X are observable. Assuming an iid. sample
of (Y, Z1, . . . , ZL) we derive in terms of both, the sample size and the panel size, a lower
bound of a maximal weigthed risk over certain ellipsoids of slope functions. We prove
that a thresholded projection estimator can attain the lower bound up to a constant.

This work was supported by the IAP research network no. P6/03 of the Belgian Government
(Belgian Science Policy).

1. Introduction

A common problem in a diverse range of disciplines is the investigation of the depen-
dence of a real random variable Y on the variation of an explanatory random function X
(see for instance Ramsay and Silverman [2005] and Ferraty and Vieu [2006]). We assume
that X takes its values in an infinite dimensional separable Hilbert space H which is
endowed with an inner product 〈·, ·〉 and its associated norm ‖·‖. In functional linear
regression the dependence of the response Y on the regressor X is then modeled by

Y = 〈β,X〉+ σ ε, σ > 0, (1a)

where β ∈ H is unknown and the error ε has mean zero and variance one. In this paper
we suppose that we have only access to Y and a panel of noisy observations of X,

Z` = X + ς Ξ`, ς > 0, ` = 1, . . . , L, (1b)
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where Ξ1, . . . ,ΞL are measurement errors. One objective is then the non-parametric
estimation of the slope function β based on an iid. sample of (Y,Z1, . . . , ZL).

In recent years the non-parametric estimation of the slope function β from a sample of
(Y,X) has been of growing interest in the literature (c.f. Cardot et al. [1999], Marx and
Eilers [1999], Bosq [2000] or Cardot et al. [2007]). In this paper we follow an approach
based on dimension reduction and thresholding techniques, which has been proposed by
Cardot and Johannes [2010] and borrows ideas from the inverse problems community
(c.f. Efromovich and Koltchinskii [2001] and Hoffmann and Reiß [2008]).

The objective of this paper is to establish a minimax theory for the non-parametric
estimation of β in terms of both, the size L of the panel Z1, . . . , ZL of noisy measurements
of X and the size n of the sample of (Y,Z1, . . . , ZL). In order to make things more
formal let us reconsider model (1a) - (1b). Given an orthonormal basis {ψj}j>1 in H
(not necessarily corresponding to the eigenfunctions of Γ) we assume real valued random
variables ξj,` := 〈Ξ`, ψj〉 and observable blurred versions of the coefficient 〈X,ψj〉 of X,

Zj,` := 〈X,ψj〉+ ς ξj,`, ` = 1, . . . , L and j ∈ N. (2)

The motivating example for our abstract framework consists in irregular and sparse
repeated measures of a contaminated trajectory of a random function X ∈ L2[0, 1] (c.f.
Yao et al. [2005] and references therein). To be more precise, suppose that there are
L uniformly-distributed and independent random measurement times U1, . . . , UL for X.
Let V` = X(U`)+η` denote the observation of the random trajectory X at a random time
U` contaminated with measurement error η`, 1 6 ` 6 L. The errors η` are assumed to be
iid. with mean zero and finite variance. If the random functionX, the random times {U`}
and the errors {η`} are independent, then, it is easily seen that for each ` = 1, . . . , L and
j ∈ N the observable quantity Zj,` := V`ψj(U`) is just a blurred version of the coefficient
〈X,ψj〉 corrupted by an uncorrelated additive measurement error V`ψj(U`) − 〈X,ψj〉.
Moreover, those errors are uncorrelated for all j ∈ N and different values of `. It is
interesting to note that recently Crambes et al. [2009] prove minimax-optimality of a
spline based estimator in the situation of deterministic measurement times. However,
the obtained optimal rates are the same as for a known regressor X since the authors
suppose the deterministic design to be sufficiently dense. In contrast to this result we
seek a minimax theory covering also sparse measurements. In particular, it enables us
to quantify the minimal panel size in order to recover the minimal rate for a known X.

In Section 2 we introduce our basic assumptions and recall the minimax theory derived
in Cardot and Johannes [2010] for estimating β non-parametrically given an iid. sample
of (Y,X). Assuming an iid. sample of size n of (Y, Z1, . . . , ZL) we derive in Section 3
a lower bound in terms of both, n and L, for a maximal weighted risk. We propose an
estimator based on dimension reduction and thresholding techniques that can attain the
lower bound up to a constant. All proofs can be found in Bereswill and Johannes [2010].

2. Background to the methodology

For sake of simplicity we assume that the measurement errors ε and {ξj,`}j∈N,16`6L
are independent and standard normally distributed, i.e, Ξ1, . . . ,ΞL are independent
Gaussian white noises in H. Furthermore, we suppose that the regressor X is Gaussian



with mean zero and a finite second moment, i.e., E‖X‖2 < ∞, as well as independent
of all measurement errors. Taking the expectation after multiplying both sides in (1a)
by X we obtain g := E[Y X] = E[〈β,X〉X] =: Γβ, where g belongs to H and Γ denotes
the covariance operator associated with the random function X. In what follows we
always assume that there exists in H a unique solution of the equation g = Γβ, i.e., that
g belongs to the range of the strictly positive Γ (c.f. Cardot et al. [2003]). It is well-
known that the obtainable accuracy of any estimator of β can essentially be determined
by the regularity conditions imposed on both, the slope parameter β and the covariance
operator Γ. We formalize now these conditions, which are characterized in this paper by
different weighted norms in H with respect to the pre-specified basis {ψj}j>.

Given a positive sequence of weights w := (wj)j>1 we define the weighted norm
‖f‖2w :=

∑
j>1 wj |〈f, ψj〉|2, f ∈ H, the completion Fw of H with respect to ‖·‖w and

the ellipsoid Fcw :=
{
f ∈ Fw : ‖f‖2w 6 c

}
with radius c > 0. Here and subsequently,

given strictly positive sequences of weights γ := (γj)j>1 and ω := (ωj)j>1 we shall
measure the performance of any estimator β̂ by its maximal Fω-risk over the ellipsoid
Fργ with radius ρ > 0, that is supβ∈Fργ E‖β̂ − β‖

2
ω. This general framework allows us

with appropriate choices of the basis {ψj}j> and the weight sequence ω to cover the
estimation not only of the slope function itself (c.f. Hall and Horowitz [2007]) but also
of its derivatives as well as the optimal estimation with respect to the mean squared
prediction error (c.f. Crambes et al. [2009]). For a more detailed discussion, we refer
to Cardot and Johannes [2010]. Furthermore, as usual in the context of ill-posed inverse
problems, we link the mapping properties of the covariance operator Γ and the regularity
conditions on β. Denote by N the set of all strictly positive nuclear operators defined
on H. Given a strictly positive sequence of weights λ := (λj)j>1 and a constant d > 1
define the subset N d

λ := {Γ ∈ N : ‖f‖2λ/d2 6 ‖Γf‖2 6 d2 ‖f‖2λ, ∀f ∈ H} of N . Notice
that 〈Γψj , ψj〉 > d−1λ

1/2
j for all Γ ∈ N d

λ , and hence the sequence (λ
1/2
j )j>1 is necessarily

summable. All the results in this paper are derived with respect to the three sequences
ω, γ and λ. We do not specify these sequences, but impose from now on the following
minimal regularity conditions.
Assumption (A.1). Let ω := (ωj)j>1, γ := (γj)j>1 and λ := (λj)j>1 be strictly positive
sequences of weights with γ1 = 1, ω1 = 1 and λ1 = 1 such that γ and (γj/ωj)j>1 are non
decreasing, λ and (λj/ωj)j>1 are non increasing with Λ :=

∑∞
j=1 λ

1/2
j <∞.

Given a sample size n > 1 and sequences ω, γ and λ satisfying Assumption A.1 define

m∗n := m∗n(γ, ω, λ) := arg min
m>1

{
max

(
ωm
γm
,
∑m
j=1

ωj

n
√
λj

)}
and

δ∗n := δ∗n(γ, ω, λ) := max
(
ωm∗n
γm∗n

,
∑m∗n
j=1

ωj

n
√
λj

)
. (3)

If in addition 4 := infn>1{(δ∗n)−1 min(ωm∗nγ
−1
m∗n
,
∑m∗n
j=1 ωj(n

√
λj)
−1)} > 0, then there

exists C > 0 depending on σ2, ρ, d, 4 only such that (c.f. Cardot and Johannes [2010]),

inf
β̆

inf
Γ∈Ndλ

sup
β∈Fργ

{
E‖β̆ − β‖2ω

}
> C δ∗n for all n > 1.



Assuming an iid. sample {(Y (i), X(i))} of size n of (Y,X), it is natural to consider the
estimators g̃ := 1

n

∑n
i=1 Y

(i)X(i) and Γ̃ := 1
n

∑n
i=1〈·, X(i)〉X(i) for g and Γ respectively.

Given m > 1, we denote by [Γ̃]m the m × m matrix with generic elements [Γ̃]j,` :=

〈Γ̃ψ`, ψj〉 = n−1
∑n
i=1〈X(i), ψ`〉〈X(i), ψj〉, and by [g̃]m the m vector with elements [g̃]` :=

〈g̃, ψ`〉 = n−1
∑n
i=1 Y

(i)〈X(i), ψ`〉, 1 6 j, ` 6 m. Obviously, if [Γ̃]m is non singular then
[Γ̃]−1

m [g̃]m is a least squares estimator of the vector [β]m with elements 〈β, ψ`〉, 1 6 ` 6 m.
The estimator of β consists now in thresholding this projection estimator, that is,

β̃m :=

m∑
j=1

[̃β]jψj with [̃β]m :=


[Γ̃]−1

m [g̃]m, if [Γ̃]m is non-singular
and ‖[Γ̃]−1

m ‖ 6 n,

0, otherwise.
(4)

Under Assumption A.1 and supm>1m
4λm/γm <∞ it is shown in Cardot and Johannes

[2010] that there exists C > 0 depending on σ2, ρ, d,Λ only such that

sup
Γ∈Ndλ

sup
β∈Fργ

{
E‖β̃m∗n − β‖

2
ω

}
6 C δ∗n ,

where the dimension parameter m∗n is given in (4).

Examples of rates. We compute in this section the minimal rate δ∗n for two standard
configurations for γ, ω, and λ. In both examples, we take ωj = j2s, s ∈ R, for j > 1.
Here and subsequently, we write an . bn if there exists C > 0 such that an 6 C bn for
all n ∈ N and an ∼ bn when an . bn and bn . an simultaneously.

(p-p) For j > 1 let γj = j2p, p > 0, and λj = j−2a, a > 1, then Assumption A.1 holds,
if −a < s < p. It is easily seen that m∗n ∼ n1/(2p+a+1) if 2s + a > −1, m∗n ∼ n1/[2(p−s)]

if 2s + a < −1 and m∗n ∼ (n/ log(n))1/[2(p−s)] if a + 2s = −1. The minimal rate δ∗n
attained by the estimator is max(n−(2p−2s)/(a+2p+1), n−1), if 2s+ a 6= −1 (and log(n)/n
if 2s + a = −1). Since an increasing value of a leads to a slower minimal rate, it is
called degree of ill-posedness (c.f. Natterer [1984]). Moreover, the case 0 6 s < p can be
interpreted as the L2-risk of an estimator of the s-th derivative of β. On the other hand
s = −a/2 corresponds to the mean-prediction error (c.f. Cardot and Johannes [2010]).

(p-e) For j > 1 let γj = j2p, p > 0, and λj = exp(−j2a), a > 0, where Assumption A.1
holds, if p > s. Then m∗n ∼ (log n − 2p+(2a−1)+

2a log(log n))1/(2a) with (q)+ := max(q, 0).
Thereby, (log n)−(p−s)/a is the minimal rate attained by the estimator.

3. The effect of noisy observations of the regressor

In order to formulate the lower bound below let us define for all n,L > 1 and ς > 0

m∗n,L,ς := m∗n,L,ς(γ, ω, λ) := arg min
m>1

{
max

(
ωm
γm
,
∑m
j=1

ωj

n
√
λj
,
∑m
j=1

ς2 ωj
Lnλj

)}
and

δ∗n,L,ς := δ∗n,L,ς(γ, ω, λ) := max

(
ωm∗

n,L,ς

γm∗
n,L,ς

,
∑m∗n,L,ς
j=1

ωj

n
√
λj
,
∑m∗n,L,ς
j=1

ς2 ωj
Lnλj

)
. (5)

The lower bound given below needs the following assumption.



Assumption (A.2). Let ω, γ and λ be sequences such that

0 < 4 := infL,n>1

{
(δ∗n,L,ς)

−1 min

(
ωm∗

n,L,ς

γm∗
n,L,ς

,
∑m∗n,L,ς
j=1

ωj

n
√
λj
,
∑m∗n,L,ς
j=1

ς2 ωj
Lnλj

)}
6 1.

Theorem (Lower bound). If the sequences ω, γ and λ satisfy Assumptions A.1 - A.2,
then there exists C > 0 depending on σ2, ς2, ρ, d, and 4 only such that

inf
β̆

inf
Γ∈Ndλ

sup
β∈Fργ

{
E‖β̆ − β‖2ω

}
> C δ∗n,L,ς for all n,L > 1.

Observe that the lower rate δ∗n,L,ς is never faster than the lower rate δ∗n for known X
defined in (3). Clearly, we recover δ∗n for all L > 1 in case ς = 0. On the other hand given
an iid. sample {(Y (i), Z

(i)
1 , . . . , Z

(i)
L )} of size n of (Y,Z1, . . . , ZL) we define estimators for

the elements [g]j := 〈g, ψj〉 and [Γ]k,j := 〈Γψk, ψj〉, k, j > 1, respectively as follows

[̂g]j :=
1

n

n∑
i=1

Y i
1

L

L∑
`=1

Z
(i)
j,` , and [̂Γ]k,j :=

1

n

n∑
i=1

1

L(L− 1)

L∑
`1,`2=1
`1 6=`2

Z
(i)
j,`1

Z
(i)
k,`2

. (6)

We replace in definition (4) then the unknown matrix [Γ̃]m and vector [g̃]m respectively
by the matrix [̂Γ]m with elements [̂Γ]k,j and the vector [̂g]m with elements [̂g]j , that is,

β̂m :=

m∑
j=1

[̂β]jψj with [̂β]m :=


[̂Γ]
−1

m [̂g]m, if [̂Γ]m is non-singular

and ‖[̂Γ]
−1

m ‖ 6 n,

0, otherwise.

(7)

The next theorem establishes the minimax-optimality of the estimator β̂m provided the
dimension parameter m is chosen appropriate, i.e m := m∗n,L,ς given in (5).

Theorem (Upper bound). If Assumptions A.1 - A.2 and supm>1m
4λmγ

−1
m < ∞ are

satisfied, then there exists C > 0 depending on σ2, ς2, ρ, d,Λ only such that

sup
Γ∈Ndλ

sup
β∈Fργ

{
E‖β̂m∗n,L,ς − β‖

2
ω

}
6 C δ∗n,L,ς for all n > 1, L > 2 and ς > 0.

Examples of rates (continued). Suppose first that the panel size L > 2 is constant
and ς > 0. In example (p-p) if 2s+2a+1 > 0 it is easily seen that m∗n,L,ς ∼ n1/(2p+2a+1)

and the minimal rate attained by the estimator is δ∗n,L,ς ∼ n−(2p−2s)/(2a+2p+1). Let us
compare this rate with the minimal rates in case of a functional linear model (FLM) with
known regressor and in case of an indirect regression model (IRM) given by the covariance
operator Γ and Gaussian white noise Ẇ , i.e., gn = Γβ + n−1/2Ẇ (c.f. Hoffmann and
Reiß [2008]). The minimal rate in the FLM with known X is n−2(p−s)/(a+2p+1), while
n−2(p−s)/(2a+2p+1) is the minimal rate in the IRM. We see that in a FLM with known
X the covariance operator Γ has the degree of ill-posedness a while it has in a FLM with



noisy observations of X and in the IRM a degree of ill-posedness 2a. In other words only
in a FLM with known regressor we do not face the complexity of an inversion of Γ but
only of its square root Γ1/2. The same remark holds true in the example (p-e), but the
minimal rate is the same in all three cases due to the fact that for λj ∼ exp(−r|j|2a)
the dependence of the minimal rate on the value r is hidden in the constant. However,
it is rather surprising that in this situation a panel of size L = 2 is sufficient to recover
the minimal but logarithmic rate when X is known. In contrast, in example (p-p) the
minimal rate for known X can only be attained in the presence of noise in the regressor
if the panel size satisfies L−1

n = O(n−a/(a+2p+1)) as the sample size n increases, since
δ∗n,L,ς ∼ max(n−(2p−2s)/(a+2p+1), (Lnn)−(2p−2s)/(2a+2p+1)).
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