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Abstract

We consider the estimation of the slope function in functional linear regression, where
a scalar response Y is modeled in dependence of a random function X, when Y and only
a panel Z1,...,Zy, of noisy observations of X are observable. Assuming an iid. sample
of (Y, Z1,...,Z1) we derive in terms of both, the sample size and the panel size, a lower
bound of a maximal weigthed risk over certain ellipsoids of slope functions. We prove
that a thresholded projection estimator can attain the lower bound up to a constant.

This work was supported by the IAP research network no. P6/03 of the Belgian Government
(Belgian Science Policy).

1. Introduction

A common problem in a diverse range of disciplines is the investigation of the depen-
dence of a real random variable Y on the variation of an explanatory random function X
(see for instance Ramsay and Silverman [2005] and Ferraty and Vieu [2006]). We assume
that X takes its values in an infinite dimensional separable Hilbert space H which is

endowed with an inner product (-,-) and its associated norm ||-||. In functional linear
regression the dependence of the response Y on the regressor X is then modeled by
Y=8,X)+oe, oc>0, (1a)

where 8 € H is unknown and the error € has mean zero and variance one. In this paper
we suppose that we have only access to Y and a panel of noisy observations of X,

Zy=X+¢Z, ¢>0, t=1,...,L, (1b)
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where =Zp,...,Z; are measurement errors. One objective is then the non-parametric
estimation of the slope function 3 based on an iid. sample of (Y, Z1,..., Zr).

In recent years the non-parametric estimation of the slope function § from a sample of
(Y, X) has been of growing interest in the literature (c.f. Cardot et al. [1999], Marx and
Eilers [1999], Bosq [2000] or Cardot et al. [2007]). In this paper we follow an approach
based on dimension reduction and thresholding techniques, which has been proposed by
Cardot and Johannes [2010] and borrows ideas from the inverse problems community
(c.f. Efromovich and Koltchinskii [2001] and Hoffmann and Reif [2008]).

The objective of this paper is to establish a minimax theory for the non-parametric
estimation of 8 in terms of both, the size L of the panel Z1, ..., Z}, of noisy measurements
of X and the size n of the sample of (Y, Z1,...,Z;). In order to make things more
formal let us reconsider model (1a) - (1b). Given an orthonormal basis {¢;};>1 in H
(not necessarily corresponding to the eigenfunctions of I') we assume real valued random
variables §; ¢ := (Z¢, ¢;) and observable blurred versions of the coefficient (X, ;) of X,

Zj’g = <X,’L/Jj>+§§j’g, gzL,L andjEN. (2)

The motivating example for our abstract framework consists in irregular and sparse
repeated measures of a contaminated trajectory of a random function X € L?[0,1] (c.f.
Yao et al. [2005] and references therein). To be more precise, suppose that there are
L uniformly-distributed and independent random measurement times Uy, ..., Uy, for X.
Let V; = X (Uy) +n¢ denote the observation of the random trajectory X at a random time
U, contaminated with measurement error 7y, 1 < ¢ < L. The errors 7, are assumed to be
iid. with mean zero and finite variance. If the random function X, the random times {U;}
and the errors {7y} are independent, then, it is easily seen that for each £ =1,..., L and
Jj € N the observable quantity Z; ¢ := V1, (Up) is just a blurred version of the coefficient
(X, ;) corrupted by an uncorrelated additive measurement error Vpi;(Us) — (X, 9;).
Moreover, those errors are uncorrelated for all j € N and different values of ¢. It is
interesting to note that recently Crambes et al. [2009] prove minimax-optimality of a
spline based estimator in the situation of deterministic measurement times. However,
the obtained optimal rates are the same as for a known regressor X since the authors
suppose the deterministic design to be sufficiently dense. In contrast to this result we
seek a minimax theory covering also sparse measurements. In particular, it enables us
to quantify the minimal panel size in order to recover the minimal rate for a known X.

In Section 2 we introduce our basic assumptions and recall the minimax theory derived
in Cardot and Johannes [2010] for estimating 5 non-parametrically given an iid. sample
of (Y, X). Assuming an iid. sample of size n of (Y, Z1,...,Z1) we derive in Section 3
a lower bound in terms of both, n and L, for a maximal weighted risk. We propose an
estimator based on dimension reduction and thresholding techniques that can attain the
lower bound up to a constant. All proofs can be found in Bereswill and Johannes [2010].

2. Background to the methodology

For sake of simplicity we assume that the measurement errors € and {£; ¢};en1<e<r
are independent and standard normally distributed, i.e, Z1,...,Z are independent
Gaussian white noises in H. Furthermore, we suppose that the regressor X is Gaussian



with mean zero and a finite second moment, i.e., E[| X||? < oo, as well as independent
of all measurement errors. Taking the expectation after multiplying both sides in (1a)
by X we obtain g := E[Y X] = E[(8, X)X] =: T'3, where g belongs to H and I" denotes
the covariance operator associated with the random function X. In what follows we
always assume that there exists in H a unique solution of the equation g = I'3, i.e., that
g belongs to the range of the strictly positive T' (c.f. Cardot et al. [2003]). It is well-
known that the obtainable accuracy of any estimator of 8 can essentially be determined
by the regularity conditions imposed on both, the slope parameter 8 and the covariance
operator I'. We formalize now these conditions, which are characterized in this paper by
different weighted norms in H with respect to the pre-specified basis {¥;};>.

Given a positive sequence of weights w := (w;);>1 we define the weighted norm
IfI3 = > is1 willf, V)%, f € H, the completion F,, of H with respect to ||, and
the ellipsoid F, := {f € Fu : [|f]|2 < ¢} with radius ¢ > 0. Here and subsequently,
given strictly positive sequences of weights v = (v;);>1 and w = (w;);>1 we shall
measure the performance of any estimator ﬁ by its maximal F,-risk over the ellipsoid
F¥ with radius p > 0, that is supgeze E[|f — B|/2. This general framework allows us
with appropriate choices of the basis {¢;};> and the weight sequence w to cover the
estimation not only of the slope function itself (c.f. Hall and Horowitz [2007]) but also
of its derivatives as well as the optimal estimation with respect to the mean squared
prediction error (c.f. Crambes et al. [2009]). For a more detailed discussion, we refer
to Cardot and Johannes [2010]. Furthermore, as usual in the context of ill-posed inverse
problems, we link the mapping properties of the covariance operator I" and the regularity
conditions on 3. Denote by A the set of all strictly positive nuclear operators defined
on H. Given a strictly positive sequence of weights X := (););>1 and a constant d > 1
define the subset N¢ := {T' € N : ||f|3/d? < |Tf]|? < d?| /|13, Vf € H} of N. Notice

that (T'y;,v;) > d_l)\jl./2 for all T' € N¢{, and hence the sequence ()\;/2>j21 is necessarily
summable. All the results in this paper are derived with respect to the three sequences
w, v and A. We do not specify these sequences, but impose from now on the following

minimal regularity conditions.

ASSUMPTION (A.1). Let w:= (wj);j>1, 7 = (75);>1 and X := (A\;j);>1 be strictly positive
sequences of weights with y1 = 1, w1 =1 and Ay = 1 such that v and (7, /w;);>1 are non

0o 1/2
=1 AT < oo.

Given a sample size n > 1 and sequences w, v and \ satisfying Assumption A.1 define

decreasing, A and (\j/w;)j=1 are non increasing with A ="

fi=m = i N
my = mr (v, w, ) = argir;ln {max (%’: DD ¥ )} and
=

5 = 6% (v, w, A) 1= max (7 Do Lﬁ) (3)

If in addition A := infn>1{(5;)’lmin(wmzv;%7zyfl w;j(nv/A;)™1)} > 0, then there
exists C' > 0 depending on o2, p,d, /A only such that (c.f. Cardot and Johannes [2010]),

inf inf sup {EHB — 5||3} >Co; forallnzl.
B TeN{ pers



Assuming an iid. sample {(Y @, X®))} of size n of (Y, X), it is natural to consider the
estimators §:= 1 5" V@O X@ and T := L7 (. XD) X for g and T respectively.
Given m > 1, we denote by [[], the m x m matrix with generic elements [I] o=
(Tape,bj) = n= P 20 (XD ) (XD 4p;), and by [g],, the m vector with elements [g]; :=
G e) = n 30 YOUX O apy), 1< 5,4 < m. Obviously, if [T I, is non singular then
[I:]él [G]m is a least squares estimator of the vector [3],, with elements (3,1y),1 < £ < m.
The estimator of 8 consists now in thresholding this projection estimator, that is,

~ mo__ _ [f]il G)m, if [f]m is non-singular
Bm = Z [ﬁ]jT/JJ with [B]m = and ||[f]é1H <n, (4)
=1

0, otherwise.

Under Assumption A.1 and sup,,>; m Am /'ym < o0 it is shown in Cardot and Johannes
[2010] that there exists C' > 0 dependmg on o2, p,d, A only such that

sup sup {E|Fn; — 2} <oy,
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where the dimension parameter m} is given in (4).

Examples of rates. We compute in this section the minimal rate §;; for two standard
configurations for v, w, and A. In both examples, we take w; = j*¢, s € R, for j > 1.
Here and subsequently, we write a,, < b, if there exists C' > 0 such that a,, < Cb,, for

~

all n € N and a,, ~ b, when a,, < b, and b, < a,, simultaneously.

(p-p) For j > 1let y; = 5?7, p > 0, and )\] =j72% @ > 1, then Assumption A.1 holds,
if —a < s < p. Itis easily seen that m* ~ n'/Crtatl) if 95 4 g > —1, m* ~ n!/BP=9)]
if 25 +a < —1 and m* ~ (n/log(n))/®=*)1 if g + 25 = —1. The minimal rate &
attained by the estimator is max(n~(2P=29)/(a+2p+1) =1y if 95 4 ¢ £ —1 (and log(n)/n
if 2s + a = —1). Since an increasing value of a leads to a slower minimal rate, it is
called degree of ill-posedness (c.f. Natterer [1984]). Moreover, the case 0 < s < p can be
interpreted as the L?-risk of an estimator of the s-th derivative of 3. On the other hand
s = —a/2 corresponds to the mean-prediction error (c.f. Cardot and Johannes [2010]).

(p-e) For j > 1letv; = j*,p > 0, and \; = exp(—;2*), a > 0, where Assumption A.1
holds, if p > s. Then m} ~ (logn — % log(logn))*/(?9) with (¢); := max(q,0).
Thereby, (log n)*(pfs)/ % is the minimal rate attained by the estimator.

3. The effect of noisy observations of the regressor

In order to formulate the lower bound below let us define for all n, L > 1 and ¢ > 0

* -—_ * -—_— 3
my, 1. =My, (7,w, ) := arg min {max (% Z] 17 ZJ 1 Ln)\ )} and

m>1

W, * *
:;,L,c = 52,&@(%(‘)’ )‘) ‘= max <“/mij,§ ’ Z;n:TLiL ) nf o L * an’ ) (5)

m
n,L,s

The lower bound given below needs the following assumption.



ASSUMPTION (A.2). Let w, v and X be sequences such that

Wi
—3 * 1 nL nL wj nLg ST w
0< A= 1nfL7n>1{(5n7L7<) mm(ﬂ/ D D n\} , Ln/\])} <1
L,s

THEOREM (Lower bound). If the sequences w, v and A satisfy Assumptions A.1 - A.2,
then there exists C > 0 depending on 02,62, p,d, and /\ only such that

inf inf sup {IEHB - B||i} >Cé, . foralln,L>1
B TeNY gers o

Observe that the lower rate d,, ; _ is never faster than the lower rate ¢;, for known X
defined in (3). Clearly, we recover 5* for all L > 1 in case ¢ = 0. On the other hand given
an iid. sample {(Y®, Z{i), cey Z(Li))} of size n of (Y, Z1,...,Z1) we define estimators for
the elements [g]; := (g, ;) and [y ; := (T¢w, ¥;), k,j > 1, respectively as follows

We replace in definition (4) then the unknown matrix [I7,, and vector [§],, respectively

by the matrix [/F\]m with elements [/ﬂ ;,; and the vector [/g\]m with elements [/g\] ;» that is,

1, [/g\]m, if [/ﬂm is non-singular

= 2Byt it [ = and [T, | < . Y
2 .

0, otherwise.

The next theorem establishes the minimax-optimality of the estimator Bm provided the

dimension parameter m is chosen appropriate, i.e m :=m,, - given in (5).

THEOREM (Upper bound). If Assumptions A.1 - A.2 and sup,,>, mA Nyt

satisfied, then there exists C > 0 depending on o2,¢2, p,d, A only such that

< o0 are

sup sup {EHBm LT ﬂHw} Coppe foralln>1,L>2and<>0.
PeN{ BeFy e

Examples of rates (continued). Suppose first that the panel size L > 2 is constant
and ¢ > 0. In example (p-p) if 2s+2a+1 > 0 it is easily seen that m;, ; ~~ nt/(2p+2a+1)
and the minimal rate attained by the estimator is 9, ; -~ n~(2p=25)/Qat2p+1) - Tet us
compare this rate with the minimal rates in case of a functional linear model (FLM) with
known regressor and in case of an indirect regression model (IRM) given by the covariance
operator I' and Gaussian white noise W, i.e., g, = I8 + n~1/2W (c.f. Hoffmann and
Reift [2008]). The minimal rate in the FLM with known X is n—2(— $)/(a+2p+1) " while
n~2(p=5)/(2a+2p+1) i5 the minimal rate in the IRM. We see that in a FLM with known
X the covariance operator I' has the degree of ill-posedness a while it has in a FLM with



noisy observations of X and in the IRM a degree of ill-posedness 2a. In other words only
in a FLM with known regressor we do not face the complexity of an inversion of I but
only of its square root I''/2. The same remark holds true in the example (p-e), but the
minimal rate is the same in all three cases due to the fact that for \; ~ exp(—r|j|**)
the dependence of the minimal rate on the value r is hidden in the constant. However,
it is rather surprising that in this situation a panel of size L = 2 is sufficient to recover
the minimal but logarithmic rate when X is known. In contrast, in example (p-p) the
minimal rate for known X can only be attained in the presence of noise in the regressor
if the panel size satisfies L,;' = O(n~%/(¢+2P+1)) a5 the sample size n increases, since

5:,L,§ ~ max(n7(2p725)/(a+2p+1)7 (Lnn)7(2p725)/(2a+2p+1))_
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