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Abstract

We consider the estimation of the value of a linear functional of the slope parameter in

functional linear regression, where scalar responses are modeled in dependence of random

functions. In Johannes and Schenk [2010] it has been shown that a plug-in estimator based

on dimension reduction and additional thresholding can attain minimax optimal rates of

convergence up to a constant. However, this estimation procedure requires an optimal

choice of a tuning parameter with regard to certain characteristics of the slope function

and the covariance operator associated with the functional regressor. As these are unknown

in practice, we investigate a fully data-driven choice of the tuning parameter based on a

combination of model selection and Lepski’s method, which is inspired by the recent work

of Goldenshluger and Lepski [2011]. The tuning parameter is selected as the minimizer

of a stochastic penalized contrast function imitating Lepski’s method among a random

collection of admissible values. We show that this adaptive procedure attains the lower

bound for the minimax risk up to a logarithmic factor over a wide range of classes of slope

functions and covariance operators. In particular, our theory covers point-wise estimation

as well as the estimation of local averages of the slope parameter.
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1 Introduction

The functional linear model with scalar response describes the relationship between a real

random variable Y and the variation of a functional regressor X. Usually, the random function

X is assumed to be square integrable or more generally to take its values in a separable Hilbert
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space H with the inner product 〈·, ·〉H and associated norm ‖·‖H. For convenient notations we

assume that the regressor X is centered in the sense that for all h ∈ H the real valued random

variable 〈X,h〉H has mean zero. The linear relationship between Y and X is expressed by the

equation

Y = 〈φ,X〉H + σε, σ > 0, (1.1)

with the unknown slope parameter φ ∈ H and a real-valued, centered and standardized error

term ε. The objective of this paper is the fully data-driven estimation of the value of a known

linear functional of the slope φ based on an independent and identically distributed (i.i.d.)

sample of (Y,X) of size n.

The estimation of the value of a linear functional offers a general framework for natu-

rally arising related estimation problems, such as estimating the value of φ - or of one of its

derivatives - at a given point or estimating the average of φ over a subinterval of its domain.

There is extensive literature available on the topic of non-parametric estimation of the

value of a linear functional from Gaussian white noise observations (in case of direct obser-

vations see Speckman [1979], Li [1982] or Ibragimov and Has’minskii [1984], while in case of

indirect observations we refer to Donoho and Low [1992], Donoho [1994] or Goldenshluger

and Pereverzev [2000] and references therein). In the situation of a functional linear model

as considered in (1.1), which does in general not lead to Gaussian white noise observations,

Johannes and Schenk [2010] have investigated the minimax optimal performance of a plug-in

estimator for the value of a linear functional ` evaluated at φ. For this purpose the slope φ is

replaced in `(φ) by a suitable estimator φ̂m∗n depending on a tuning parameter m∗n ∈ N. How-

ever their choice of the tuning parameter is not data-driven. In the present paper we develop

a data-driven selection procedure which features comparable minimax-optimal properties.

The non-parametric estimation of the slope function φ has been an issue of growing interest

in the recent literature and a variety of such estimators have been studied. For example, Bosq

[2000], Cardot et al. [2007] or Müller and Stadtmüller [2005] analyze a functional principal

components regression, while a penalized least squares approach combined with projection onto

some basis (such as splines) is examined in Ramsay and Dalzell [1991], Eilers and Marx [1996],

Cardot et al. [2003], Hall and Horowitz [2007] or Crambes et al. [2009]. Cardot and Johannes

[2010] investigate a linear Galerkin approach coming from the inverse problem community (c.f.

Efromovich and Koltchinskii [2001] and Hoffmann and Reiß [2008]). The resulting thresholded

projection estimator φ̂m∗n is used by Johannes and Schenk [2010] in their plug-in estimation

procedure ̂̀m∗n := `(φ̂m∗n) for the value `(φ) of a linear functional evaluated at φ.

It has been shown in Johannes and Schenk [2010] that the attainable rate of convergence of

the plug-in estimator is basically determined by the a priori conditions on the solution φ and

the covariance operator Γ associated with the regressor X (defined below). These conditions

are expressed in the form φ ∈ F and Γ ∈ G, for suitably chosen classes F ⊆ H and G; we

postpone their formal introduction along with their interpretation to Section 2. Moreover, the

accuracy of any estimator ˜̀ of the value `(φ) has been assessed by its maximal mean squared
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error with respect to these classes, that is

R`[˜̀;F ,G] := sup
φ∈F

sup
Γ∈G

E|˜̀− `(φ)|2.

The main purpose of Johannes and Schenk [2010] has been to derive a lower bound

R`∗[n−1;F ,G] 6 inf ˜̀R`[˜̀;F ,G],

where the infimum is taken over all estimators ˜̀, and to prove that the estimator ̂̀m∗n satisfies

R`[̂̀m∗n ;F ,G] 6 C · R`∗[n−1;F ,G], with 0 < C <∞,

for a variety of classes F and G. In other words it has been shown that R`∗[n−1;F ,G] is

the minimax-optimal rate attained by the estimator ̂̀m∗n . The optimal performance of the

estimator depends crucially on the choice m∗n of the tuning parameter, which in turn, relies

strongly on a priori knowledge of the sets F and G. However, this information is widely

inaccessible in practice.

The aim of the present paper consists in proposing a fully data-driven selection procedure

for the tuning parameter. Our selection method combines model selection (c.f. Barron et al.

[1999] and its detailed discussion in Massart [2007]) and Lepski’s method (c.f. Lepski [1990]

and its recent review in Mathé [2006]). It is inspired by the recent work of Goldenshluger

and Lepski [2011] who consider data-driven bandwidth selection in kernel density estimation.

We choose the appropriate tuning parameter m̂ as the minimizer of a stochastic penalized

contrast function imitating Lepski’s method among a random collection of admissible values.

Furthermore, we show that the maximal risk of the resulting estimator ̂̀m̂ satisfies

R`[̂̀m̂;F ,G] 6 C · R`∗[(1 + log n)n−1;F ,G] for 0 < C <∞,

for a variety of classes F and G. The upper bound in the last display features a logarithmic

factor when compared to the minimax rate of convergence R`∗[n−1;F ,G] which possibly results

in a deterioration of the rate. Therefore, the completely data-driven estimator is optimal or

nearly optimal in the minimax sense simultaneously over a variety of both solution sets F and

classes of operators G. We call such estimation procedures adaptive. The appearance of the

logarithmic factor within the rate is a known fact in the context of local estimation (c.f. Laurent

et al. [2008] who consider model selection given direct Gaussian observations). Brown and Low

[1996] show that it is unavoidable in the context of non-parametric Gaussian regression and,

hence it is widely considered as an acceptable price for adaptation. This factor is also present

in the recent work of Goldenshluger and Pereverzev [2000] where Lepski’s method is applied

in the presence of indirect Gaussian observations. In contrast to this situation the operator is

not known in advance in functional linear regression and hence a straightforward application

of their results is not obvious. We will show that our proposed data-driven estimation method

attains the minimax-rates up to a logarithmic factor for a variety of a classes of both slope

functions and covariance operators.
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The paper is organized as follows: in Section 2 we introduce the adaptive estimation

procedure and review the available minimax theory as presented in Johannes and Schenk

[2010]. In Section 3 we present the key arguments of the proof of an upper risk bound for the

adaptive estimator, while more technical aspects of the proof are deferred to the Appendix.

We discuss the examples of point-wise and local average estimation in Section 4.

2 Methodology and review

We suppose that the regressor X has a finite second moment, i.e., E‖X‖2H < ∞, and that

X is uncorrelated to the random error ε in the sense that E[ε〈X,h〉H] = 0 for all h ∈ H, as

usually assumed in this context, see for example Bosq [2000], Cardot et al. [2003] or Cardot

et al. [2007]. Multiplying both sides in (1.1) by 〈X,h〉H and taking the expectation leads to

the normal equation

〈g, h〉H := E[Y 〈X,h〉H] = E[〈φ,X〉H〈X,h〉H] =: 〈Γφ, h〉H, ∀h ∈ H, (2.1)

where g belongs to H and Γ denotes the covariance operator associated with the random

function X. In what follows we assume that there exists a unique solution φ ∈ H of equation

(2.1), i.e., that Γ is strictly positive and that its range contains g (for a detailed discussion we

refer to Cardot et al. [2003]). Obviously, these conditions are sufficient for the identification of

the value `(φ). Since the estimation of φ involves an inversion of the covariance operator Γ it is

called an inverse problem. Moreover, due to the finite second moment of the regressor X, the

associated covariance operator Γ is nuclear, i.e., its trace is finite. Therefore, the reconstruction

of φ leads to an ill-posed inverse problem (with the additional difficulty that Γ is unknown and

has to be estimated). In the following we assume that the joint distribution of the regressor and

error term is Gaussian, more precisely, we suppose that for any finite set {h1, . . . , hk−1} ⊂ H the

vector (〈X,h1〉H . . . , 〈X,hk−1〉H, ε) follows a k-dimensional multivariate normal distribution.

Remark 2.1. The assumption of Gaussianity is not essential for the proof of our main result.

This assumption on the distributions of the error and the regressor is only used to prove the

bounds given in Lemma C.2. Analogues of the results can be shown at the cost of longer proofs

under appropriately chosen moment conditions. �

2.1 Adaptive Estimation Procedure

Introduction of the estimator. In order to derive an estimator for the unknown slope

function φ we follow the presentation of Johannes and Schenk [2010] and base our reconstruc-

tion on the development of φ in an arbitrary orthonormal basis. Here and subsequently, we

fix a pre-specified orthonormal basis {ψj}∞j=1 of H which does in general not correspond to

the eigenfunctions of the operator Γ defined in (2.1). We require in the following that the

slope function φ belongs to a function class F containing {ψj}∞j=1 and, moreover that F is

included in the domain of the linear functional `. For technical reasons and without loss of
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generality we assume that `(ψ1) = 1 which can always be ensured by reordering and rescaling,

except for the trivial case ` ≡ 0. With respect to this basis, we consider for all h ∈ H the

development h =
∑∞

j=1[h]jψj where the sequence [h] := ([h]j)j>1 of generalized Fourier coef-

ficients [h]j := 〈h, ψj〉H is square-summable, i.e., ‖h‖2H =
∑∞

j=1[h]2j < ∞. Given a dimension

parameter m ∈ N we have the subspace Hm - spanned by the basis functions {ψj}mj=1 - at our

disposal and we call φm ∈ Hm a Galerkin solution of g = Γφ, if ‖g − Γφm‖H 6 ‖g − Γh‖H
for all h ∈ Hm. Since Γ is strictly positive it is easily seen that the Galerkin solution φm

of g = Γφ exists uniquely. Let us introduce for any function h the m-dimensional vector

of coefficients [h]m := ([h]j)16j6m and for the operator Γ the (m × m)-dimensional matrix

[Γ]m := (〈ψj ,Γψk〉H)16j,k6m. Then the Galerkin solution φm satisfies [Γ]m[φm]m = [g]m. Since

Γ is injective, the matrix [Γ]m is non-singular for all m > 1 and therefore the Galerkin solution

φm ∈ Hm is uniquely determined by the vector of coefficients [φm]m = [Γ]−1
m [g]m and [φm]j = 0

for j > m. In order to derive an estimator for the vector [φm]m, we replace the unknown

quantities [g]m and [Γ]m by their empirical counterparts and apply additional thresholding.

We observe that [Γ]m = E[X]m[X]tm and [g]m = EY [X]m, therefore, given an i.i.d. sample

{(Yi, Xi)}ni=1 of (Y,X), it is natural to consider the estimators [ĝ]m := 1
n

∑n
i=1 Yi[Xi]m and

[Γ̂]m := 1
n

∑n
i=1[Xi]m[Xi]

t
m. Let us denote by ‖[Γ̂]−1

m ‖s the spectral norm of [Γ̂]−1
m , i.e., its

largest eigenvalue, and define the estimator φ̂m ∈ Hm by means of the coefficients [φ̂m]j = 0

for j > m and

[φ̂m]m :=

{
[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖s 6 n,

0 otherwise.

Observe that `(φm) = (`(ψ1), . . . , `(ψm))[φm]m =: [`]tm[φm]m with the slight abuse of notations

[`]m := ([`]j)16j6m and generic elements [`]j := `(ψj). In Johannes and Schenk [2010] it has

been shown that the estimator ̂̀m := `(φ̂m) with optimally chosen dimension parameter m

can attain minimax-optimal rates of convergence. This choice involves certain characteristics

of the slope φ and the covariance operator Γ which are unavailable in practice. In the next

paragraph we introduce a fully data-driven selection method for the dimension parameter.

Introduction of the adaptive estimation procedure. Our selection method is inspired

by the recent work of Goldenshluger and Lepski [2011] and combines the techniques of model

selection and Lepski’s method. We determine the dimension parameter among a collection of

admissible values by minimizing a penalized contrast function. To this end, we define for all

n > 1 the value M `
n := max

{
1 6 m 6 bn1/4c : [`]tm[`]m 6 n

}
where bac denotes as usual the

integer part of a ∈ R and introduce the random integer

M̂n := min
{

2 6 m 6M `
n : ‖[Γ̂]−1

m ‖s([`]tm[`]m) > n(1 + log n)−1
}
− 1. (2.2)

Furthermore, we define a stochastic penalty sequence p̂ := (p̂m)
16m6M̂n

by

p̂m := 700

(
2

n

n∑
i=1

Y 2
i + 2[ĝ]tm[Γ̂]−1

m [ĝ]m

)
· max

16k6m
[`]tk[Γ̂]−1

k [`]k ·
(1 + log n)

n
.
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The random integer M̂n and the stochastic penalty p̂m are used to define a contrast by

κm := max
m6k6M̂n

{
|̂̀k − ̂̀m|2 − p̂k

}
.

For a subsetA ⊂ N and a sequence (am)m>1 with minimal value inA we set arg minm∈A{am} :=

min{m : am 6 am′ , ∀m′ ∈ A} and select the dimension parameter

m̂ := arg min
16m6M̂n

{κm + p̂m}. (2.3)

The estimator of `(φ) is now given by ̂̀m̂ and we will derive an upper bound for its risk below.

By construction the choice of the dimension parameter and hence the estimator ̂̀m̂ rely only

on the data and in particular not on the regularity assumptions on the slope and the operator

which we formalize in the next section.

2.2 Review of minimax theory

We express our a priori knowledge about the unknown slope parameter and covariance operator

in the form φ ∈ F and Γ ∈ G. The class F reflects information on the solution φ, e.g., its level

of smoothness, whereas the assumption Γ ∈ G typically results in conditions on the decay of the

eigenvalues of the operator Γ. The following construction of the classes F and G will be flexible

enough to characterize, in particular, differentiable or analytic slope functions and allows us

to discuss both a polynomial and exponential decay of the covariance operator’s eigenvalues.

Assumptions and notations. With respect to the basis {ψj}∞j=1 and given a strictly

positive sequence of weights (wj)j>1, or w for short, we define the weighted norm ‖·‖w by

‖h‖2w :=
∑∞

j=1wj [h]2j for h ∈ H. Throughout the rest of the paper let β be a non-decreasing

sequence of weights with β1 = 1 such that slope parameter φ belongs to the ellipsoid

Frβ :=
{
h ∈ H : ‖h‖2β 6 r

}
with radius r > 0.

In order to guarantee that Frβ is contained in the domain of the linear functional ` and

that `(h) =
∑

j>1[`]j [h]j for all h ∈ Frβ with [`]j = `(ψj), j > 1, it is sufficient that∑
j>1[`]2jβ

−1
j <∞. We may emphasize that we neither impose that the sequence [`] = ([`]j)j>1

tends to zero nor that it is square summable. However, if it is square summable then H is the

domain of `. Moreover, [`] coincides with the sequence of generalized Fourier coefficients of the

representer of ` given by Riesz’s theorem.

As usual in the context of ill-posed inverse problems, we link the mapping properties of

the covariance operator Γ and the regularity conditions on φ. To this end, we consider the

sequence (〈Γψj , ψj〉)j>1 =: ([Γ]jj)j>1. Since Γ is nuclear, this sequence is summable and hence

vanishes as j tends to infinity. In what follows we impose restrictions on the decay of this

sequence. Let G denote the set of all strictly positive nuclear operators defined on H. We

6



suppose that there exists a strictly positive, summable sequence of weights γ with γ1 = 1 such

that Γ belongs to the subset

Gdγ :=
{
T ∈ G : d−2‖h‖2γ2 6 ‖Th‖

2
H 6 d

2 ‖h‖2γ2 , ∀h ∈ H
}

with d > 1

where we understand here and subsequently arithmetic operations on a sequence of real num-

bers component-wise, e.g., we write γ2 for (γ2
j )j>1. Notice that for Γ ∈ Gdγ it follows that

d−1γj 6 [Γ]jj 6 dγj . Moreover, if λ denotes its sequence of eigenvalues, then d−1γj 6 λj 6 dγj
which justifies the condition

∑∞
j=1 γj <∞. Let us summarize the previous conditions:

Assumption 2.1. The sequences 1/β and γ are monotonically decreasing with limit zero and

β1 = γ1 = 1 such that
∑

j>1[`]2jβ
−1
j <∞ and

∑
j>1 γj <∞.

Illustration. We illustrate the last assumption for typical choices of the sequences β, γ and

[`]. Consider [`]2j = |j|−2s and:

(pp) βj = |j|2p, γj = |j|−2a with p > 0, a > 1/2 and s > 1/2− p;

(pe) βj = |j|2p, γj = exp(−|j|2a + 1) with p > 0, a > 0 and s > 1/2− p;

(ep) βj = exp(|j|2p − 1), γj = |j|−2a with p > 0, a > 1/2 and s ∈ R;

then Assumption 2.1 holds true in all cases.

Minimax theory reviewed. Johannes and Schenk [2010] have derived a lower bound for

the minimax risk inf ˜̀R`[˜̀;Frβ,Gdγ ] and have shown that the proposed estimator ̂̀m can attain

this lower bound up to constant provided that the dimension parameter is chosen appropriately.

In order to formulate the minimax rate below let us define for m > 1 and x ∈ (0, 1]

R`m[x;Frβ,Gdγ ] := max

∑
j>m

[`]2j
βj
,max

(γm
βm

, x
) m∑
j=1

[`]2j
γj


and R`∗[x;Frβ,Gdγ ] := min

m>1
R`m[x;Frβ,Gdγ ].

With this notation the lower bound, when considering an i.i.d. sample of size n, is basically a

multiple ofR`∗[n−1;Frβ,Gdγ ]. To be more precise, if we definem∗n := arg minm>1R`m[n−1;Frβ,Gdγ ]

and if Assumption 2.1 and infn>1 min
( βm∗n
nγm∗n

,
nγm∗n
βm∗n

)
> 0 are satisfied then there exists a constant

C > 0 depending only on the classes and σ2 such that we have for all n > 1

inf˜̀ R`[˜̀;Frβ,Gdγ ] > C · R`∗[n−1;Frβ,Gdγ ].

On the other hand it is shown in Johannes and Schenk [2010] that R`∗[n−1;Frβ,Gdγ ] provides

up to a constant an upper bound for the maximal risk of the proposed estimator ̂̀m∗n . More

precisely, if we assume in addition supm>1m
3γmβ

−1
m < ∞ then there exists a constant C > 0

depending only on the classes and σ2 such that we have for all n > 1

R`[̂̀m∗n ;Frβ,Gdγ ] 6 C · R`∗[n−1;Frβ,Gdγ ].

Consequently the rate R`∗[n−1;Frβ,Gdγ ] is optimal and ̂̀m∗ is minimax-optimal.
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Illustration continued. For the configurations defined below Assumption 2.1 the estimator̂̀
m∗n with dimension parameterm∗n as given below is minimax optimal under the following condi-

tions. The minimax optimal rate of convergence is determined by the orders of R`∗[n−1;Frβ,Gdγ ].

Here and subsequently, we use for two strictly positive sequences (xn)n>1, (yn)n>1 the notation

xn � yn, if (xn/yn)n>1 is bounded away both from zero and infinity.

(pp) If p > 0, a > 1/2 and p+ a > 3/2 then m∗n � n1/(2p+2a) and if s > 1/2− p, then

R`[̂̀m∗n ;Frβ,Gdγ ] �


n−(2p+2s−1)/(2p+2a), if s− a < 1/2

n−1 log n, if s− a = 1/2

n−1, if s− a > 1/2.

(pe) If p > 0 and a > 0, then m∗n � log(n(log n)−p/a)1/(2a) and if s > 1/2 − p, then

R`[̂̀m∗n ;Frβ,Gdγ ] � (log n)−(2p+2s−1)/(2a).

(ep) If p > 0, a > 1/2 and s ∈ R then m∗n � log(n(log n)−a/p)1/(2p) and

R`[̂̀m∗n ;Frβ,Gdγ ] �


n−1(log n)(2a−2s+1)/(2p), if s− a < 1/2

n−1 log(log n), if s− a = 1/2

n−1, if s− a > 1/2.

3 Upper risk bound for the adaptive estimator

The fully adaptive estimator ̂̀m̂ of `(φ) relies on the choice of a random dimension parameter

m̂ which does not involve any knowledge about the classes Frβ and Gdγ . The main result of this

paper consists in an upper bound for the maximal risk R`[̂̀m̂;Frβ,Gdγ ] given by the following

theorem. We present the main arguments of its proof in this section whereas the more technical

aspects are deferred to the appendix. We close this section by illustrating and discussing the

result.

Theorem 3.1. Assume an i.i.d. sample of (Y,X) of size n obeying (1.1) and let the joint

distribution of the random function X and the error ε be normal. Consider sequences β and γ

satisfying Assumption 2.1. Define m�n := arg minm>1R`m[(1 + log n)n−1;Frβ,Gdγ ] and suppose

that γ−1
m�n

[`]tm�n [`]m�n = o(n(1 + log n)−1) as n→∞ then there exists a constant C > 0 depending

on the classes Frβ and Gdγ , the linear functional `, and σ2 only such that

R`[̂̀m̂;Frβ,Gdγ ] 6 C · R`∗[(1 + log n)n−1;Frβ,Gdγ ], for all n > 1.

Remark 3.1. The last assertion states that the data-driven estimator can attain the minimax-

rates up to a logarithmic factor for a variety of classes Frβ and Gdγ . In this sense the estimator

adapts to both the slope function and the covariance operator. This result is derived under

the additional condition, γ−1
m�n

[`]tm�n [`]m�n = o(n(1 + log n)−1) as n→∞, which naturally holds

true in the illustrations. �
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We begin our reasoning by giving a preparatory lemma which constitutes a central step in

the following arguments.

Lemma 3.2. Let (φk)k>1 be an arbitrary sequence in H and b := (bm)m>1 the sequence of

approximation errors bm = supm6k|`(φk − φ)| associated with `(φ). Consider an arbitrary

sequence of penalties p := (pm)m>1, an upper bound M ∈ N, and the sequence κ = (κm)m>1

of contrasts given by κm := maxm6k6M

{
|̂̀k − ̂̀m|2 − pk

}
. If the subsequence (p1, . . . ,pM ) is

non-decreasing, then we have for the selected model m̃ := arg min16m6M {κm + pm} and for

all 1 6 m 6M that

|̂̀m̃ − `(φ)|2 6 7 pm +78 b
2
m +42 max

m6k6M

(
|̂̀k − `(φk)|2 − 1

6
pk

)
+

(3.1)

where (a)+ = max(a, 0).

Proof of Lemma 3.2. Since (p1, . . . ,pM ) is non-decreasing it is easily verified that

κm 6 6 max
m6k6M

(
|̂̀k − `(φk)|2 − 1

6
pk

)
+

+ 12 b
2
m, ∀ 1 6 m 6M,

where we use that 2 bm > maxm6k6M |`(φk − φm)|. The last estimate implies the inequality

|̂̀m − `(φ)|2 6 1

3
pm +2 b

2
m +2 max

m6k6M

(
|̂̀k − `(φk)|2 − 1

6
pk

)
+

, ∀ 1 6 m 6M. (3.2)

On the other hand, taking the definition of m̃ into account, it is straightforward to see that

|̂̀m̃ − `(φ)|2 6 3
{
|̂̀m̃ − ̂̀min(m,m̃))|2 + |̂̀min(m,m̃) − ̂̀m|2 + |̂̀m − `(φ)|2

}
6 3
{
κm + pm̃ +κm̃ + pm +|̂̀m − `(φ)|2

}
6 6{κm + pm}+ 3|̂̀m − `(φ)|2.

From the last estimates and (3.2) we obtain the assertion (3.1), which completes the proof.

The proof of Theorem 3.1 requires in addition to the previous lemma two technical propo-

sitions which we state now. For n > 1 and a positive sequence a := (am)m>1 let us introduce

M `
n := max{1 6 m 6 bn1/4c : [`]tm[`]m 6 n} and

Mn(a) := min
{

2 6 m 6M `
n : am · [`]tm[`]m > n(1 + log n)−1

}
− 1

where we set Mn(a) := M `
n if the set is empty. Observe that M̂n given in (2.2) satisfies

M̂n = Mn(a) with a = (‖[Γ̂]−1
m ‖s)m>1. Consider for m > 1

σ2
m := 2EY 2 + 2[g]tm[Γ]−1

m [g]m, Vm := max
16k6m

[`]tk[Γ]−1
k [`]k

and define the penalty term

pm := 100σ2
m Vm (1 + log n)n−1,

which are obviously the theoretical counterparts of the random objects used in the definition

of m̂. The proof of the next assertion is deferred to the appendix.
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Proposition 3.3. Let the conditions of Theorem 3.1 hold true and denote by φm ∈ Hm the

Galerkin solution of g = Γφ. Define M+
n := Mn(a) with a = ([4dγj ]

−1)j>1 then there is a

constant C(d) > 0 depending on d only such that for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

E
{

max
16m6M+

n

(
|̂̀m − `(φm)|2 −

pm
6

)
+

}

6
C(d)

n
(σ2 + r) max

(
∑
j>1

γj)
2,
∑
j>1

[`]2j
βj

.
Additionally, let us introduce for n > 1 the random integer M−n := Mn

(
a
)

with the

sequence a = (16d3γ−1
j )j>1. In the following we decompose the risk with respect to an event

En, and respectively its complement Ecn, on which p̂ and M̂n are comparable to their theoretical

counterparts. To be more precise, we define the event

En :=
{
∀ 1 6 m 6M+

n : pm 6 p̂m 6 24 pm
}
∩
{
M−n 6 M̂n 6M

+
n

}
and consider the elementary identity

sup
φ∈Frβ

sup
Γ∈Gdγ

E|̂̀m̂ − `(φ)|2 = sup
φ∈Frβ

sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1En

)
+ sup

φ∈Frβ
sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1Ecn

)
. (3.3)

The next proposition states that the second right hand side term is bounded up to a constant

by n−1 and is hence negligible. The proof is deferred to the appendix.

Proposition 3.4. Let the conditions of Theorem 3.1 hold true. If we consider the fully data-

driven choice m̂ given in (2.3) then there exists a constant C(d) > 0 depending on d only such

that for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1Ecn

)
6
C(d)

n
(σ2 + r) max

∑
j>1

γj ,
∑
j>1

[`]2j
βj

.
We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. In the following we will denote by C(d) > 0 a constant depend-

ing on d only, which may change from line to line. From the elementary identity (3.3) and

Proposition 3.4 we derive for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

E|̂̀m̂ − `(φ)|2 6 sup
φ∈Frβ

sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1En

)
+
C(d)

n
(σ2 + r) max

∑
j>1

γj ,
∑
j>1

[`]2j
βj

. (3.4)
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We observe that the random subsequence (σ̂2
1, . . . , σ̂

2
M̂n

), and hence (p̂1, . . . , p̂M̂n
), are by con-

struction non-decreasing. Furthermore, we observe that for all 1 6 m 6 k 6 M̂n the identity

〈Γ̂(φ̂k − φ̂m), (φ̂k − φ̂m)〉H = [ĝ]tk[Γ̂]−1
k [ĝ]k − [ĝ]tm[Γ̂]−1

m [ĝ]m holds true. Therefore, it follows

by using that Γ̂ is positive definite that [ĝ]tm[Γ̂]−1
m [ĝ]m 6 [ĝ]tk[Γ̂]−1

k [ĝ]k, and hence σ̂2
m 6 σ̂2

k.

Consequently, Lemma 3.2 is applicable for all 1 6 m 6 M̂n and we obtain

|̂̀m̂ − `(φ)|2 6 7 p̂m +78 b
2
m +42 max

m6k6M̂n

(
|̂̀k − `(φk)|2 − 1

6
p̂k

)
+

.

On the event En we deduce from the last bound that for all 1 6 m 6M−n

|̂̀m̂ − `(φ)|2 1En 6 504 pm +78 b
2
m +42 max

16m6M+
n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

.

Taking Lemma B.2 (v) in the appendix into account it follows for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1En

)
6 C(d)(σ2 + r) min

16m6M−n
R`m
[
(1 + log n)n−1;Frβ,Gdγ

]
+ sup
φ∈Frβ

sup
Γ∈Gdγ

E
{

max
16m6M+

n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

}
.

Moreover, Proposition 3.3 and (3.4) imply for all n > 1 that

sup
φ∈Frβ

sup
Γ∈Gdγ

E|̂̀m̂ − `(φ)|2 6 C(d)(σ2 + r) max

∑
j>1

γj ,
∑
j>1

[`]2j
βj


· min

16m6M−n
R`m
[
(1 + log n)n−1;Frβ,Gdγ

]
(3.5)

where we use that R`m
[
(1 + log n)n−1;Frβ,Gdγ

]
> n−1 for all m > 1. Under the additional

condition γ−1
m�n

[`]tm�n [`]m�n = o(n(1 + log n)−1) it is easily verified that there exists an integer no

only depending on the sequences β, γ and [`] such that for all n > no we have m�n 6M
−
n and

min
16m6M−n

R`m[(1 + log n)n−1;Frβ,Gdγ ] = R`∗[(1 + log n)n−1;Frβ,Gdγ ].

However, in case n < no we employ that

R`1[(1 + log n)n−1;Frβ,Gdγ ] 6 max(1, (1 + log n)n−1)
∑
j>1

[`]2j
βj
6
∑
j>1

[`]2j
βj

and consequently we derive the bound

min
16m6M−n

R`m[(1 + log n)n−1;Frβ,Gdγ ] 6 n−1no
∑
j>1

[`]2j
βj
, for all n < no.

The combination of both cases yields for all n > 1

min
16m6M−n

R`m[(1 + log n)n−1;Frβ,Gdγ ] 6 no
∑
j>1

[`]2j
βj
R`∗[(1 + log n)n−1;Frβ,Gdγ ].

As no depends only on the sequences β, γ and [`], we derive the result of the theorem from

the previous display together with (3.5), which completes the proof.
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Remark 3.2. Recall that the estimator ̂̀m∗n with optimally chosen dimension parameter m∗n
is minimax-optimal, i.e, its maximal risk R`[̂̀m∗n ;Frβ,Gdγ ] can be bounded up to a constant by

the lower bound R`∗[n−1;Frβ,Gdγ ]. However, due to Theorem 3.1 the maximal risk of the fully

adaptive estimator is bounded by a multiple of R`∗[(1 + log n)n−1;Frβ,Gdγ ]. The appearance of

the logarithmic factor within the rate is a known fact in the context of local estimation. It

is widely considered as an acceptable price for adaptation (in the context of non-parametric

Gaussian regression it is unavoidable as shown in Brown and Low [1996]). �

Illustration continued. In the configurations defined below Assumption 2.1 the additional

condition γ−1
m�n

[`]tm�n [`]m�n = o(n(1 + log n)−1) as n→∞ is easily verified. Therefore, the maxi-

mal risk of the fully adaptive estimator is bounded by a multiple of R`∗[(1 + log n)n−1;Frβ,Gdγ ]

due to Theorem 3.1. In the next assertion we state its order in the considered cases and we

omit the straightforward calculations.

Proposition 3.5. Assume an i.i.d. sample of (Y,X) of size n obeying (1.1) and let the joint

distribution of the random function X and the error ε be normal. The obtainable rate of

convergence is determined by the orders of R`∗[(1 + log n)n−1;Frβ,Gdγ ] as given below.

(pp) If p > 0, a > 1/2, p+ a > 3/2 and s > 1/2− p, then

R`∗[(1 + log n)n−1;Frβ,Gdγ ] �


(
n−1 log n

)(2p+2s−1)/(2p+2a)
, if s− a < 1/2

n−1(log n)2, if s− a = 1/2

n−1 log n, if s− a > 1/2.

(pe) If p > 0, a > 0, and if s > 1/2− p, then

R`∗[(1 + log n)n−1;Frβ,Gdγ ] � (log n)−(2p+2s−1)/(2a).

(ep) If p > 0, a > 1/2 and s ∈ R then

R`∗[(1 + log n)n−1;Frβ,Gdγ ] �


n−1(log n)(2p+2a−2s+1)/(2p), if s− a < 1/2

n−1(log n)(log logn), if s− a = 1/2

n−1 log n, if s− a > 1/2.

We shall briefly compare these rates with the corresponding minimax optimal rates derived

in Section 2.2 above. Surprisingly they coincide in case (pe), and hence the fully data-driven

estimator is minimax-optimal. The rates given in case (pp) coincides with the ones that have

been obtained by Goldenshluger and Pereverzev [2000] for an a priori known operator. In

comparison to the minimax optimal rates the cases (pp) and (ep) feature a deterioration of

logarithmic order as expected (compare Remark 3.2).
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4 Examples: point-wise and local average estimation

Consider H = L2[0, 1] with its usual norm and inner product and the trigonometric basis

ψ1 :≡ 1, ψ2j(s) :=
√

2 cos(2πjs), ψ2j+1(s) :=
√

2 sin(2πjs), s ∈ [0, 1], j ∈ N.

Recall the typical choices of the sequences β and γ as introduced in the illustrations above.

If βj � |j|2p for a positive integer p, see cases (pp) and (pe), then the subset Fβ := {h ∈
H : ‖h‖2β <∞} coincides with the Sobolev space of p-times differential periodic functions (c.f.

Neubauer [1988a,b]). In the case (ep) it is well-known that for p > 1 every element of Fβ is

an analytic function (c.f. Kawata [1972]). Furthermore we consider a polynomial decay of γ

with a > 1/2 in the cases (pp) and (ep). Easy calculus shows that the covariance operator

Γ ∈ Gdγ acts for integer a like integrating (2a)-times and is hence called finitely smoothing (c.f.

Natterer [1984]). In the case (pe) we assume an exponential decay of γ and it is easily seen that

the range of Γ ∈ Gdγ is a subset of C∞[0, 1], therefore the operator is called infinitely smoothing

(c.f. Mair [1994]).

Point-wise estimation. By evaluation in a given point t0 ∈ [0, 1] we mean the linear func-

tional `t0 mapping h to h(t0) := `t0(h) =
∑∞

j=1[h]jψj(t0). In the following we shall assume

that the point evaluation is well-defined on the set of slope parameters Fβ which is obviously

implied by
∑∞

j=1[`t0 ]2jβ
−1
j < ∞. Consequently, the condition

∑
j>1 β

−1
j < ∞ is sufficient to

guarantee that the point evaluation is well-defined on Fβ. Obviously, in case (ep) or in other

words for exponentially increasing β, this additional condition is automatically satisfied. How-

ever, a polynomial increase, as in the cases (pp) and (pe), requires the assumption p > 1/2.

Roughly speaking, this means that the slope parameter has at least to be continuous. In order

to estimate the value φ(t0) we consider the plug-in estimator

̂̀m
t0 =

{
[`t0 ]tm[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖s 6 n,

0, otherwise,

with [`t0 ]m = (ψ1(t0), . . . , ψm(t0))t. Moreover, we observe that ̂̀mt0 = `t0(φ̂m) = φ̂m(t0).

Minimax optimal point-wise estimation. The estimator’s maximal mean squared error over the

classes Frβ and Gdγ is uniformly bounded for all t0 ∈ [0, 1] up to a constant by R`t0∗ [n−1;Frβ,Gdγ ],

i.e., supφ∈Frβ
supΓ∈Gdγ E|φ̂m∗n(t0) − φ(t0)|2 6 CR`t0∗ [n−1;Frβ,Gdγ ] for some C > 0, which is the

minimax-optimal rate of convergence (c.f. Johannes and Schenk [2010]).

Illustration continued. We derive with [`t0 ]2j � j−2s and s = 0 in the considered cases :

(pp) If p > 1/2, a > 1/2 and p+ a > 3/2, then R`t0∗ [n−1;Frβ,Gdγ ] � n−(2p−1)/(2p+2a).

(pe) If p > 1/2 and a > 0, then R`t0∗ [n−1;Frβ,Gdγ ] � (log n)−(2p−1)/2a.

(ep) If p > 0 and a > 1/2, then R`t0∗ [n−1;Frβ,Gdγ ] � n−1(log n)(2a+1)/2p.
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Adaptive point-wise estimation. We select the dimension parameter m̂ by minimizing the

penalized contrast function over the collection of admissible values. The obtainable rate for

the fully data-driven estimator φ̂m̂(t0) in the three considered cases is given as follows:

(pp) If p > 1/2, a > 1/2 and p+a > 3/2, thenR`t0∗ [(1+log n)n−1;Frβ,Gdγ ] � (n−1 log n)(2p−1)/(2p+2a).

(pe) If p > 1/2 and a > 0, then R`t0∗ [(1 + log n)n−1;Frβ,Gdγ ] � (log n)−(2p−1)/(2a).

(ep) If p > 0 and a > 1/2, then R`t0∗ [(1 + log n)n−1;Frβ,Gdγ ] � n−1(log n)(2p+2a+1)/(2p).

The proposed fully data-driven point wise estimator is minimax optimal in case (pe) which is

easily seen by comparing the rates of the adaptive estimator with the corresponding minimax

rate. In the other cases, the rates deviate only by logarithmic factor, as expected.

Point-wise estimation of derivatives. It is interesting to note that by slightly adapting

the previously presented procedure we are able to estimate the value of the q-th derivative of

φ at t0. Given the exponential basis, which is linked to the trigonometric basis for k ∈ Z and

t ∈ [0, 1] by the relation exp(2iπkt) = 21/2(ψ2k(t) + iψ2k+1(t)) with i2 = 1. We recall that for

0 6 q < p the q-th derivative φ(q) of φ in a weak sense satisfies

φ(q)(t0) =
∑
k∈Z

(2iπk)q exp(2iπkt0)
(∫ 1

0
φ(u) exp(2iπku)du

)
.

Given a dimension m > 1, we denote now by [Γ̂]m the (2m+ 1)× (2m+ 1) matrix with generic

elements 〈ψj , Γ̂ψk〉H, −m 6 j, k 6 m and by [ĝ]m the (2m+ 1) vector with elements 〈ĝ, ψj〉H,

−m 6 j 6 m. Furthermore, we define for integer q the (2m + 1) vector [`
(q)
t0

]m with elements

[`
(q)
t0

]j := (2iπj)q exp(2iπjt0), −m 6 j 6 m. In the following we shall assume that the point

evaluation of the q-th derivative is well-defined on the set of slope parameters Fβ which is

implied by
∑

j>1(j2qβ−1
j ) < ∞, since |[`(q)t0 ]j |2 � j2q. Obviously, this additional condition is

automatically satisfied in case (ep) and requires the assumption q < p− 1/2 in the cases (pp)

and (pe). We consider the estimator of φ(q)(t0) = `
(q)
t0

(φ) given by

φ̂(q)
m (t0) =

[`
(q)
t0

]tm[Γ̂]−1
m [ĝ]m if [Γ̂]m is non-singular and ‖[Γ̂]−1

m ‖s 6 n,

0, otherwise.

Minimax optimal point-wise estimation of derivatives. The estimator φ̂
(q)
m∗n

(t0) with appro-

priately chosen dimension is minimax optimal, i.e., supφ∈Frβ
supΓ∈Gdγ E|φ̂

(q)
m∗n

(t0) − φ(q)(t0)|2 6

CR
`
(q)
t0
∗ [n−1;Frβ,Gdγ ] for some C > 0, where R

`
(q)
t0
∗ [n−1;Frβ,Gdγ ] is the minimax-optimal rate of

convergence (c.f. Johannes and Schenk [2010]).

Illustration continued. In the considered cases we derive with s = −q

(pp) If p > 1/2, a > 1/2 and p+ a > 3/2, then R
`
(q)
t0
∗ [n−1;Frβ,Gdγ ] � n−(2p−2q−1)/(2p+2a).
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(pe) If p > 1/2 and a > 0, then R
`
(q)
t0
∗ [n−1;Frβ,Gdγ ] � (log n)−(2p−2q−1)/(2a).

(ep) If p > 0 and a > 1/2, then R
`
(q)
t0
∗ [n−1;Frβ,Gdγ ] � n−1(log n)(2a+2q+1)/(2p).

Adaptive point-wise estimation of derivatives. In the three considered cases the obtainable rate

of the fully data-driven estimator φ̂
(q)
m̂ (t0) is given as follows:

(pp) If p > 1/2, a > 1/2 and p+ a > 3/2, then

R
`
(q)
t0
∗ [(1 + log n)n−1;Frβ,Gdγ ] � (n−1 log n)(2p−2q−1)/(2p+2a).

(pe) If p > 1/2 and a > 0, then

R
`
(q)
t0
∗ [(1 + log n)n−1;Frβ,Gdγ ] � (log n)−(2p−2q−1)/2a.

(ep) If p > 0 and a > 1/2, then

R
`
(q)
t0
∗ [(1 + log n)n−1;Frβ,Gdγ ] � n−1(log n)(2p+2a+2q+1)/2p.

Also in the situation of adaptively estimating the (q)-th derivative in a given point the obtained

rates deteriorate by a logarithmic factor in the cases (pp) and (pe) only.

Local average estimation. Next we are interested in the average value of φ on the interval

[0, b] for b ∈ (0, 1]. If we denote the linear functional mapping h to b−1
∫ b

0 h(t)dt by `b, then it

is easily seen that [`b]1 = 1, [`b]2j = (
√

2πjb)−1 sin(2πjb), [`b]2j+1 = (
√

2πjb)−1 cos(2πjb) for

j > 1. In this situation the plug-in estimator ̂̀bm = b−1
∫ b

0 φ̂m(t)dt is written as

̂̀b
m =

{
[`b]tm[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖s 6 n,

0, otherwise.

Minimax optimal estimation of local averages. The estimator ̂̀bm∗n attains the minimax optimal

rate, i.e., supφ∈Frβ
supΓ∈Gdγ E|

∫ b
0 φ̂m∗n(t)dt−

∫ b
0 φ(t)dt|2 6 CR`b∗ [n−1;Frβ,Gdγ ] for C > 0.

Illustration continued. In the three cases the order of R`b∗ [n−1;Frβ,Gdγ ] is given as follows:

(pp) If p > 0, a > 1/2 and p+ a > 3/2, then R`b∗ [n−1;Frβ,Gdγ ] � n−(2p+1)/(2p+2a).

(pe) If p > 0 and a > 0, then R`b∗ [n−1;Frβ,Gdγ ] � (log n)−(2p+1)/2a.

(ep) If p > 0 and a > 1/2, then R`b∗ [n−1;Frβ,Gdγ ] � n−1(log n)(2a−1)/2p.

Adaptive estimation of local averages. In the three considered cases the obtainable rate of the

adaptive estimator ̂̀bm̂ is given below:

(pp) If p > 0, a > 1/2 and p+a > 3/2, thenR`b∗ [(1+log n)n−1;Frβ,Gdγ ] � (n−1 log n)(2p+1)/(2p+2a).

(pe) If p > 0 and a > 0, then R`b∗ [(1 + log n)n−1;Frβ,Gdγ ] � (log n)−(2p+1)/2a.

(ep) If p > 0 and a > 1/2, then R`b∗ [(1 + log n)n−1;Frβ,Gdγ ] � n−1(log n)(2p+2a−1)/2p.

In this setting again, we notice a deterioration of logarithmic order in the cases (pp) and (pe)

only.
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Appendix

This section gathers preliminary technical results and the proofs of Proposition 3.3 and 3.4.

A Notations

We begin by defining and recalling the notations which are used in the proofs. Given an integer

m > 1, Hm denotes the subspace of H spanned by the functions {ψ1, . . . , ψm}. Πm and Π⊥m
denote the orthogonal projections on Hm and its orthogonal complement H⊥m respectively. If

K is an operator mapping H into itself and we restrict ΠmKΠm to an operator from Hm into

itself, then it can be represented by the matrix [K]m. Furthermore, [∇v]m and [I]m denote

the m-dimensional diagonal matrix with diagonal entries (vj)16j6m and the identity matrix

respectively. With a slight abuse of notations ‖v‖ denotes the euclidean norm of the vector v.

In particular, for all f ∈ Hm we have ‖f‖2v = [f ]tm[∇v]m[f ]m = ‖[∇v]1/2m [f ]m‖2. Moreover, we

use the notations

V̂m = max
16k6m

[`]tk[Γ̂]−1
k [`]k, Vm = max

16k6m
[`]tk[Γ]−1

k [`]k, V
γ
m = [`]tm[∇γ ]−1

m [`]m.

Recall that [Γ̂]m = 1
n

∑n
i=1[Xi]m[Xi]

t
m and [ĝ]m = 1

n

∑n
i=1 Yi[Xi]m where [Γ]m = E[X]m[X]tm

and [g]m = EY [X]m. Given a Galerkin solution φm ∈ Hm, let Um := Y −〈φm, X〉H = σε+〈φ−
φm, X〉H. We introduce ρ2

m := EU2
m = σ2 +〈Γ(φ−φm), (φ−φm)〉H, σ2

Y := EY 2 = σ2 +〈Γφ, φ〉H
and σ2

m = 2
(
σ2
Y + [g]tm[Γ]−1

m [g]m
)

where we use that ε and X are uncorrelated. With these

notations we have

pm = 100σ2
mVm(1 + log n)n−1, p̂m = 700σ̂2

mV̂m(1 + log n)n−1.

Let us define the random matrix [Ξ]m and random vector [W ]m, respectively, by

[Ξ]m := [Γ]−1/2
m [Γ̂]m[Γ]−1/2

m − [I]m, and [W ]m := [ĝ]m − [Γ̂]m[φm]m,

where E[Ξ]m = 0, because E[Γ̂]m = [Γ]m, and E[W ]m = [Γ(φ − φm)]m = 0. Furthermore, we

introduce σ̂2
Y := n−1

∑n
i=1 Y

2
i and the events

Ωm,n := {‖[Γ̂]−1
m ‖s 6 n}, fm,n := {8

√
m‖[Ξ]m‖s 6 1},

An := {1/2 6 σ̂2
Y /σ

2
Y 6 3/2}, Bn := {‖[Ξ]k‖s 6 1/8,∀1 6 k 6M `

n},

Cn := {[W ]tk[Γ]−1
k [W ]k 6

1

8
([g]tk[Γ]−1

k [g]k + σ2
Y ), ∀1 6 k 6M `

n}, (A.1)

along with their respective complements Ωc
m,n, fcm,n, Acn, Bcn, and Ccn. Here and subsequently,

we will denote by C a universal numerical constant and by C(·) a constant depending only on

the arguments. In both cases, the values of the constants may change with every appearance.
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B Preliminary results

The proof of the next lemma can be found in Johannes and Schenk [2010]. It relies on the

properties of the sequences β, γ and [`] given in Assumption 2.1.

Lemma B.1. Let T belong to Gdγ where the sequence γ satisfies Assumption 2.1, then we have

sup
m∈N

{
γm‖[T]−1

m ‖
}
6 4d3, (B.1)

sup
m∈N
‖[∇γ ]1/2m [T]−1

m [∇γ ]1/2m ‖ 6 4d3, (B.2)

sup
m∈N
‖[∇γ ]−1/2

m [T]m[∇γ ]−1/2
m ‖ 6 d. (B.3)

Consider in addition φ ∈ Frβ with sequence β satisfying Assumption 2.1. If φm denotes a

Galerkin solution of g = Tφ then for any strictly positive sequence w := (wj)j>1 such that w/β

is non-increasing we obtain for all m ∈ N

‖φ− φm‖2w 6 34 d8 r
wm
βm

max

(
1,
γ2
m

wm
max

16j6m

{
wj
γ2
j

})
, (B.4)

‖φm‖2β 6 34 d8 r, ‖T1/2(φ− φm)‖2H 6 34 d9 r γmβ
−1
m . (B.5)

Furthermore, under Assumption 2.1 we have

|`(φ− φm)|2 6 2 r

{∑
j>m

[`]2j
βj

+ 2(1 + d4)
γm
βm

m∑
j=1

[`]2j
γj

}
. (B.6)

Lemma B.2. Let Assumption 2.1 be satisfied and define D := (4d3). For Γ ∈ Gdγ we have

(i) d−1 6 Vm/V
γ
m 6 D, d−1 6 γm‖[Γ]−1

m ‖s 6 D and d−1 6 γm max16k6m‖[Γ]−1
k ‖s 6 D for

all m > 1,

(ii) V γ

M+
n
6 n4D(1 + log n)−1 and hence VM+

n
6 n4D2(1 + log n)−1 for all n > 1,

(iii) 2 max16m6M+
n
‖[Γ]−1

m ‖ 6 n if n > 2D and ‖[`]M+
n
‖2(1 + log n) > 8D2.

If φ belongs in addition to Frβ then it holds for all m > 1

(iv) ρ2
m 6 σ

2
m 6 2(σ2 + 35d9r) and

(v) supφ∈Frβ
supΓ∈Gdγ {pm + bm} 6 202D4 (σ2 + r)R`m((1 + log n)n−1;Frβ,Gdγ).

Proof of Lemma B.2. Due to (B.2) - (B.3) in Lemma B.1, we have Vm 6 4d3[`]tm[∇γ ]−1
m [`]m

= DV γ
m and V γ

m 6 d[`]tm[Γ]−1
m [`]m 6 dVm. Moreover, from (B.1) and (B.2) it follows that

‖[Γ]−1
m ‖s 6 4d3γ−1

m and γ−1
m 6 d‖[Γ]−1

m ‖s. Thus, for all m > 1 we have D > ‖[Γ]−1
m ‖sγm > d−1.

Hence, the monotonicity of γ implies d−1 6 γM max16m6M‖[Γ]−1
m ‖s 6 D. From these esti-

mates we obtain (i).

Proof of (ii). Observe that V γ

M+
n
6 ‖[`]M+

n
‖2γ−1

M+
n

. In case M+
n = 1 the assertion is triv-

ial, since [`]21 = γ1 due to Assumption 2.1. Thus, consider M `
n > M+

n > 1, which implies

17



min16j6M+
n
{γj‖[`]M+

n
‖−2} > (1 + log n)/(4Dn), and hence V γ

M+
n
6 4Dn(1 + log n)−1. More-

over, from (i) follows VM+
n
6 DV γ

M+
n
6 4D2n(1 + log n)−1, which proves (ii).

Proof of (iii). By employing that Dγ−1

M+
n
> max16m6M+

n
‖[Γ]−1

m ‖, the assertion (iii) follows in

case M+
n = 1 from γ1 = 1, while in case M+

n > 1, we use ‖[`]M+
n
‖2/γM+

n
6 4Dn/(1 + log n).

Proof of (iv). Since ε and X are centered it follows from [φm]m = [Γ]−1
m [g]m that ρ2

m 6

2
(
EY 2 + E|〈φm, X〉H|2

)
= 2

(
σ2
Y + [g]tm[Γ]−1

m [g]m
)

= σ2
m. Moreover, by employing successively

the inequality of Heinz [1951], i.e. ‖Γ1/2φ‖2 6 d‖φ‖2γ , and Assumption 2.1, i.e., γ and β−1 are

non-increasing, the identity σ2
Y = σ2 + 〈Γφ, φ〉H implies

σ2
Y 6 σ

2 + d‖φ‖2γ 6 σ2 + dr. (B.7)

Furthermore, (B.3) and (B.4) in Lemma B.1 imply

[g]tk[Γ]−1
k [g]k 6 d‖φk‖2γ 6 34d9r. (B.8)

The assertion (iv) follows now by combination of the estimates (B.7) and (B.8).

Proof of (v). From Vm 6 DV
γ
m due to assertion (i) and the second inequality in (iv) we derive

pm 6 100σ2
m(1 + log n)n−1DV γ

m 6 200(σ2 + r)D4(1 + log n)n−1
m∑
j=1

[`]2jγ
−1
j . (B.9)

Furthermore, by using (B.6) in Lemma B.1 we obtain that

bm 6 16d4 r {max(
∑
j>m

[`]2jβ
−1
j , γmβ

−1
m

m∑
j=1

[`]2jγ
−1
j )}. (B.10)

Combining the bounds (B.9) and (B.10) implies assertion (v), which completes the proof.

Lemma B.3. For all n,m > 1 we have{
1

4
<
‖[Γ̂]−1

m ‖s
‖[Γ]−1

m ‖s
6 4, ∀ 1 6 m 6M `

n

}
⊂
{
M−n 6 M̂n 6M

+
n

}
.

Proof of Lemma B.3. Let τ̂m = ‖[Γ̂]−1
m ‖−1

s and recall that 1 6 M̂n 6M `
n with

{
M̂n = M

}
=



{
τ̂M+1

‖[`]2M+1‖2
< 1+logn

n

}
, M = 1,{

min
26m6M

τ̂m
‖[`]2m‖2

> 1+logn
n

} ⋂ {
τ̂M+1

‖[`]2M+1‖2
< 1+logn

n

}
, 1 < M < M `

n,{
min

26m6M

τ̂m
‖[`]2m‖2

> 1+logn
n

}
, M = M `

n.

Given τ−1
m := ‖[Γ]−1

m ‖s we have D−1 6 τm/γm 6 d for all m > 1 due to (i) in Lemma B.2

which we use to proof the following two assertions{
M̂n < M−n

}
⊂
{

min
16m6M`

n

:
τ̂m
τm

<
1

4

}
, (B.11){

M̂n > M+
n

}
⊂
{

max
16m6M`

n

τ̂m
τm
> 4

}
. (B.12)
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Obviously, the assertion of the Lemma follows now by combination of (B.11) and (B.12).

Consider (B.11) which is trivial in case M−n = 1. For M−n > 1 we have min
16m6M−n

γm
‖[`]2m‖2

>

4D(1+logn)
n and, hence min

16m6M−n

τm
‖[`]2m‖2

> 4(1+logn)
n . By exploiting the last estimate we obtain

{
M̂n < M `

n

}
∩
{
M̂n < M−n

}
=

M−n −1⋃
M=1

{
M̂n = M

}

⊂
M−n −1⋃
M=1

{
τ̂M+1

‖[`]2M+1‖2
<

1 + log n

n

}
=

{
min

26m6M−n

τ̂m
‖[`]2m‖2

<
1 + log n

n

}

⊂
{

min
16m6M−n

τ̂m
τm

< 1/4

}
while trivially

{
M̂n = M `

n

}
∩
{
M̂n < M−n

}
= ∅ which proves (B.11) because M−n 6 M `

n.

Consider (B.12) which is trivial in case M+
n = M `

n. If M+
n < M `

n, then
τ
M+
n +1

‖[`]2
M+
n +1
‖2 <

(1+logn)
4n ,

and hence{
M̂n > 1

}
∩
{
M̂n > M+

n

}
=

M`
n⋃

M=M+
n +1

{
M̂n = M

}

⊂
M`
n⋃

M=M+
n +1

{
min

26m6M

τ̂m
‖[`]2m‖2

>
1 + log n

n

}
=

{
min

26m6(M+
n +1)

τ̂m
‖[`]2m‖2

>
1 + log n

n

}

⊂

{
τ̂M+

n +1

τM+
n +1

> 4

}

while
{
M̂n = 1

}
∩
{
M̂n > M+

n

}
= ∅ which shows (B.12) and completes the proof.

Lemma B.4. Let An, Bn and Cn as in (A.1). For all n > 1 it holds true that

An ∩ Bn ∩ Cn ⊂ {pk 6 p̂k 6 24 pk, 1 6 k 6M `
n} ∩ {M−n 6 M̂n 6M+

n }.

Proof of Lemma B.4. Let M `
n > k > 1. If ‖[Ξ]k‖s 6 1/8, i.e., on the event Bn, it is easily

verified that ‖([I]k + [Ξ]k)
−1 − [I]k‖s 6 1/7 which we exploit to conclude

(6/7)‖[Γ]−1
k ‖s 6 ‖[Γ̂]−1

k ‖s 6 (8/7)‖[Γ]−1
k ‖s and

(6/7)st[Γ]−1
k s 6 st[Γ̂]−1

k s 6 (8/7)st[Γ]−1
k s, for all s ∈ Rk, (B.13)

and, consequently

(6/7)[ĝ]tk[Γ]−1
k [ĝ]k 6 [ĝ]tk[Γ̂]−1

k [ĝ]k 6 (8/7)[ĝ]tk[Γ]−1
k [ĝ]k. (B.14)

Moreover, from ‖[Ξ]k‖s 6 1/8 we obtain after some algebra,

[g]tk[Γ]−1
k [g]k 6

1

16
[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k + 2[ĝ]tk[Γ]−1

k [ĝ]k,

[ĝ]tk[Γ]−1
k [ĝ]k 6

33

16
[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k.
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Combining each of these estimates with (B.14) yields

(15/16)[g]tk[Γ]−1
k [g]k 6 4[W ]k[Γ]−1

k [W ]k + (7/3)[ĝ]tk[Γ̂]−1
k [ĝ]k,

(7/8)[ĝ]tk[Γ̂]−1
k [ĝ]k 6 (33/16)[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k.

If in addition [W ]tk[Γ]−1
k [W ]k 6

1
8([g]tk[Γ]−1

k [g]k + σ2
Y ), i.e., on the event Cn, then the last two

estimates imply respectively

(7/16)([g]tk[Γ]−1
k [g]k + σ2

Y ) 6 (15/16)σ2
Y + (7/3)[ĝ]tk[Γ̂]−1

k [ĝ]k,

(7/8)[ĝ]tk[Γ̂]−1
k [ĝ]k 6 (41/16)[g]tk[Γ]−1

k [g]k + (1/2)σ2
Y ,

and hence in case 1/2 6 σ̂2
Y /σ

2
Y 6 3/2, i.e., on the event An, we obtain

(7/16)([g]tk[Γ]−1
k [g]k + σ2

Y ) 6 (15/8)σ̂2
Y + (7/3)[ĝ]tk[Γ̂]−1

k [ĝ]k,

(7/8)([ĝ]tk[Γ̂]−1
k [ĝ]k + σ̂2

Y ) 6 (41/16)[g]tk[Γ]−1
k [g]k + (29/16)σ2

Y .

Combining the last two estimates yields

1

6
(2[g]tk[Γ]−1

k [g]k + 2σ2
Y ) 6 (2[ĝ]tk[Γ̂]−1

k [ĝ]k + 2σ̂2
Y ) 6 3(2[g]tk[Γ]−1

k [g]k + 2σ2
Y ).

Since the last estimate and (B.13) hold for all 1 6 k 6M `
n on the event An∩Bn∩Cn it follows

An ∩ Bn ∩ Cn ⊂
{

1

6
σ2
m 6 σ̂

2
m 6 3σ2

m and (6/7)Vm 6 V̂m 6 (8/7)Vm, ∀1 6 m 6M `
n

}
.

The definitions of pm = 100σ2
mVm(1 + log n)n−1 and p̂m = 700σ̂2

mV̂m(1 + log n)n−1 imply

An ∩ Bn ∩ Cn ⊂
{

pm 6 p̂m 6 24 pm, ∀1 6 m 6M `
n

}
. (B.15)

On the other hand, by exploiting successively (B.13) and Lemma B.3 we obtain

An ∩ Bn ∩ Cn ⊂

{
6

7
6
‖[Γ̂]−1

m ‖s
‖[Γ]−1

m ‖s
6

8

7
, ∀1 6 m 6M `

n

}
⊂
{
M−n 6 M̂n 6M

+
n

}
. (B.16)

From (B.15) and (B.16) follows the assertion of the lemma, which completes the proof.

Lemma B.5. For all m,n > 1 with n > (8/7)‖[Γ]−1
m ‖s we have fm,n ⊂ Ωm,n.

Proof of Lemma B.5. Taking the identity [Γ̂]m = [Γ]
1/2
m {[I]m + [Ξ]m}[Γ]

1/2
m into account,

we observe that
√
m‖[Ξ]m‖s 6 1/8 implies ‖[Γ̂]−1

m ‖s 6
8
√
m

8
√
m−1
‖[Γ]−1

m ‖s 6 (8/7)‖[Γ]−1
m ‖s due

to the usual Neumann series argument. If n > (8/7)‖[Γ]−1
m ‖s, then the last assertion implies

fm,n ⊂ Ωm,n, which proves the lemma.
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C Preliminary results due to the normality assumption

We will suppose throughout this section that the conditions of Theorem 3.1 and in particular

Assumption 2.1 are satisfied, thus, the technical Lemmas stated in Section B are applicable.

We show technical assertions under the assumption of normality (Lemmas C.1- C.4) which are

used below to prove Propositions 3.3 and 3.4.

We begin by recalling elementary properties due to the assumption that X and ε are

jointly normally distributed, which are frequently used in the following proofs. For any h ∈ H
the random variable 〈h,X〉H is normally distributed with mean zero and variance 〈Γh, h〉H.

Consider the Galerkin solution φm and h ∈ Hm then the random variables 〈φ− φm, X〉H and

〈h,X〉H are independent. Thereby, Um = Y − 〈φm, X〉H = σε + 〈φ − φm, X〉H and [X]m

are independent, normally distributed with mean zero, and, respectively, variance ρ2
m and

covariance matrix [Γ]m. Consequently, (ρ−1
m Um, [X]tm[Γ]

−1/2
m ) is a (m + 1)-dimensional vector

of i.i.d. standard normally distributed random variables. Let us further state elementary

inequalities for Gaussian random variables.

Lemma C.1. Let {Ui, Vij , 1 6 i 6 n, 1 6 j 6 m} be independent and standard normally

distributed random variables. We have for all η > 0 and ζ > 4m/n

P

(
|n−1/2

n∑
i=1

(U2
i − 1)| > η

)
6 2 exp

(
− η2

8(1 + η n−1/2)

)
; (C.1)

P

(
|n−1

n∑
i=1

UiVi1| > η

)
6
ηn1/2 + 2

ηn1/2
exp

(
− n

4
min

{
η2,

1

4

})
; (C.2)

P

n−2
m∑
j=1

|
n∑
i=1

UiVij |2 > ζ

 6 exp
(
− n

16

)
+ exp

(
−ζn

64

)
; (C.3)

and for all c > 0 and a1, . . . , am > 0 that

E

(
n−1

n∑
i=1

U2
i − 2

)
+

6
16

n
exp

(
− n

16

)
; (C.4)

E

(
|n−1/2

n∑
i=1

UiVi1|2 − 4c(1 + log n)

)
+

6
2n−c

ec
√
πc(1 + log n)

+ 32c exp

(
− n

16

)
; (C.5)

E

 m∑
j=1

aj |
n∑
i=1

UiVij |2
4

6 n4
(

11

m∑
j=1

aj

)4
. (C.6)

Proof of Lemma C.1. Define W :=
∑n

i=1 U
2
i and Zj := (

∑n
i=1 U

2
i )−1/2

∑n
i=1 UiVij . Obvi-

ously, W has a χ2 distribution with n degrees of freedom and Z1, . . . , Zm given U1, . . . , Un are

independent and standard normally distributed, which we use below without further reference.

The estimate (C.1) is given in Dahlhaus and Polonik [2006] (Proposition A.1) and by using
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(C.1) we have

P (|n−1
n∑
i=1

UiVi1| > η) 6 P (n−1W > 2) + E
[
P
(
2n−1|Z1|2 > η2

∣∣U1, . . . , Un
)]

6 exp

(
− n

16

)
+

2√
πη2n

exp

(
− η2n

4

)
,

which implies (C.2). The estimate (C.3) follows analogously and we omit the details. By using

(C.1) we obtain (C.4) as follows

E

(
n−1

n∑
i=1

U2
i − 2

)
+

=

∫ ∞
0

P (n−1/2
n∑
i=1

(U2
i − 1) > n1/2(1 + t))dt

6
∫ ∞

0
exp

(
− n(1 + t)2

8(1 + (1 + t))

)
dt 6

∫ ∞
0

exp

(
− n(1 + t)

16

)
dt

= exp

(
− n

16

)∫ ∞
0

exp

(
− n

16
t

)
dt =

16

n
exp

(
− n

16

)
.

Consider (C.5). Since n−1/2
∑n

i=1 Ui is standard normally distributed, we have

E

(
|n−1/2

n∑
i=1

Ui|2 − 2c(1 + log n)

)
+

=

∫ ∞
0

P (|n−1/2
n∑
i=1

Ui| > (t+ 2c(1 + log n))1/2)dt

6
∫ ∞

0

2√
2π(t+ 2c(1 + log n))

exp

(
− (t+ 2c(1 + log n))

2

)
dt

6
e−cn−c√

πc(1 + log n)

∫ ∞
0

exp

(
− 1

2
t

)
dt =

2e−cn−c√
πc(1 + log n)

.

By using the last bound and (C.4) we get

E

(
|n−1/2

n∑
i=1

UiVi1|2 − 4c(1 + log n)

)
+

6 E
[
n−1WE

[(
|Z1|2 − 2c(1 + log n)

)
+
|U1, . . . , Un

]
+ 2c(1 + log n)

(
n−1W − 2

)
+

]
6

2n−c

ec
√
πc(1 + log n)

+ 32c
(1 + log n)

n
exp

(
− n

16

)
which shows (C.5). Finally, by applying E[Z8

j |U1, . . . , Un] = 105 and EW 4 = n(n + 2)(n +

4)(n+ 6) we obtain E[W 4Z8
j ] 6 (11n)4 and hence

E

 m∑
j=1

aj |
n∑
i=1

UiVij |2
4

= E
( m∑
j=1

ajWZ2
j

)4

6

∣∣∣∣ m∑
j=1

aj(E[W 4Z8
j ])1/4

∣∣∣∣4 6 (11n)4(
m∑
j=1

aj)
4

which shows (C.6) and completes the proof.
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Lemma C.2. For all n,m > 1 we have

n4m−4E‖[Ξ]m[Γ]1/2m ‖8s 6 (34E‖X‖2H)4; (C.7)

n4ρ−8
m E‖[W ]m‖8 6 (11E‖X‖2H)4. (C.8)

Furthermore, there exists a numerical constant C such that for all n > 1

n8 max
16m6bn1/4c

P

(
([W ]tm[Γ]−1

m [W ]m)

ρ2
m

>
1

16

)
6 C; (C.9)

n8 max
16m6bn1/4c

P

(√
m‖[Ξ]m‖s >

1

8

)
6 C; (C.10)

n7P
(
{1/2 6 σ̂2

Y /σ
2
Y 6 3/2}c

)
6 C; (C.11)

n2 sup
m>1

E
(
n([W ]tm[Γ]−1

m [W ]m)

mρ2
m

− 8(1 + log n)

)
+

6 C; (C.12)

n2 sup
m>1

E
(
n([`]tm[Γ]−1

m [W ]m)2

ρ2
m[`]tm[Γ]−1

m [`]m
− 8(1 + log n)

)
+

6 C. (C.13)

Proof of Lemma C.2. Let n,m > 1 be fixed and denote by (λj , ej)16j6m an eigenvalue

decomposition of [Γ]m. Define Ui := (σεi + 〈φ − φm, Xi〉H)/ρm and Vij := (λ
−1/2
j etj [Xi]m),

1 6 i 6 n, 1 6 j 6 m, where U1, . . . , Un, V11, . . . , Vnm are independent and standard normally

distributed random variables.

Proof of (C.7). For all 1 6 j, l 6 m let δjl = 1 if j = l and zero otherwise. It is easily

verified that ‖[Ξ]m[Γ]
1/2
m ‖2s 6

∑m
j=1

∑m
l=1 λl|n−1

∑n
i=1(VijVil − δjl)|2. Moreover, for j 6= l we

have E|
∑n

i=1 VijVil|8 6 (11n)4 by employing (C.6) in Lemma C.1 (take m = 1 and a1 = 1),

while E|
∑n

i=1(V 2
ij − 1)|8 = n4256(105/16 + 595/(2n) + 1827/n2 + 2520/n3) 6 (34n)4. From

these estimates we get by successively employing Jensen’s and Minkowski’s inequality that

m−4E‖[Ξ]m[Γ]1/2m ‖8s 6 n−8m−1
m∑
j=1

( m∑
l=1

λl(E|
n∑
i=1

(VijVil − δjl)|8)1/4
)4
6 n−4(34

m∑
j=1

λj)
4.

The last estimate together with
∑m

j=1 λj = tr([Γ]m) 6 tr(Γ) = E‖X‖2H implies (C.7).

Proof of (C.8) and (C.9). Taking the inequality
∑m

j=1 λj 6 E‖X‖2H and the identities

n4ρ−8
m ‖[W ]m‖8 = (

∑m
j=1 λj(

∑n
i=1 UiVij)

2)4 and ([W ]tm[Γ]−1
m [W ]m)/ρ2

m = n−2
∑m

j=1(
∑n

i=1 UiVij)
2

into account the assertions (C.8) and (C.9) follow, respectively, from (C.6) and (C.3) in Lemma

C.1 (with aj = λj).

Proof of (C.10). Since n‖[Ξ]m‖s 6 mmax16j,l6m |
∑n

i=1(VijVil − δjl)| we obtain due to
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(C.1) and (C.2) in Lemma C.1 for all η > 0 the following bound

P (‖[Ξ]m‖s > η) 6
∑

16j,l6m

P (|n−1
n∑
i=1

(VijVil − δjl)| > η/m)

6 m2 max

{
P (|n−1

n∑
i=1

Vi1Vi2| > η/m), P (|n−1/2
n∑
i=1

(V 2
i1 − 1)| > n1/2η/m)

}

6 m2 max

{
(1 +

m

ηn1/2
) exp

(
− n

4
min

{
η2/m2, 1/4

})
, 2 exp

(
− 1

8

nη2/m2

1 + η/m

)}
.

Moreover, for all η 6 m/2 this can be simplified to

P (‖[Ξ]m‖s > η) 6 m2 max

{
1 +

2m

ηn1/2
, 2

}
exp

(
− 1

12

nη2

m2

)
,

which obviously implies (C.5).

Proof of (C.11). Since Y1/σY , . . . , Yn/σY are independent and standard normally dis-

tributed, (C.11) follows from (C.1) in Lemma C.1 by exploiting that {1/2 6 σ̂2
Y /σ

2
Y 6 3/2}c ⊂

{|n−1
∑n

i=1 Y
2
i /σ

2
Y − 1| > 1/2}.

Proof of (C.12). From the identity n([W ]tm[Γ]−1
m [W ]m)/(mρ2

m) = m−1
∑m

j=1(n−1/2
∑n

i=1 UiVij)
2

the estimate (C.12) follows by using (C.6) in Lemma C.1, that is

sup
m>1

E

(
n([W ]tm[Γ]−1

m [W ]m)

mρ2
m

− 8(1 + log n)

)
+

6 E

(
|n−1/2

n∑
i=1

UiVi1|2 − 8(1 + log n)

)
+

6

{
n−2

e2
√
π2(1 + log n)

+ 64
(1 + log n)

n
exp(−n/16)

}
6 Cn−2.

Proof of (C.13). Define Vi := ([`]tm[Γ]−1
m [`]m)−1/2[`]tm[Γ]−1

m [Xi]m for 1 6 i 6 n, where

U1, . . . , Un, V1, . . . , Vn are independent and standard normally distributed random variables.

By employing the identity n([`]tm[Γ]−1
m [W ]m)2/(ρ2

m[`]tm[Γ]−1
m [`]m) = |n−1/2

∑n
i=1 UiVi|2 the es-

timate (C.13) follows from (C.6) in Lemma C.1, which completes the proof.

Lemma C.3. There exists a constant C(d) only depending on d such that for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

M+
n∑

m=1

E

(
([`]tm[Γ]−1

m [`]m)

m
([W ]tm[Γ]−1

m [W ]m)− 8 pm
100

)
+

6 C(d)(σ2 + r)n−1;

(C.14)

sup
φFrβ

sup
Γ∈Gdγ

M+
n∑

m=1

E
(

([`]tm[Γ]−1
m [W ]m)2 − 8 pm

100

)
+

6 C(d)(σ2 + r)n−1. (C.15)

Proof of Lemma C.3. The key argument to show (C.14) is the estimate (C.12) in Lemma C.2.

Taking [`]tm[Γ]−1
m [`]m 6 Vm and 8 pm

100 = 8σ2
m Vm

1+logn
n into account, together with the facts
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that max16m6M+
n
Vm = VM+

n
6 nC(d)(1+log n)−1 and ρ2

m 6 σ
2
m 6 C(d)(σ2 +r) for all φ ∈ Frβ,

Γ ∈ Gdγ (Lemma B.2 (ii) and (iv)) we obtain

M+
n∑

m=1

E

(
([`]tm[Γ]−1

m [`]m)

m
([W ]tm[Γ]−1

m [W ]m)− 8 pm
100

)
+

6
M+
n∑

m=1

σ2
mVm
n

E

(
n([W ]tm[Γ]−1

m [W ]m)

mρ2
m

− 8 (1 + log n)

)
+

6
C(d)(σ2 + r)

1 + log n
M+
n sup
m>1

E

(
([W ]tm[Γ]−1

m [W ]m)

mρ2
m

− 8 (1 + log n)

)
+

.

The assertion (C.14) follows by employing (C.12) in Lemma C.2 and M+
n 6 n. The proof of

(C.15) follows the same lines by using (C.13) in Lemma C.2 rather than (C.12) and we omit

the details.

Lemma C.4. There exists a numerical constant C and a constant C(d) only depending on d

such that for all n > 1

sup
φ∈Frβ

sup
Γ∈Gdγ

{
n4(M+

n )4 max
16m6M+

n

P
(
fcm,n

)}
6 C; (C.16)

sup
φ∈Frβ

sup
Γ∈Gdγ

{
nM+

n max
16m6M+

n

P
(
Ωc
m,n

)}
6 C(d); (C.17)

sup
φ∈Frβ

sup
Γ∈Gdγ

{
n7P (Ecn)

}
6 C. (C.18)

Proof of Lemma C.4. Since M+
n 6 bn1/4c and fcm,n =

{√
m‖[Ξ]m‖s > 1/8

}
the assertion

(C.16) follows from (C.10) in Lemma C.2.

Consider (C.17). With no := no(d) := exp(128d6) > 8d3 we have ‖[`]M+
n
‖2(1 + log n) >

128d6 for all n > no. We distinguish in the following the cases n < no and n > no. First,

consider 1 6 n 6 no. Obviously, we have M+
n max16m6M+

n
P (Ωc

m,n) 6 M+
n 6 n−1n

5/4
o 6

C(d)n−1 since M+
n 6 n1/4 with no depending on d only. On the other hand, if n > no

then Lemma B.2 (iii) implies n > 2 max16m6M+
n
‖[Γ]−1

m ‖s, and hence fm,n ⊂ Ωm,n for all

1 6 m 6 M+
n by using Lemma B.5. From (C.16) we conclude M+

n max16m6M+
n
P (Ωc

m,n) 6

M+
n max16m6M+

n
P (fcm,n) 6 Cn−3. By combination of the two cases we obtain (C.17).

It remains to show (C.18). Consider the events An, Bn and Cn defined in (A.1), where An∩Bn∩
Cn ⊂ En due to Lemma B.4. Moreover, we have n7P (Acn) 6 C and n7P (Ccn) 6 C due to (C.11)

and (C.9) in Lemma C.2 (keep in mind that bn1/4c >M `
n and 2(σ2

Y +[g]tk[Γ]−1
k [g]k) = σ2

k > ρ
2
k).

Finally, (C.10) in Lemma C.2 implies n7P (Bcn) 6 C by using that {‖
√
m[Ξ]m‖s 6 1/8, 1 6

m 6M+
n } ⊂ Bn. Combining these estimates yields (C.18), which completes the proof.

D Proof of Proposition 3.3 and 3.4

In the following proofs we will use the notations introduced in Appendix A and we will exploit

the technical assertions gathered in Lemma C.1- C.4.
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Proof of Proposition 3.3. From the identities ̂̀m−`(φm) = [`]tm[Γ̂]−1
m [W ]m 1Ωm,n −`(φm)1Ωcm,n ,

([I]m + [Ξ]m)−1 − [I]m = −([I]m + [Ξ]m)−1[Ξ]m, and [Γ̂]m = [Γ]
1/2
m {[I]m + [Ξ]m}[Γ]

1/2
m follows

|̂̀m − `(φm)|2 = |[`]tm[Γ̂]−1
m [W ]m|2 1Ωm,n +|`(φm)|2 1Ωcm,n

6 2|[`]tm[Γ]−1
m [W ]m|2 + 2|[`]tm([Γ̂]−1

m − [Γ]−1
m )[W ]m|2 1Ωm,n +|`(φm)|2 1Ωcm,n

6 2|[`]tm[Γ]−1
m [W ]m|2 + 2|[`]tm[Γ]−1/2

m ([I]m + [Ξ]m)−1[Ξ]m[Γ]−1/2
m [W ]m|2 1fm,n

+ 2|[`]tm[Γ]−1/2
m [Ξ]m[Γ]1/2m [Γ̂]−1

m [W ]m|2 1Ωm,n 1fcm,n +|`(φm)|2 1Ωcm,n .

By exploiting
√
m‖([I]m + [Ξ]m)−1[Ξ]m‖s 1fm,n 6 1/7 and ‖[Γ̂]−1

m ‖s 1Ωm,n 6 n we obtain

|̂̀m − `(φm)|2 6 2|[`]tm[Γ]−1
m [W ]m|2 +

2

49
([`]tm[Γ]−1

m [`]m)m−1([W ]tm[Γ]−1
m [W ]m)

+ 2n2 ([`]tm[Γ]−1
m [`]m) ‖[Ξ]m[Γ]1/2m ‖2s ‖[W ]m‖2 1fcm,n +|`(φm)|2 1Ωcm,n .

Taking this upper bound into account together with ([`]tm[Γ]−1
m [`]m) 6 Vm, we obtain for all

φ ∈ Frβ and Γ ∈ Gdγ that

E

{
sup

16m6M+
n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

}
6 2

M+
n∑

m=1

E
(
|[`]tm[Γ]−1

m [W ]m|2 −
8

100
pm

)
+

+
2

49

M+
n∑

m=1

E
(

([`]tm[Γ]−1
m [`]tm)m−1([W ]tm[Γ]−1

m [W ]m)− 8

100
pm

)
+

+2n3
M+
n∑

m=1

Vm
n

(
E‖[Ξ]m[Γ]1/2m ‖8s

)1/4(E‖[W ]m‖8
)1/4(

P (fcm,n)
)1/2

+

M+
n∑

m=1

|`(φm)|2P (Ωc
m,n).

We bound the first and second right hand side term with help of (C.14) and (C.15) in Lemma

C.3, which leads to

sup
φ∈Frβ

sup
Γ∈Gdγ

E

{
sup

16m6M+
n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

}
6 C(d)(σ2 + r)n−1

+ 2n3 sup
φ∈Frβ

sup
Γ∈Gdγ

M+
n∑

m=1

Vm
n

(
E‖[Ξ]m[Γ]1/2m ‖8s

)1/4(E‖[W ]m‖8
)1/4(

P (fcm,n)
)1/2

+ sup
φ∈Frβ

sup
Γ∈Gdγ

M+
n∑

m=1

|`(φm)|2P (Ωc
m,n).

Taking into account that for all φ ∈ Frβ and Γ ∈ Gdγ we have max16m6M+
n
Vm = VM+

n
6

nC(d)(1+log n)−1 and ρ2
m 6 σ

2
m 6 C(d)(σ2 +r) (Lemma B.2 (ii) and (iv)) the estimates (C.7)
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and (C.8) in Lemma C.2 imply

sup
φ∈Frβ

sup
Γ∈Gdγ

E

{
sup

16m6M+
n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

}
6
C(d)

n
(σ2 + r)

+
C(d)

n
(σ2 + r) sup

φ∈Frβ
sup
Γ∈Gdγ

(E‖X‖2H)2n2(M+
n )2 max

16m6M+
n

(
P (fcm,n)

)1/2
+ sup

φ∈Frβ
sup
Γ∈Gdγ

M+
n∑

m=1

|`(φm)|2P (Ωc
m,n).

By combining this upper bound, the property E‖X‖2H 6 d
∑

j>1 γj and the estimate (B.5)

given in Lemma B.1 we obtain

sup
φ∈Frβ

sup
Γ∈Gdγ

E

{
sup

16m6M+
n

(
|̂̀m − `(φm)|2 − 1

6
pm

)
+

}
6
C(d)

n
(σ2 + r)

+
C(d)

n
(σ2 + r)(

∑
j>1

γj)
2 sup
φ∈Frβ

sup
Γ∈Gdγ

n2(M+
n )2 max

16m6M+
n

(
P (fcm,n)

)1/2
+
C(d)

n
r
∑
j>1

[`]2j
βj

sup
φ∈Frβ

sup
Γ∈Gdγ

nM+
n max

16m6M+
n

P (Ωc
m,n).

The result of the proposition follows now from the upper bounds (C.16) and (C.17) given in

Lemma C.4, which completes the proof.

Proof of Proposition 3.4. Taking the estimate ‖[Γ̂]−1
m ‖s 1Ωm,n 6 n and the identity ̂̀m −

`(φm)1Ωm,n = [`]tm[Γ̂]−1
m [W ]m 1Ωm,n into account it easily follows for all m > 1 that

|̂̀m − `(φ)|2 6 3{‖[`]m‖2 n2‖[W ]m‖2 + (|`(φm)|2 + |`(φ)|2)}.

Furthermore, by exploiting ‖[`]m‖2 6 n for all 1 6 m 6M `
n we obtain from the last estimate

max
16m6M`

n

|̂̀m − `(φ)|2 1Ecn 6 3{n3

M`
n∑

m=1

‖[W ]m‖2 1Ecn +(sup
m>1
|`(φm)|2 + |`(φ)|2)1Ecn}.

We recall that for all φ ∈ Frβ and Γ ∈ Gdγ we have ρ2
m 6 C(d)(σ2 + r) and (E‖[W ]m‖4)1/2 6

11E‖X‖2Hρ2
mn
−1 (Lemma B.2 and C.2), moreover, the bounds

(
supm>1 |`(φm)|2 + |`(φ)|2

)
6

(supm>1‖φm‖2β + ‖φ‖2β)
∑

j>1

[`]2j
βj
6 C(d)r

∑
j>1

[`]2j
βj

(Lemma B.1) and E‖X‖2H 6 d
∑

j>1 γj

together with the last upper bound imply

sup
φ∈Frβ

sup
Γ∈Gdγ

E
(
|̂̀m̂ − `(φ)|2 1Ecn

)
6 sup

φ∈Frβ
sup
Γ∈Gdγ

E
(

max
16m6M`

n

|̂̀m − `(φ)|2 1Ecn
)

6 C(d) (σ2 + r) max

∑
j>1

γj ,
∑
j>1

[`]2j
βj

 sup
φ∈Frβ

sup
Γ∈Gdγ

(
n2M `

n|P (Ecn)|1/2 + P (Ecn)
)
.

The assertion of Proposition 3.4 follows now by combination of the last estimate and (C.18)

in Lemma C.4, which completes the proof.
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