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Abstract

Let M be an isotonic real-valued function on a compact subset of R
d and let M̂n

be an unconstrained estimator of M . A feasible monotonizing technique is to take the
largest (smallest) monotone function that lies below (above) the estimator M̂n or any
convex combination of these two envelope estimators. When the process rn(M̂n−M) is
asymptotically equicontinuous for some sequence rn > 0, we show that these projected
estimators are rn-equivalent in probability to the original unrestricted estimator. Our
first motivating application involves a monotone estimator of the conditional distribu-
tion function that has the distributional properties of the local linear regression esti-
mator. Applications also include the estimation of econometric (probability-weighted
moment, quantile-based) and biometric (mean remaining lifetime) functions.

AMS 2000 subject classification: 62G05; 60E20; 91B38

Key words : isotonic, asymptotic equicontinuity, limit process, conditional distribution
function, local linear fitting, frontier modeling.

1 Introduction

Let M be a real-valued function defined on a domain D ⊂ R
d to be estimated from a sample

of size n. In many practical applications the function of interest M is believed to be isotonic

nondecreasing with respect to the partial order in the sense that x ≤ x′ componentwise

implies M(x) ≤ M(x′) (the nonincreasing case is similar). It is then natural to try to

incorporate this prior information into an estimation procedure. Examples include analysis

of monotone regression means (see, e.g., Hall and Huang 2001; Mammen and Yu 2007),

estimation of monotone conditional quantiles (see Mukerjee 1993), study of monotone failure

rates (see, e.g., Wang 1986), analysis of the mean residual life (see, e.g., Kochar, Mukerjee

and Samaniego 2000) and partial frontier modeling (see Daouia and Simar 2005).

Generally, monotonicity is not guaranteed when constructing estimators M̂n with highly

desirable asymptotic properties. In this paper, we consider isotonic target functions M and

unconstrained estimators M̂n for which the process rn(M̂n −M) converges weakly at a rate

rn → ∞ as n → ∞. We show that the monotonized versions of M̂n that we describe below
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inherit the asymptotic distributional properties of M̂n. The basic idea of the monotonization

here simply utilizes the fact that M is nondecreasing if and only if M(x) = supx′≤xM(x′) =

infx≤x′ M(x′), where x′ runs over D. This consideration leads to the projected isotonic

estimators

M̂u
n (x) = sup

x′≤x
M̂n(x

′), M̂ ℓ
n(x) = inf

x≤x′
M̂n(x

′). (1)

Their asymptotic properties may be driven from those of the original estimator M̂n. For

example, if M̂n is uniformly consistent on D, then M̂u
n and M̂ ℓ

n are also uniformly consistent

on D. This follows since both |M̂u
n (x) −M(x)| and |M̂ ℓ

n(x) −M(x)| are less than or equal

to supx′∈D
|M̂n(x

′) −M(x′)|.
Both the envelope estimators are monotone. Any convex combination of M̂ ℓ

n(x) and

M̂u
n (x) also yields an isotonic estimator for M . Mukerjee and Stern (1994) favored the

hybrid variant

M̂⋆
n(x) = (M̂ ℓ

n(x) + M̂u
n (x))/2

to isotonize the Nadaraya-Watson kernel estimator of the regression function. They derived

the strong uniform consistency of their isotonic estimator and demonstrated via Monte Carlo

studies its inexpensiveness and superiority in terms of mean squared error. The same prin-

ciple was employed by Daouia and Simar (2005) to construct monotonized nonparametric

frontier estimators. The resulting frontier functions M̂⋆
n share the robustness and the com-

plete uniform convergence properties of the original estimators M̂n. Hall and Müller (2003)

considered the upper envelope M̂u
n to monotonize an estimator M̂n of the conditional distri-

bution function obtained by local linear fitting. Likewise, Kochar et al. (2000) utilized the

upper version M̂u
n to isotonize the empirical estimator of a biometric function M .

In this paper we show that

sup
x∈D

rn|M̂n(x) − M̂#
n (x)| p−→ 0 (2)

as n → ∞, for any convex combination M̂#
n of M̂ ℓ

n and M̂u
n . Thus, we get monotonicity

free of charge. In the particular case where M is the mean residual life function and M̂n

is Yang’s (1978) estimator, Kochar et al. (2000) obtained a similar result for the process

n1/2(M̂n − M̂u
n ) indexed by x ∈ [0, b], for any b < T with T being the support endpoint of

the life-length of the population. Our result (Theorem 1) provides a general framework that

covers this special case as well as new applications of considerable statistical interest, with

an extension to multivariate isotonic functions.

Our first motivating application involves a monotone estimator of the conditional distri-

bution function that has the distributional properties of the local linear regression estimator

(Theorem 2). The latter estimator is not order-preserving even in the limit, as Hall and
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Müller (2003) stated: “This failure is generally most serious at boundaries of the distribu-

tion of the explanatory variable, and ironically it is often in just those places that estimation

is of great interest, because responses there imply constraints on the larger population”. Our

improved estimator of the conditional distribution function, obtained by projected local lin-

ear fitting, is particularly advantageous if one desires to invert it to produce a more relevant

estimator of the regression quantile function (Corollary 1).

Applications of our general results also include the estimation of two multi-argument

econometric functions: a probability-weighted moment and a quantile-based frontier func-

tions which are found to be useful descriptors of the optimal cost and production quantities

(see, e.g., the survey article by Simar and Wilson (2008) for a nice summary). Both frontier

functions are believed to be isotonic nondecreasing. The great simplicity of their empirical

estimators and their desirable robustness and asymptotic properties are quite appealing, but

they do not automatically inherit the monotonicity property. This article contributes to

the frontier modeling by ensuring the monotonicity ‘free of charge’ via the projection type

technique (Theorems 3 and 4). It also revisits the monotonization of Yang’s (1978) estimator

for the mean remaining lifetime function (Theorem 5).

The next section provides our general result for (2) and discusses the ideas of the proof.

Section 3 gives in details the applications. Section 4 demonstrates other statistical properties

via Monte Carlo simulations. Section 5 returns to our motivating econometric application

and explores isotonic estimation of the quantile-based frontiers through the Ecuadorian man-

ufacturing sector. Section 6 concludes with some results and directions of future research.

2 General results

We denote the Euclidean norm in R
d by ‖ · ‖d, and the sup-norm on the domain D by ‖ · ‖D.

We assume that the compact D takes the form D =
∏d

j=1[aj , bj], where −∞ < aj < bj <∞.

Theorem 1. Assume that

(C1) the first partial derivatives {∂iM : i = 1, . . . , d} of M exist and satisfy ∂iM(x) ≥ ci,

∀x ∈ D, for some constants c1, . . . , cd > 0;

(C2) the second partial derivatives {∂2
ijM : i, j = 1, . . . , d} exist and are continuous on D;

(C3) for a sequence rn ↑ ∞, the process Zn := rn(M̂n −M) satisfies: for every ε > 0, there

exist δ > 0 and n0 ∈ N such that

P











sup
x,x′∈D

‖x−x′‖d<δ

|Zn(x) − Zn(x
′)| > ε











< ε ∀n ≥ n0;
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(C4) ‖Zn‖D = Oa.s.(sn) as n → ∞ for some sequence sn ↑ ∞, and there exists δn → 0 such

that r
1/2
n δn → 0 and s−1

n rnδn → ∞.

Then for any convex combination M̂#
n of M̂ ℓ

n and M̂u
n ,

rn ‖M̂#
n − M̂n‖D

p−→ 0 as n→ ∞.

Assumption (C1) requires the strict monotonicity of M(x1, . . . , xd) with respect to each

component xj . Assumption (C3) is the asymptotic equicontinuity of the process Zn. Typ-

ically the assumption holds if Zn converges weakly as a process indexed by x ∈ D. For

instance, weak convergence in the space of continuous functions with the uniform topology

implies (C3). Weak convergence in the space of càdlàg functions (Skorohod space) with the

Skorohod J1 topology also implies (C3) if the limit process has continous sample paths. In

Section 3, we discuss some interesting examples where (C3) is satisfied so that our method

can be applied. The assumption does not hold in general, however, for nonparametric esti-

mation of density and regression functions, see the related discussions in Ruymgaart (1998)

or in Nishiyama (2011), for example. In the latter cases, one can typically verify only a

‘local’ version of the asymptotic equicontinuity. For example, in the case of local polynomial

boundary estimation with a bandwidth h that goes to zero as n tends to infinity, one may

prove only

P











sup
x,x′∈D

‖x−x′‖d<δh

|Zn(x) − Zn(x
′)| > ε











< ε ∀n ≥ n0,

see Hall and Park (1998), for example. As for Assumption (C4), if rn in (C3) is the usual

scaling
√
n for empirical processes and sn in (C4) is O

(√
log log n

)

obtained typically from

a law of iterated logarithm, then taking δn ∼ n−ρ with 1/4 < ρ < 1/2 satisfies the condition.

Let kn = [δ−1
n ] be the integer part of δ−1

n , where δn is as described in (C4), and define for

j = 1, . . . , d,

∆j = (bj − aj)/kn and aj,ℓ = aj + ℓ∆j for ℓ = 0, 1, . . . , kn.

The key element in the proof is introducing the linear interpolation Ln, defined for any

function h on D, by

Lnh(x) = h(a1,ℓ1 , . . . , ad,ℓd) +

d
∑

j=1

xj − aj,ℓj
∆j

×
{

h(a1,ℓ1, . . . , aj−1,ℓj−1
, (aj,ℓj + ∆j), aj+1,ℓj+1

, . . . , ad,ℓd) − h(a1,ℓ1, . . . , ad,ℓd)
}

,
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for x = (x1, . . . , xd) ∈ Dℓ1,...,ℓd, where

Dℓ1,...,ℓd =
d
∏

j=1

[aj,ℓj , aj,(ℓj+1)]

is a partitioning set of the domain D, with 0 ≤ ℓ1, . . . , ℓd ≤ kn − 1. Note that

Lnh(a1,ℓ1 , . . . , ad,ℓd) = h(a1,ℓ1, . . . , ad,ℓd) for all 0 ≤ ℓ1, . . . , ℓd ≤ kn.

The idea of the proof is then to show that the transformation LnM̂n of M̂n is eventually

isotonic a.s.

Lemma 1. Given Assumptions (C1) and (C4), LnM̂n is nondecreasing on D a.s. for all

sufficiently large n.

Since the # operator is sup-norm contracting, Lemma 1 entails that for all large n

‖M̂#
n − LnM̂n‖D = ‖M̂#

n − (LnM̂n)
#‖D ≤ ‖M̂n − LnM̂n‖D a.s.

This leads to ‖M̂#
n − M̂n‖D ≤ 2‖M̂n − LnM̂n‖D a.s., for all n large enough. Hence to

complete the proof of Theorem 1, it suffices to show

Lemma 2. If Assumptions (C1)-(C4) hold, then rn‖M̂n − LnM̂n‖D

p−→ 0 as n→ ∞.

Note that Assumption (C2) guarantees the following.

Lemma 3. Under (C2), ‖M − LnM‖D = O(δ2
n) for the sequence δn described in (C4).

Note also that in the one-dimensional case (d = 1), the condition (C2) can be replaced

by the weaker assumption that the second derivative M ′′ exists and ‖M ′′‖D <∞.

3 Main applications

3.1 Estimation of conditional distribution functions

Estimation of the conditional distribution function F (y|x) ≡ P (Y ≤ y|X = x) is a main

task in many statistical problems. One important example is quantile regression, where one

typically estimates the α-quantile function qα(x) ≡ F−1(α|x) by inverting an estimator of

F (·|x). This problem was tackled by, for example, Yu and Jones (1998), Hall, Wolff and

Yao (1999), and Lee, Lee and Park (2006). A promising technique by Yu and Jones (1998)

which is inspired by the approach of Fan, Yao and Tong (1996) is to employ the local linear

approach to smoothed versions of the indicator responses 1I(Yi ≤ y). This is based on the fact
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that F (y|x) = E[1I(Y ≤ y)|X = x]. The main difficulty with this method is that it produces

a distribution function estimator that is not constrained to be monotone increasing as a

function of y for each fixed x. This is illustrated in e.g. Hall and Müller (2003, Section 2).

Suppose we have a random sample {(Xi, Yi) : 1 ≤ i ≤ n} from (X, Y ). Let K be

a symmetric nonnegative function supported on a compact set, say [−1, 1], and L be a

distribution function of a symmetric density. For the bandwidths h and b, associated with

the kernels K and L, the local linear approach of Yu and Jones (1998) for estimating F (y|x)
minimizes

n
∑

i=1

[

L

(

y − Yi
b

)

− β0 − β1(Xi − x)

]2

K

(

Xi − x

h

)

(3)

to get F̃ (y|x) = β̂0. If b tends to zero faster than h, then the first-order properties of F̃ (y|x)
are the same as those of F̂ (y|x) = γ̂0, where (γ̂0, γ̂1) minimizes

n
∑

i=1

[1I(Yi ≤ y) − β0 − β1(Xi − x)]2K

(

Xi − x

h

)

.

To simplify the discussion, we focus on the latter F̂ (y|x). We can write

F̂ (y|x) =

n
∑

i=1

wi(x;X1, . . . , Xn)1I(Yi ≤ y),

where Ki = K((Xi − x)/h) and

wi(x;X1, . . . , Xn) =

∑n
j=1(Xj − x)2Kj − (Xi − x)

∑n
j=1(Xj − x)Kj

[

∑n
j=1Kj

] [

∑n
j=1(Xj − x)2Kj

]

−
[

∑n
j=1(Xj − x)Kj

]2 ·Ki.

Note that
∑n

i=1wi(x;X1, . . . , Xn) = 1, but wi(x;X1, . . . , Xn) are not constrained to be

nonnegative.

We let x be fixed in the interior of the support ofXi, and assume that h→ 0 and nh→ ∞
as n tends to infinity. Under some conditions on the conditional distribution function F (·|·)
and the density of X, denoted by fX , one can prove that

√
nh(F̂ (y|x)− F (y|x)− h2c(x, y))

converges to a normal distribution for some function c, see Yu and Jones (1998) or Lee,

Lee and Park (2006). Thus, rn =
√
nh is the right scaling and we consider the process Zn

defined by Zn(y) =
√
nh(F̂ (y|x) − F (y|x)). One may think that an application of existing

weak convergence results for weighted empirical processes can verify the condition (C3). To

do this, one may apply probability integral transformations to Yi to get indicators for uniform

random variables. This approach does not work in the present case since one should make

the transformation conditionally on Xi for each i, i.e., take F (·|Xi) to get uniform random

variables (conditionally). The latter gives 1I[F (Yi|Xi) ≤ F (y|Xi)], so that one may not

express Zn as an empirical process of the conditionally uniform random variables F (Yi|Xi).
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We define ξi(y) = 1I(Yi ≤ y) − F (y|Xi), and we write wi ≡ wi(x;X1, . . . , Xn) and

X ≡ (X1, . . .Xn) for simplicity. We decompose Zn(y) into two terms

Z1n(y) =
√
nh

n
∑

i=1

wiξi(y) and Z2n(y) =
√
nh

n
∑

i=1

wi [F (y|Xi) − F (y|x)] ,

so that Zn = Z1n + Z2n. The idea is then to show directly that both Z1n and Z2n satisfy

(C3) by applying a chaining technique with a maximal inequality for partial sums, and the

standard theory of kernel smoothing. Define F ab(y|u) = ∂a+bF (y|u)/(∂ya∂ub). Let D be a

compact set of the form D = [a, b], where −∞ < a < b <∞.

Lemma 4. Suppose that the bandwidth h is asymptotic to n−α for some 1/5 ≤ α < 1/3.

Assume that F 10(y|u) is bounded for y in D and for u in a neighborhood of x. Assume also

that F 02(y|u) is continuous at u = x uniformly for y ∈ D, that F 02(·|x) is continuous on D,

and that fX is continuous at x with fX(x) > 0. Then, for every ε > 0, there exists δ > 0

such that

P

[

sup
y,y′∈D

|y′−y|≤δ

∣

∣Z1n(y
′) − Z1n(y)

∣

∣ > ε
∣

∣

∣
X
]

≤ ε

with probability tending to one, and that

P

[

sup
y,y′∈D

|y′−y|≤δ

∣

∣Z2n(y
′) − Z2n(y)

∣

∣ > ε

]

≤ ε

for sufficiently large n.

By using some exponential inequalities, we also prove that Zn satisfies (C4).

Lemma 5. Suppose that the bandwidth h is asymptotic to n−α for some 1/5 ≤ α < 1.

Assume that F 02(y|x) is bounded for y ∈ D, and that fX is continuous at x with fX(x) > 0.

Then,

‖Z1n‖D = Oa.s.(
√

log n) and ‖Z2n‖D = Oa.s.(1).

The above two lemmas give the asymptotic equivalence between F̂ (·|x) and the nonde-

creasing projected estimators F̂#(·|x) as demonstrated below.

Theorem 2. Assume the conditions of Lemma 4. Assume also that infy∈D F
10(y|x) > 0,

and that F 20(·|x) is continuous on D. Then,
√
nh ‖F̂#(·|x) − F̂ (·|x)‖D

p→ 0 as n→ ∞.

For the double kernel estimator F̃ (y|x) which minimizes (3), it can be proved that√
nh(F̃ (y|x) − F (y|x) − h2c1(x, y) − b2c2(x, y)) converges to a normal distribution for some
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functions c1 and c2 under certain conditions. Thus, rn =
√
nh remains to be the proper scal-

ing for F̃ (y|x). Along the lines of the proof for Theorem 2, one can prove that the theorem

is also valid for F̃ (y|x).
A relevant application concerns the estimation of conditional quantiles F−1(α|x) = inf{y :

F (y|x) ≥ α} for α ∈ (0, 1). Choosing

F̂−1(α|x) = inf{y : F̂ (y|x) ≥ α} and F̂#−1(α|x) = inf{y : F̂#(y|x) ≥ α},

as estimates of F−1(α|x), we get the following corollary.

Corollary 1. Assume the conditions of Theorem 2. In addition, suppose that the inverse

F−1(α|x) of F (·|x) belongs to D for α ∈ [q, r] and 0 < q < r < 1. Then

√
nh sup

q≤α≤r

∣

∣F̂−1(α|x) − F̂#−1(α|x)
∣

∣

p−→ 0 as n→ ∞.

3.2 Estimation of partial frontier functions

Partial frontier models find increasing usage in management, finance, economics, education,

public policy, and other areas. When analyzing the productivity of firms, one may want to

compare how the firms transform a set of inputs-usage X ∈ R
d
+ (e.g. labor, energy, capital)

into an output Y ∈ R+ (a quantity of produced goods or services). In this context, the joint

support of (X, Y ) is interpreted as the set of all possible firms and its upper boundary is

viewed as the set of the most efficient ones. From an economic point of view, this optimal

support boundary is supposed to be isotonic nondecresing (see, e.g., Gijbels, Mammen, Park

and Simar 1999).

Let F (·, ·) and FX(·), respectively, denote the joint and marginal distribution functions

of (X, Y ) and X. An important function in productivity analysis is given by ϕ(x) = sup{y ∈
R+ : F (y|x) < 1}, where F (y|x) = F (x, y)/FX(x) assuming FX(x) > 0. We note here that

the definition of the ‘conditional’ distribution function F (·|·) is different from the standard

one in the previous section. Thus, generally speaking, ϕ(x) is not the upper boundary of

the support of (X, Y ) at X = x, say φ(x), but equals supx′≤x φ(x′). Thus, it is monotone

nondecreasing and envelops the support boundary. In the case where the production frontier

function φ is nondecreasing, ϕ coincides with φ. In the latter case, consideration of ϕ is

advantageous since it affords estimation at a faster rate than φ. Because of the local nature

of φ, one can use only the observations in a local strip around x to estimate it (see, e.g.,

Gijbels and Peng (2000)), while it is not the case with estimation of ϕ.

Given a random sample {(X1, Y1), · · · , (Xn, Yn)} of i.i.d. firms, and taking F̂n(y|x) =
∑n

i=1 1I(Xi ≤ x, Yi ≤ y)/
∑n

i=1 1I(Xi ≤ x), a usual estimator of ϕ(x) is the Free Disposal Hull
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(FDH) estimator

ϕ̂(x) = sup{y ≥ 0 | F̂n(y|x) < 1} = max
i:Xi≤x

Yi

which is the lowest step and monotone function that envelops all the data points (see, e.g.,

Park et al. (2000)). When the joint support is assumed to be convex, one can use the

conventional Data Envelopment Analysis (DEA) estimator defined as the smallest concave

function covering the FDH estimator (see, e.g., Gijbels et al. (1999)). Regrettably both the

FDH and DEA estimators are, by construction, very non-robust.

Due to the predominance of outliers in production data, a robust approach is not to

estimate the true frontier ϕ itself, but to estimate a partial frontier well inside the support of

(X, Y ) but lying close to the full frontier ϕ, as suggested by Cazals et al. (2002). Formally,

they estimate the expected value of the maximum of m (m = 1, 2, . . .) independent random

variables Y 1
x , · · · , Y m

x , drawn from the conditional distribution of Y given X ≤ x, that is,

ϕm(x) := E
[

max(Y 1
x , . . . , Y

m
x )
]

= ϕ(x) −
∫ ϕ(x)

0

Fm(y|x) dy.

While ϕ(x) represents the maximum attainable output for a firm working at the level of

inputs x, ϕm(x) gives the expected maximum achievable production among a fixed number

of m firms using less inputs than x. The limiting case where m→ ∞ is of particular interest:

it achieves the monotone efficient frontier ϕ(x).

In view of economic considerations, the chance of producing less than a value y decreases

if a firm utilizes more inputs (i.e., F (y|x′) ≤ F (y|x) for all x ≤ x′). Under this natural

hypothesis, the frontier function ϕm(x) is also nondecreasing in x. Its empirical estimator

ϕ̂m,n(x) = ϕ̂(x) −
∫ ϕ̂(x)

0

F̂m
n (y|x) dy

does not enjoy the desirable property of monotonicity, however. Cazals et al. (2002) showed

the strong consistency of ϕ̂m,n(x) and its functional convergence to a Gaussian process,

provided that the joint support of (X, Y ) is compact. Daouia and Gijbels (2011) have

strengthened some of Cazals et al.’s results: assuming that the support of Y is bounded, they

proved that for any D ⊂ R
d
+ such that infx∈D FX(x) > 0, the process Zn = {√n(ϕ̂m,n(x) −

ϕm(x)), x ∈ D} converges weakly in the space L∞(D) of bounded functions on D to the

centered Gaussian process Z defined by

Z(x) =
m

FX(x)

∫ ϕ(x)

0

Fm−1(y|x) [F(x,∞)F (y|x)− F(x, y)] dy

with F(·, ·) being a (d+ 1)-dimensional F (·, ·)-Brownian bridge. By applying Theorem 1 in

conjunction with this weak convergence to M = ϕm and M̂n = ϕ̂m,n, we show here that
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any convex combination ϕ̂#
m,n of the envelope estimators ϕ̂um,n and ϕ̂ℓm,n is asymptotically

√
n-equivalent in probability to the unrestricted ϕ̂m,n estimator.

Theorem 3. Suppose that the support of Y is bounded, and let D be any subset interior

to the support of X of the form
∏d

j=1[aj , bj] such that infx∈D FX(x) > 0. Also, assume that

F (·, ·) and FX are continuous on the supports. If ϕm satisfies the conditions (C1) and (C2)

of Theorem 1, then
√
n ‖ϕ̂#

m,n − ϕ̂m,n‖D

p−→ 0 as n→ ∞.

Hendricks and Koenker (1992) stated, “In the econometric literature on the estimation of

production technologies, there has been considerable interest in estimating the so called fron-

tier production models that correspond closely to models for extreme quantiles of a stochastic

production surface”. The paper of Aragon et al. (2005) may be viewed as the first work

to actually implement the idea of Hendricks and Koenker: they introduced an alternative

partial frontier function defined by

ψα(x) := inf{y ∈ R+ |F (y|x) ≥ α}

for α ∈ (0, 1). This conditional quantile function converges to the monotone efficient frontier

ϕ(x) ≡ ψ1(x) as α→ 1. It is also isotonic nondecreasing in x under the economic hypothesis

that F (y|x) is monotone nonincreasing in x. Its empirical estimator

ψ̂α,n(x) = inf{y ∈ R+ | F̂n(y|x) ≥ α}

satisfies very similar statistical properties to those of the sample m-trimmed frontier ϕ̂m,n(x).

In particular, for any subset D ⊂ R
d
+ interior to the support of X such that

(Q1) infx∈D FX(x) > 0, and f(·|x) = F ′(·|x) exists and is continuous for all x ∈ D,

(Q2) infx∈D infε≤α≤1−ε f(ψα(x)|x) > 0 for all 0 < ε < 1/2,

Horváth, Horváth and Zhou (2008) showed that, for all ε ∈ (0, 1/2),

sup
ε≤α≤1−ε

‖ψ̂α,n − ψα‖D = Oa.s.

(

(log logn/n)1/2
)

.

They also proved that the process
√
n(ψ̂α,n − ψα) converges weakly in the space L∞(D) to

the centered Gaussian process
{

αF(x,∞) − F(x, ψα(x))

f(ψα(x)|x)FX(x)
, x ∈ D

}

.

Regrettably, the empirical step function ψ̂α,n has no guarantee of being monotone even if

ψα is so. The isotonic estimator ψ̂#
α,n is shown here to be asymptotically

√
n-equivalent in

probability to the unconstrained ψ̂α,n estimator.
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Theorem 4. Suppose that the support of Y is bounded, and let D be any subset interior to

the support of X of the form
∏d

j=1[aj , bj ] fulfilling the conditions (Q1)-(Q2). Also, assume

that F (·, ·), FX and f(·|·) are continuous on their supports. If ψα satisfies the conditions

(C1) and (C2) of Theorem 1, then
√
n ‖ψ̂#

α,n − ψ̂α,n‖D

p−→ 0 as n→ ∞.

Note that, although the classes {ϕm(·), m ≥ 1} and {ψα(·), α ∈ (0, 1]} have emerged in

the econometric literature as two different appealing concepts of partial production functions,

recently Daouia and Gijbels (2011) established that they are closely linked in the sense that,

for eachm ≥ 1, there exists a well-specified order α = (1/2)1/m such that the pointwise values

ϕm(x) and ψα(x) are respectively the theoretical mean and median of the same distribution,

namely Fm(·|x). This confirms the well-known advantage of the quantile type α-frontiers

over the probability weighted moment m-frontiers in terms of finite sample breakdown point

and gross-error sensitivity, but such a robust proposal may sacrifice efficiency.

3.3 Estimation of biometric functions

A function of prime importance in many statistical studies involving survival analysis, bio-

metric mortality data, failure data and actuarial data is the mean residual lifetime (MRL)

function. It is defined by

M(x) = E[X − x|X > x] = 1I(SX(x) > 0)

∫ ∞

x

SX(y)dy/SX(x) for x ∈ [0,∞),

where X is a continuous non-negative random variable with finite mean M(0), representing

the life length of the population, and SX is its survival function with support [0, T ] for a

possibly infinite endpoint T . For life tables, M(x) is called the life expectancy at age x. It

describes the average remaining life among those population members who have survived

until time x. In many cases there are reasons to believe that M is nondecreasing or non-

increasing in x due to monotonic improvement or deterioration of the system life with age,

see, e.g., Guess and Proschan (1988) and the references therein.

Let X1, . . . , Xn be independent copies of the random variable X. Denoting by ŜX,n the

corresponding empirical survival function and by X(n) the sample maximum, Yang (1978)

introduced the empirical estimator

M̂n(x) = 1I(x < X(n))

∫ ∞

x

ŜX,n(y)dy/ŜX,n(x),

and established its uniform strong consistency on [0, b], for any fixed b < T , and that

Zn =
√
n(M̂n−M) converges weakly to a Gaussian process. Assuming that E(Xp) <∞ for

some p > 2, Hall and Wellner (1979) strengthened Yang’s result showing that Zn converges

11



weakly in the space D([0, T )) in the Skorohod topology J1 to the centered Gaussian process

Z defined by

Z(x) = (σ(0)/σ(x)) B(U(x)), (4)

where σ2(x) = V ar[X−x|X > x], U(x) = SX(x)σ2(x)/σ2(0), and B is a standard Brownian

motion. Under the same condition, Kochar et al. (2000) showed that

sup
x∈[0,b]

|Zn(x)|/(log log n)1/2 = Oa.s.(1). (5)

We obtain the following theorem for the asymptotic equivalence of the non-monotone piece-

wise linear estimator M̂n and its projected estimators M̂#
n in the nondecreasing case.

Theorem 5. Assume that FX is continuous on [0, T ]. If M satisfies the conditions (C1)-(C2)

of Theorem 1 with D = [0, b] and E(Xp) < ∞ for some p > 2, then
√
n ‖M̂#

n − M̂n‖D

p→ 0

as n→ ∞.

This result is not new. It can be found in Kochar et al. (2000) under the decreasing

constraint, where the weaker assumption that the second derivative M ′′ exists and ‖M ′′‖D <

∞ is used instead of Condition (C2). The simulations in Kochar et al. (2000) seem to

indicate that the restricted M̂⋆
n version is uniformly superior to the initial MRL estimator

M̂n in terms of mean squared error, although it has uniformly a higher negative bias.

4 Some simulation evidence

This section provides Monte Carlo evidence that the monotonized hybrid estimators M̂⋆
n of

the conditional distribution and econometric functions are efficient relative to the uncon-

strained estimators M̂n. To compute the constrained estimators, we took a discrete grid Dn

instead of the whole domain D in the equation (1). For our Monte Carlo exercises, we used

2n grid points evenly distributed across the entire sample space of {Yi} for the conditional

distribution function, and of {Xi} for the econometric functions.

4.1 Estimation of conditional distribution functions

We consider the following model:

Yi = g(Xi) + εi, Xi ∼ U(0, 1), εi ∼ N(0, σ2), i = 1, . . . , n,

where {Xi} and {εi} are two independent sequences of independent random variables. We

first chose g(x) = exp(x), σ = 0.5 and the kernel function K to be the triweigth kernel

K(t) = 35
32

(1 − t2)3I(−1 ≤ t ≤ 1). The local linear estimator F̂ (y|x) of the conditional

12



distribution function F (y|x) would be ideally monotone increasing in y, but this is unlikely

the case especially at the endpoints x ∈ {0, 1} and near them (see Hall and Müller (2003)).

This vexing defect can be circumvented by using, for instance, the projected hybrid variant

F̂ ⋆(·|x) which keeps the same convergence properties as the unconstrained estimator F̂ (y|x).
Monte Carlo experiments were performed over 5000 simulations in order to compare F̂ (·|x)
and F̂ ⋆(·|x) for different quantiles x in [0, 1]. Sample sizes of 100 and 500 were used. We

chose h = n−α for α = 1
5

and α = 2
5
. The measures of efficiency for each simulation were the

mean squared error (MSE) and the mean absolute deviation error (MADE)

MSE [π(·|x)] =
1

n

n
∑

i=1

{π(Yi|x) − F (Yi|x)}2 , MADE [π(·|x)] =
1

n

n
∑

i=1

|π(Yi|x) − F (Yi|x)| ,

where π(·|x) is either F̂ (·|x) or F̂ ⋆(·|x). The Monte Carlo averages of MSE[π(·|x)] and of

MADE [π(·|x)] over the 5000 replications are reported in Table 1 for the sample sizes n = 100

and n = 500. It is seen that F̂ ⋆(·|x) performs at least as well as the empirical F̂ (·|x) in terms

of MSE in all cases and in terms of MADE in almost all cases (the gray cells indicate where

F̂ ⋆(·|x) is slightly inferior). The constrained estimator F̂ ⋆(·|x) gets better with larger margin

as x approaches to the endpoints.

Table 1: Results for 5000 Monte-Carlo simulations with n = 100, 500.

n = 100 & α = 1/5
MSE MADE

x F̂ (·|x) F̂ ⋆(·|x) F̂ (·|x) F̂ ⋆(·|x)
0 .0149 .0136 .0779 .0740

.01 .0128 .0118 .0730 .0698

.05 .0079 .0076 .0584 .0569
.1 .0049 .0047 .0467 .0460
.25 .0028 .0028 .0373 .0372
.5 .0030 .0030 .0408 .0408
.75 .0029 .0029 .0388 .0388
.9 .0041 .0039 .0406 .0399
.95 .0062 .0058 .0475 .0459
.99 .0093 .0083 .0552 .0516
1 .0104 .0092 .0573 .0533

n = 500 & α = 1/5
MSE MADE

x F̂ (·|x) F̂ ⋆(·|x) F̂ (·|x) F̂ ⋆(·|x)
0 .0040 .0039 .0413 .0403

.01 .0033 .0032 .0376 .0369

.05 .0017 .0017 .0276 .0274
.1 .0010 .0009 .0208 .0208
.25 .0007 .0007 .0190 .0190
.5 .0008 .0008 .0211 .0212
.75 .0008 .0008 .0203 .0204
.9 .0008 .0008 .0184 .0184
.95 .0013 .0013 .0224 .0221
.99 .0024 .0023 .0291 .0281
1 .0029 .0027 .0314 .0301

n = 100 & α = 2/5
MSE MADE

F̂ (·|x) F̂ ⋆(·|x) F̂ (·|x) F̂ ⋆(·|x)
.0365 .0324 .1183 .1117
.0284 .0258 .1051 .1005
.0107 .0104 .0670 .0660
.0063 .0062 .0534 .0528
.0067 .0065 .0571 .0564
.0073 .0071 .0619 .0612
.0065 .0064 .0565 .0558
.0051 .0050 .0457 .0450
.0079 .0076 .0528 .0518
.0197 .0176 .0762 .0722
.0258 .0224 .0852 .0793

n = 500 & α = 2/5
MSE MADE

F̂ (·|x) F̂ ⋆(·|x) F̂ (·|x) F̂ ⋆(·|x)
.0137 .0128 .0747 .0721
.0076 .0073 .0561 .0553
.0022 .0022 .0313 .0312
.0021 .0021 .0312 .0310
.0024 .0024 .0346 .0345
.0027 .0027 .0376 .0374
.0024 .0024 .0344 .0343
.0018 .0018 .0274 .0273
.0017 .0017 .0253 .0252
.0054 .0052 .0425 .0418
.0094 .0087 .0541 .0518
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We also compared the projected local linear estimator F̂ ⋆(·|x) with various regression

estimators of F (·|x) in Table 2. Those were the Nadaraya-Watson estimator, the least squares

(LS) polynomial estimator, the LS spline estimator and the smoothing spline estimator. The

standard Nadaraya-Watson estimator is defined by

F̂NW (y|x) =
n
∑

i=1

K((x−Xi)/h)Z
y
i /

n
∑

i=1

K((x−Xi)/h),

with Zy
i = I(Yi ≤ y). For both the Nadaraya-Watson and local linear estimators, we

used bandwidths h ranging over a refined grid of 200 points regularly distributed between

hmin = max1≤i<n{X(i+1) −X(i)} and hmax = {X(n) −X(1)}, where X(1) ≤ · · · ≤ X(n) are the

ordered observations. The LS polynomial estimator of F (y|·) ≡ E(Zy|X = ·) is given by

F̂LP (y|·) = argmin
P∈PN

n
∑

i=1

(Zy
i − P (Xi))

2,

where PN stands for the set of polynomials of degree less than or equal to N , a smoothing

parameter ranging over {0, . . . , n − 1}. If {P0, . . . , PN} is a basis of the space PN , then

F̂LP (y|x) =
∑N

j=0 θ̂j(y)Pj(x), with {θ̂j(y)} being the solution of

min
(θ0,...,θN )∈RN+1

n
∑

i=1

(

Zy
i −

N
∑

j=0

θjPj(Xi)

)2

.

The LS cubic spline estimator of the regression function F (y|·) is defined by

F̂RS(y|·) = argmin
S∈S4(x1,...,xk)

n
∑

i=1

(Zy
i − S(Xi))

2,

where S4(x
1, . . . , xk) is the set of cubic splines with given knots x1, . . . , xk in [0, 1]. The

smoothing parameter k ranges over {0, . . . , n− 4} and the knots are distributed regularly or

at the empirical quantiles of X. If {S1, . . . , Sk+4} is a basis of the vector space S4(x
1, . . . , xk),

then F̂RS(y|x) =
∑k+4

j=1 θ̂j(y)Sj(x), where the {θ̂j(y)} is the solution of

min
(θ1,...,θk+4)∈Rk+4

n
∑

i=1

(

Zy
i −

k+4
∑

j=1

θjSj(Xi)

)2

.

The smoothing cubic spline estimator of F (y|·) is given by

F̂SS(y|·) = argmin
W∈W2,2(0,1)

n
∑

i=1

(Zy
i −W (Xi))

2 + λ

∫ 1

0

(W ′′(t))2dt,
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where W2,2(0, 1) is the Sobolev space of order 2 on (0, 1) and λ > 0 is the smoothing

parameter. If {W1, . . . ,Wn} is a basis of the natural cubic splines of S4(X1, . . . , Xn), then

F̂SS(y|x) =
∑n

j=1 θ̂j(y)Wj(x), where {θ̂j(y)} is the solution of

min
(θ1,...,θn)∈Rn

n
∑

i=1

(

Zy
i −

n
∑

j=1

θjWj(Xi)

)2

+

∫ 1

0

(

n
∑

j=1

θjW
′′
j (t)

)2

dt.

To guarantee a fair comparison among the different methods, we used for each estimator

π ∈ {F̂ ⋆, F̂ , F̂NW , F̂LP , F̂RS, F̂SS} the smoothing parameter which minimizes the respec-

tive mean squared error MSE [π(·|x)]. The Monte Carlo averages of MSE[π(·|x)] and of

MADE [π(·|x)], computed over 600 samples of size n = 100, confirm the superiority of the

monotonized local linear estimator over the unconstrained version, especially near and at

the endpoints x. Compared with the Nadaraya-Watson estimator, we see that both the

initial and monotonized local linear estimators are clearly the winners in the right tail values

of x. However, F̂NW (·|x) seems to outperform in this particular example the unrestricted

estimator in the left tails (this is probably due to the disadvantage of producing distribu-

tion function estimates F̂ (y|x) that are not constrained to be positive), while the projected

version F̂ ⋆(·|x) reduces considerably both MSE and MADE. Compared to the least squares

spline estimator, F̂ ⋆(·|x) keeps the big margins that F̂ (·|x) takes over F̂RS(·|x). Finally,

F̂ ⋆(·|x) performs in almost all cases at least as well as F̂SS(·|x) and F̂LP (·|x), especially in

the tail values of x.

Table 2: Results for 600 Monte-Carlo simulations with n = 100.

MSE[π(·|x)]

x F̂ ⋆ F̂ F̂NW F̂RS F̂SS F̂LP

0 .0046 .0051 .0045 .6992 .0067 .0087
.01 .0045 .0049 .0044 .2693 .0062 .0078
.05 .0039 .0041 .0037 .0097 .0047 .0049
.1 .0030 .0031 .0029 .0037 .0036 .0034
.25 .0021 .0021 .0020 .0030 .0019 .0018
.5 .0022 .0022 .0023 .0026 .0024 .0024
.75 .0023 .0023 .0024 .0030 .0022 .0021
.9 .0026 .0028 .0035 .0031 .0033 .0029
.95 .0031 .0036 .0046 .0053 .0045 .0042
.99 .0041 .0049 .0071 .0275 .0068 .0077
1 .0038 .0047 .0072 .0607 .0079 .0097

MADE[π(·|x)]

F̂ ⋆ F̂ F̂NW F̂RS F̂SS F̂LP

.0444 .0472 .0425 .7955 .0617 .0722

.0440 .0464 .0422 .3435 .0592 .0676

.0409 .0426 .0389 .0568 .0505 .0511

.0374 .0384 .0358 .0423 .0441 .0421

.0319 .0321 .0315 .0402 .0319 .0318

.0350 .0351 .0355 .0384 .0361 .0373

.0346 .0346 .0348 .0404 .0346 .0342

.0320 .0334 .0367 .0379 .0387 .0379

.0332 .0357 .0397 .0456 .0452 .0449

.0355 .0394 .0471 .0856 .0569 .0633

.0340 .0381 .0468 .1269 .0613 .0732

We also performed a Monte Carlo comparison with a linear function g(x) = x. The

results were similar to the first example, so they are not reported here. The benefits of our

restricted estimator F̂ ⋆(·|x) are acheived especially near and at the support endpoints ‘x’.
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4.2 Estimation of partial frontier functions

Here, we first considered the Cobb-Douglas model:

Yi = X
1/2
i exp (−Ui), i = 1, . . . , n,

where Xi is uniformly distributed on (0, 1) and Ui, independent of Xi, has an exponential

distribution with mean 1/3. In this case, we have ψα(x) = x1/2
{

cos
(

arccos(1−2α)+4π
3

)

+ 1
2

}

and ϕm(x) = x1/2{1 − Φm}, where Φm =
∑m

j=0

(

m
j

)

3j(−2)m−j/(3m − j + 1). Both the

partial frontiers are increasing and log-linear in x ∈ (0, 1]. They coincide if and only if

α = αm = 1
2
(1 − cos[3 arccos(1

2
− Φm) − 4π]). For example, α10 = 0.9242 and α20 = 0.9612.

In this case, the frontier function ϕm ≡ ψαm
can be estimated by both ϕ̂m,n and ψ̂αm,n as

well as their projected monotone versions ϕ̂⋆m,n and ψ̂⋆αm,n.

We simulated 5000 samples according to the Cobb-Douglas scenario to analyze the bias

and the MSE of the four estimators ϕ̂m,n(x), ψ̂αm,n(x), ϕ̂
⋆
m,n(x), ψ̂

⋆
αm,n(x), for x ranging over

{0.1, 0.2, . . . , 0.9} and for m ∈ {10, 20}. The sample sizes were 100 and 500. The results are

reported in Table 3 for n = 100. Those for n = 500 were qualitatively similar to the case

where n = 100, so they are omitted.

We can see that ϕ̂⋆m,n(x) and ψ̂⋆αm,n(x) have uniformly smaller MSEs than ϕ̂m,n(x) and

ψ̂αm,n(x), respectively, but not by much as is expected from their asymptotic
√
n-equivalence

in probability. In terms of bias, the monotonized estimators also perform better than the

original ones, except for certain values of m and x where the squared bias is negligible

compared to the value of MSE. On the other hand, the difference in their performance

between the empirical order-m and order-αm frontier functions as estimators of the same

monotone function ϕm = ψαm
remains for their constrained variants.

Table 4 contains the results when the 5000 Monte Carlo samples were contaminated by an

outlier at each point x. Clearly, the monotone versions ϕ̂⋆m,n(x) and ψ̂⋆αm,n(x) were superior

to the initial estimators ϕ̂m,n(x) and ψ̂αm,n(x), respectively, in terms of both bias and MSE.

This robustness property of the hybrid projected estimators to outliers is highly desirable.

We also performed a Monte Carlo comparison with another scenario: (X, Y ) was gener-

ated from a uniform distribution on the triangle {(x, y)|0 ≤ y ≤ x ≤ 1}. Here, both ψα(x) =

x(1−
√

1 − α) and ϕm(x) = x(1−Am) are linear, where Am =
∑m

j=0

(

m
j

)

2j(−1)m−j/(2m−j+
1). They coincide when α = αm = 1−A2

m. For example, α10 = 0.9270 and α20 = 0.9622. The

lessons were similar to those from the first scenario, hence the results are not reported here.

The estimators ϕ̂⋆m,n(x) and ψ̂⋆αm,n(x) were more efficient and more resistant to anomalous

data than the unrestricted ϕ̂m,n(x) and ψ̂αm,n(x) estimators.
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Table 3: Cobb-Douglas model, 5, 000 Monte-Carlo samples of size n = 100.

m = 10
MSE×103 Bias×103

x ϕ̂m,n(x) ϕ̂⋆
m,n(x) ϕ̂m,n(x) ϕ̂⋆

m,n(x)

0.1 1.0295 1.0063 -14.8786 -14.8738
0.2 0.7675 0.7477 -10.5927 -10.4787
0.3 0.7017 0.6848 -8.4244 -8.3872
0.4 0.6657 0.6540 -7.0854 -7.0422
0.5 0.6411 0.6324 -6.4184 -6.4092
0.6 0.6017 0.5942 -5.6570 -5.6435
0.7 0.6144 0.6074 -4.9594 -4.9267
0.8 0.6155 0.6070 -5.1687 -5.1372
0.9 0.6108 0.6062 -4.6875 -4.6491

m = 20
x ϕ̂m,n(x) ϕ̂⋆

m,n(x) ϕ̂m,n(x) ϕ̂⋆
m,n(x)

0.1 1.4078 1.3679 -22.1218 -22.0722
0.2 0.9515 0.9323 -14.5829 -14.5409
0.3 0.7839 0.7685 -11.2985 -11.3003
0.4 0.7198 0.7070 -9.3657 -9.3515
0.5 0.6642 0.6537 -8.1365 -8.1391
0.6 0.6449 0.6362 -7.6981 -7.6645
0.7 0.6069 0.5977 -7.0837 -7.0818
0.8 0.6039 0.5955 -6.3146 -6.2928
0.9 0.6312 0.6235 -6.4389 -6.4009

αm = α10 = 0.9242
MSE×103 Bias×103

ψ̂αm,n(x) ψ̂⋆
αm,n(x) ψ̂αm,n(x) ψ̂⋆

αm,n(x)

1.0206 0.9643 -5.3451 -5.7296
1.0150 0.9356 -6.1262 -5.7438
0.9890 0.9307 -5.3119 -5.0679
0.9901 0.9399 -4.9526 -4.8225
1.0025 0.9677 -4.1223 -4.0929
1.0129 0.9781 -3.9310 -3.8007
1.0136 0.9836 -3.8630 -3.7386
0.9890 0.9612 -3.0135 -2.8831
0.9874 0.9559 -0.7336 -1.2649

αm = α20 = 0.9612

ψ̂αm,n(x) ψ̂⋆
αm,n(x) ψ̂αm,n(x) ψ̂⋆

αm,n(x)

1.2505 1.2324 -17.3504 -17.2979
0.9295 0.8806 -3.0042 -3.6409
1.0688 0.9425 -10.5546 -9.6092
0.9501 0.9339 -4.9056 -5.0865
0.9998 0.9181 -4.0747 -4.1922
1.0434 0.9992 -7.6179 -6.9052
0.9360 0.9048 -1.7786 -2.2854
1.0173 0.9419 -6.8133 -6.0797
0.9547 0.9477 -4.9118 -4.8289

Table 4: Cobb-Douglas model with 9 outliers, 5, 000 Monte-Carlo samples of size n = 109.

m = 10
MSE×103 Bias×103

x ϕ̂m,n(x) ϕ̂⋆
m,n(x) ϕ̂m,n(x) ϕ̂⋆

m,n(x)

0.1 21.5602 3.5950 144.2780 57.1822
0.2 18.1104 8.1085 133.0708 88.5048
0.3 15.2115 8.4576 122.2741 90.7982
0.4 14.6204 8.8624 119.9818 93.0775
0.5 15.4200 9.7648 123.3490 97.8631
0.6 16.6763 11.2345 128.3916 105.1204
0.7 18.6371 13.0264 135.8233 113.3201
0.8 19.7960 14.7578 140.0798 120.7571
0.9 20.4651 15.8865 142.4835 125.3767

m = 20
x ϕ̂m,n(x) ϕ̂⋆

m,n(x) ϕ̂m,n(x) ϕ̂⋆
m,n(x)

0.1 34.8457 5.5081 185.8157 72.4978
0.2 32.6953 14.4042 180.0621 119.4244
0.3 28.2507 16.0439 167.5092 126.0675
0.4 27.6809 16.5960 165.9073 128.3727
0.5 30.1919 18.7323 173.3699 136.4944
0.6 33.1486 22.0431 181.7376 148.1432
0.7 37.9023 26.1291 194.4146 161.3750
0.8 40.0504 29.8317 199.9093 172.4920
0.9 41.0195 31.9189 202.3611 178.4723

αm = α10 = 0.9242
MSE×103 Bias×103

ψ̂αm,n(x) ψ̂⋆
αm,n(x) ψ̂αm,n(x) ψ̂⋆

αm,n(x)

44.9776 1.5383 191.2005 26.5049
15.3029 9.8166 117.5463 92.0706
5.6520 2.6643 63.2375 49.3343
5.8782 3.3670 67.1900 49.7857
4.3340 3.3848 62.5612 54.7157
4.8955 3.5222 63.7662 53.2989
4.5543 3.5433 63.5704 55.6157
5.5598 4.2718 69.2568 59.8991
5.1996 4.2869 68.3840 61.7524

αm = α20 = 0.9612

ψ̂αm,n(x) ψ̂⋆
αm,n(x) ψ̂αm,n(x) ψ̂⋆

αm,n(x)

48.9564 9.4020 221.2610 94.0031
54.6848 13.0256 226.0735 112.2760
30.1573 23.9229 172.2698 151.4351
35.1036 13.2740 185.6419 111.9611
24.3216 15.4538 150.1006 123.7398
27.8948 14.3823 166.7902 115.4965
32.4609 12.8179 171.6178 113.0296
29.6673 22.2731 172.1110 146.7524
43.9957 15.4813 208.7249 124.3710

5 Data example

In this section we discuss a real data example which involves isotonic econometric functions.

The dataset consisted of n = 406 firms in the Petroleum, Chemical and Plastics industries in

Ecuador in 2002. For each firm one observed the capital K in thousands of USD, the average
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number of employees L and the value-added real output Y in thousands of USD. Despite its

popularity, the FDH estimator ϕ̂(·) of the production frontier has the obvious drawback of

being too sensitive to isolated extremes. In this particular example, the FDH surface was

determined by a small fraction (12.56%) of extreme firms, and some of these FDH firms were

atypical and/or outliers. For example, the FDH frontier corresponding to 99 observations

(24.38% of the data) was constant having the value 273, 000 and was determined by only

one extremal firm. Clearly, such a suspicious firm influenced dramatically the FDH frontier.

In order to capture the shape of the sample boundary in a more robust way, the use

of the partial order-m and order-α frontier approaches may be favored in this case. The

practical question is then how to choose m and α in such a way that ϕ̂m,n and ψ̂α,n provide

reasonable estimates of large partial production functions ϕm and ψα lying close to ϕ. This

could be achieved empirically by looking to Figure 1 which indicates how the percentage of

the points lying outside the curves of ϕ̂m,n and ψ̂α(m),n decreases with the order m, where

α(m) = (1/2)1/m and m ≥ 1. The idea is to choose values of m for which the partial order-m

and order-α(m) frontier estimators are sensitive to the magnitude of valuable extreme firms

and are simultaneously resistant to the influence of the outlying observations. The evolution

of the percentage should show an “L” structure whatever the studied dataset is. Looking

to Figure 1, the percentage falls rapidly until the value, say, m = 70 and then it slows

down. So, we took for our illustrations m = 70 to get a partial boundary lying close to the

unreliable FDH frontier but well inside the sample. For the sake of conciseness, we restricted

our analysis to the quantile-type frontier functions.
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Figure 1: Evolution of the percentage of the observations lying outside the partial order-m
and order-α(m) frontiers as m varies (Ecuadorian manufacturing sector).

Figure 2 (top panel) shows the resulting values ψ̂α(m),n(xi) for 60 randomly chosen grid

points among the 99 observed inputs-usage xi = (Ki, Li) having the same FDH value

ϕ̂(xi) = 273, 000. As expected, there are many violations of monotonicity. Figure 2 (bottom
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panel) displays the values of ψ̂⋆α(m),n(xi) for the same 60 points, showing that the partial

order-α(m) production function is now isotonic nondecreasing. This is good news to the

practitioners, whose concern, which potential outliers to eliminate before estimating the

econometric function, might thus become less urgent.

For the computation of the isotonic multi-argument function ψ̂⋆α(m),n(x), we considered

the minimal rectangular set with edges parallel to the coordinate axes covering all the ob-

servations Xi, and then chose a discrete grid Dn in this rectangular set. The discrete set Dn

consisted of the observation points {Xi} and the minimal and maximal (with respect to the

partial order induced by “≤”) points of the minimal envelopment rectangular set.

6 Concluding Remarks

This paper contributes to the literature on isotonic estimation of a multivariate monotone

function M(·) defined on a compact subset D of R
d. We discussed an easy isotoniza-

tion technique. The method yields a monotonized estimator M̂#
n which keeps the con-

sistency property of the unconstrained version M̂n and outperforms it in the sense that

supx∈D
|M̂#

n (x) −M(x)| ≤ supx∈D
|M̂n(x) −M(x)|. Under the assumption that the process

rn(M̂n −M) is asymptotically equicontinuous for some sequence rn > 0, we show that the

projected estimator M̂#
n is asymptotically rn-equivalent in probability to the non-monotone

estimator M̂n. Thus, the first-order properties of the latter are valid for the former.

A first motivating application involves a monotone estimator of the conditional distribu-

tion function, obtained by projected local linear fitting. Our simulations indicate that the

hybrid estimator F̂ ⋆(·|x) of the conditional distribution function corrects for monotonicity

and improves the initial local linear estimator without losing its superior bias properties,

especially near and at the support endpoints of the explanatory variable. We found that

F̂ ⋆(·|x) decreased both the MSE and the MADE. These attractive properties are particularly

advantageous if one desires to invert the improved local linear estimator F̂ ⋆(·|x) to produce

a more relevant estimator of the conditional quantile function.

This article also contributes to frontier modeling by ensuring the monotonicity ‘free of

charge’ of the empirical order-m probability weighted moment (Cazals et al. (2002)) and

order-α quantile type (Aragon et al. (2005)) frontier functions. In absence of outliers, our

experiments suggest that the constrained hybrid frontiers are uniformly the winners in terms

of MSE and provide competitive performance even in terms of bias. In presence of outliers, it

does appear that the monotonized estimators perform appreciably better than the empirical

ones in terms of both bias and MSE in all cases. One way to extend our results may be to

consider the regularized case by looking into the ‘trimming’ orders m and α as appropriate
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Figure 2: Unconstrained estimates ψ̂α(m),n (top) and isotonic estimates ψ̂⋆α(m),n (bottom).
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functions of the sample size n. The intriguing question of whether the weak convergence of

the regularized processes also holds is a topic of interest for future research.

Another interesting application, especially in the field of reliability and survival analy-

sis, is the monotonization of Yang’s (1978) estimator for the mean remaining life function.

Kochar et al. (2000) were the first to implement the idea that a projection type estimator is

‘free of charge’ in the decreasing case, which is of genuine interest. They raised the question

of possible extensions of the asymptotic
√
n-equivalence in probability from a fixed compact

subinterval D = [0, b] to the whole positive half-line [0,∞) by making use of weighted em-

piricals (Hall and Wellner (1979)). Unfortunately, posing the question in this way involves

some mathematical difficulties that we have not yet succeeded in overcoming.

It should be also pointed out that we restrict ourselves to rectangular regions D of R
d.

We do not discuss the extensions of our theorems to more general compact sets (e.g., closed

convex sets), but they are of interest.

Appendix: proofs.

To simplify the notation throughout this section, we write Aℓ,0 and Aℓ,j, j = 1, . . . , d, for

the vectors

Aℓ,0 = (a1,ℓ1 , . . . , ad,ℓd) with 0 ≤ ℓ1, . . . , ℓd ≤ kn,

Aℓ,j = (a1,ℓ1, . . . , aj−1,ℓj−1
, (aj,ℓj + ∆j), aj+1,ℓj+1

, . . . , ad,ℓd) with 0 ≤ ℓ1, . . . , ℓd ≤ kn − 1.

Note that the definition of Lnh reads then as

Lnh(x) = h(Aℓ,0) +

(

h(Aℓ,1) − h(Aℓ,0)

∆1
, . . . ,

h(Aℓ,d) − h(Aℓ,0)

∆d

)

(x−Aℓ,0)

for x ∈ Dℓ1,...,ℓd and 0 ≤ ℓ1, . . . , ℓd ≤ kn − 1.

Proof of Lemma 1. The monotonicity being defined with respect to the partial order

induced on R
d, it suffices to show that the piecewise linear transformation LnM̂n is nonde-

creasing a.s., for all large n, on each partitioning set Dℓ1,...,ℓd, 0 ≤ ℓ1, . . . , ℓd ≤ kn−1. Clearly

this holds if for each j = 1, . . . , d,

M̂n(Aℓ,j) − M̂n(Aℓ,0) > 0 a.s. for all largen.

By Condition (C4) we have |M̂n(Aℓ,0)−M(Aℓ,0)| = Oa.s.(sn/rn) uniformly for 0 ≤ ℓ1, . . . , ℓd ≤
kn, and by Condition (C1) we have for all ℓ1, . . . , ℓd ≤ kn − 1 and j = 1, . . . , d,

M(Aℓ,0) −M(Aℓ,j) = −∆j ∂jM(a1,ℓ1 , . . . , aj−1,ℓj−1
, (aj,ℓj + ξj), aj+1,ℓj+1

, . . . , ad,ℓd) ≤ −cj∆j
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for some ξj ∈ (0,∆j). Then

M̂n(Aℓ,0) − M̂n(Aℓ,j) =
[

M̂n(Aℓ,0) −M(Aℓ,0)
]

+ [M(Aℓ,0) −M(Aℓ,j)]

+
[

M(Aℓ,j) − M̂n(Aℓ,j)
]

≤ −cj∆j +Oa.s.(sn/rn), n→ ∞.

It follows from sn/rn = o(∆j) that

M̂n(Aℓ,0) − M̂n(Aℓ,j) ≤ ∆j (−cj + oa.s.(1)) < −cj∆j/2 a.s.,

for all large n. This ends the proof. �

Proof of Lemma 2. Let ε > 0 be arbitrary and choose δ to satisfy (C3). Denote by ∆

the vector (∆1, . . . ,∆d)
⊤. Because kn ↑ ∞, there exists n1 ∈ N such that ‖∆‖d < δ for all

n ≥ n1. Then, for all n ≥ max(n0, n1), both terms

Un := max
0≤ℓ1,...,ℓd≤kn−1

d
∑

j=1

|Zn(Aℓ,j) − Zn(Aℓ,0)|

Wn := max
0≤ℓ1,...,ℓd≤kn−1

sup
x∈Dℓ1,...,ℓd

|Zn(x) − Zn(Aℓ,0)|

are smaller than or equal to

d× sup
x,x′∈D

‖x−x′‖d≤‖∆‖d

|Zn(x) − Zn(x
′)| ≤ d× sup

x,x′∈D

‖x−x′‖d<δ

|Zn(x) − Zn(x
′)|.

Consequently, we obtain in view of (C3)

Un
p−→ 0 and Wn

p−→ 0 as n→ ∞. (A.1)

Now, define a piecewise shifted variation VnM of M on D by

VnM(x) := M(x) +
[

M̂n(Aℓ,0) −M(Aℓ,0)
]

for x ∈ Dℓ1,...,ℓd with x /∈ {Aℓ,1, · · · , Aℓ,d, (Aℓ,0 + ∆)}, with 0 ≤ ℓ1, . . . , ℓd ≤ kn − 1, and by

VnM(x) := M̂n(x) for x ∈ {Aℓ,1, · · · , Aℓ,d, (Aℓ,0 + ∆)}.

Note that VnM(Aℓ,0) = M̂n(Aℓ,0) for 0 ≤ ℓ1, . . . , ℓd ≤ kn. Note also that

rn

[

M̂n(x) − VnM(x)
]

= rn

[

M̂n(x) −M(x)
]

− rn

[

M̂n(Aℓ,0) −M(Aℓ,0)
]

= Zn(x)−Zn(Aℓ,0)

for x ∈ Dℓ1,...,ℓd with x /∈ {Aℓ,1, · · · , Aℓ,d, (Aℓ,0 + ∆)}. Thus

rn‖M̂n − VnM‖D ≤Wn. (A.2)
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On the other hand, by the definitions of Ln and Vn, we have LnM̂n(x) = LnVnM(x) for all

x ∈ D, so that

M̂n(x) − LnM̂n(x) =
[

M̂n(x) − VnM(x)
]

+ [VnM(x) − LnVnM(x)] . (A.3)

Since for x ∈ Dℓ1,...,ℓd with x /∈ {Aℓ,1, · · · , Aℓ,d, (Aℓ,0 + ∆)} and 0 ≤ ℓ1, . . . , ℓd ≤ kn − 1,

[VnM(x) − LnVnM(x)] − [M(x) − LnM(x)]

=
d
∑

j=1

xj − aj,ℓj
∆j

{[

M(Aℓ,j) − M̂n(Aℓ,j)
]

−
[

M(Aℓ,0) − M̂n(Aℓ,0)
]}

we get ‖VnM − LnVnM‖D ≤ ‖M − LnM‖D + Un/rn. It follows from (A.2) and (A.3) that

rn‖M̂n − LnM̂n‖D ≤Wn + rn‖M − LnM‖D + Un

which converges in probability to zero by (A.1) and Lemma 3. �

Proof of Lemma 3. For any n and ℓ1, . . . , ℓd ≤ kn − 1, we have by Taylor expansion that,

uniformly for x ∈ Dℓ1,...,ℓd,

M(x) = M(Aℓ,0) + [∂jM(Aℓ,0)]
⊤ (x− Aℓ,0) +O

(

δ2
n

)

.

Thus, M(x) − LnM(x) =
∑d

j=1(xj − aj,ℓj)Tj +O (k−2
n ), where

Tj = ∂jM(Aℓ,0) −
M(Aℓ,j) −M(Aℓ,0)

∆j
.

A Taylor expansion of M(Aℓ,j) with ‖∂2
jjM‖D < ∞ for all j = 1, . . . , d gives Tj = O(∆j),

which leads to M(x) − LnM(x) = O (δ2
n) uniformly for x ∈ Dℓ1,...,ℓd and ℓ1, . . . , ℓd ≤ kn − 1.

Therefore

‖M − LnM‖D = max
0≤ℓ1,...,ℓd≤kn−1

‖M − LnM‖Dℓ1,...,ℓd
= O

(

δ2
n

)

.

�

Proof of Lemma 4. Note first that nh
∑n

i=1w
2
i and n3h3

∑n
i=1w

4
i are bounded with prob-

ability tending to one. Since F 10(y|u) is bounded for y ∈ D and for u in a neighborhood of

x, there exists a constant 0 < c1 <∞ such that

E
[

(ξi(y
′) − ξi(y))

2
∣

∣X
]

≤ c1[|y′ − y|+ (y′ − y)2].

Since [1I(Yi ≤ y) − 1I(Yi ≤ y′)]4 = [1I(Yi ≤ y) − 1I(Yi ≤ y′)]2, there also exists a constant

0 < c2 <∞ such that

E
[

(ξi(y
′) − ξi(y))

4
∣

∣X
]

≤ c2[|y′ − y|+ (y′ − y)4].
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Thus, there exist constants Ci, i = 1, 2, such that

E
[

|Z1n(y
′) − Z1n(y)|4

∣

∣X
]

≤ C1[(y
′ − y)2 + (y − y′)4]

(

nh

n
∑

i=1

w2
i

)2

+ C2[|y′ − y| + (y − y′)4]n2h2

n
∑

i=1

w4
i .

This implies that there exists a constant 0 < C < ∞ such that, for all y, y′ ∈ D with

n−1h−1 ≤ |y − y′| ≤ 1, the following inequalities hold with probability tending to one:

E
[

|Z1n(y
′) − Z1n(y)|4

∣

∣X
]

≤ C(y′ − y)2. (A.4)

Choose a sequence p ≡ pn such that p ≥ n−1h−1 and p
√

n/h → 0 as n tends to infinity.

This is possible since we assume h is asymptotic to n−α for some 1/5 ≤ α < 1/3. Applying

Theorem 12.2 of Billingsley (1968) to the partial sums
∑i

l=1[Z1n(y+ lp)−Z1n(y+ (l− 1)p)]

with (A.4), we obtain that there exists a constant C3 such that, for any integer m ≥ 1

possibly depending on n,

P

[

max
0≤i≤m

∣

∣Z1n(y + ip) − Z1n(y)
∣

∣ >
ε

12

∣

∣

∣
X
]

≤ C3

ε4
(mp)2 (A.5)

with probability tending to one. To analyze the difference between Z(y′) and Z(y+ ip) when

y′ ∈ [y + ip, y + (i + 1)p] for some 0 ≤ i ≤ (m − 1), define Z
+
1n(y) =

√
nh
∑

wi≥0wiξi(y)

and Z
−
1n(y) =

√
nh
∑

wi<0wiξi(y). Then, the maximal inequality (A.5) also holds for the

processes Z
+
1n and Z

−
1n. Furthermore, for any y′′ ∈ D and y′ ∈ [y′′, y′′ + p], it follows that

|Z1n(y
′) − Z1n(y

′′)| (A.6)

≤ |Z+
1n(y

′′ + p) − Z
+
1n(y

′′)| + |Z−
1n(y

′′ + p) − Z
−
1n(y

′′)| + C4 p
√
nh

n
∑

i=1

|wi|

for some constant C4. Since wi are bounded by C5n
−1h−1 for some constant C5, the last term

on the right hand side of (A.6) is less than ε/12 for sufficiently large n. Thus, the inequality

(A.6) and the maximal inequality (A.5) together with its versions for Z
+
1n and Z

−
1n give

P

[

sup
y≤y′≤y+mp

∣

∣Z1n(y
′) − Z1n(y)

∣

∣ >
ε

3

∣

∣

∣
X
]

≤ 3C3

ε4
(mp)2 (A.7)

with probability tending to one. Choose δ ≤ ε5/(3C3) and m = δ/p. Then, the right hand

side of the inequality (A.7) can be replaced by εδ. From this, one can prove

P

[

sup
y,y′∈D

|y′−y|≤δ

∣

∣Z1n(y
′) − Z1n(y)

∣

∣ > ε
∣

∣

∣
X
]

≤ ε
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with probability tending to one, where we assume D = [0, 1] without loss of generality. This

concludes the proof of the first part of the lemma.

For Z2n, note that Z2n(y) =
√
nh
∑n

i=1wi [F (y|Xi) − F (y|x) − (Xi − x)F 01(y|x)] since
∑n

i=1wi(Xi − x) = 0. By a Taylor expansion, it follows that

sup
y∈D

∣

∣

∣
Z2n(y) −

√
nh

n
∑

i=1

wi(Xi − x)2F 02(y|x)/2
∣

∣

∣

≤
√
nh5

n
∑

i=1

|wi| sup
|x′−x|≤h

sup
y∈D

∣

∣F 02(y|x′) − F 02(y|x)
∣

∣/2. (A.8)

Since nh5 is bounded,
∑n

i=1 |wi| = Op(1), and supy∈D
|F 02(y|x′)−F 02(y|x)| converges to zero

as x′ approaches to x, we have

Z2n(y) =
√
nh

n
∑

i=1

wi(Xi − x)2F 02(y|x)/2 + rn(y),

where rn satisfies P
(

supy∈D
|rn(y)| > ε

)

→ 0 for any ε > 0. The second part of the lemma

then follows from the continuity of F 02(·|x) on D. �

Proof of Lemma 5. From (A.8) and the fact
∑n

i=1 |wi| = Oa.s.(1) resulted from an appli-

cation of the strong law of large number, it follows that supy∈D
|Z2n(y)| = Oa.s.(1). To prove

the first part of the lemma, let ∆n = nh
∑n

i=1w
2
i . It follows that there exists a constant

C6 > 0 such that for all a ≥ 1

P

[

sup
y∈D

|Z1n(y)| ≥ a∆1/2
n

∣

∣

∣
X
]

≤ C6 a

√

n

h
∆−1/2
n exp

(

−2a2
)

. (A.9)

The exponential inequality (A.9) may be obtained by applying the lemma in Singh (1975)

conditionally on X . Also, one can obtain the following exponential inequality for ∆n: there

exist constants 0 < τ1 < τ2 <∞ and 0 < C7, C8 <∞ such that

P (∆n /∈ [τ1, τ2]) ≤ C7 exp(−C8nh). (A.10)

The two inequalities (A.9) and (A.10) imply

P

[

sup
y∈D

|Z1n(y)| ≥ a∆1/2
n

]

≤ C6 a

√

n

h
τ
−1/2
1 exp

(

−2a2
)

+ C7 exp(−C8nh). (A.11)

Choosing a = an =
√

logn gives P
[

supy∈D
|Z1n(y)| ≥

√
log n∆

1/2
n i.o.

]

= 0. This together

with the fact that ∆n = Oa.s.(1) concludes supy∈D
|Z1n(y)| = Oa.s.(

√
log n). �
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Proof of Theorem 2. The conditions (C1) and (C2) of Theorem 1 follow from the as-

sumption infy∈D F
10(y|x) > 0, and the one that F 20(·|x) is continuous on D, respectively.

The conditions (C3) and (C4) follow from Lemmas 4 and 5, respectively. �

Proof of Theorem 3. It is enough to check the conditions (C3)-(C4) of Theorem 1.

Condition (C3) follows from the weak convergence of the process Zn in the space of bounded

functions on D to the Gaussian process Z. Condition (C4) is also satisfied with sn =

(log log n)1/2. Indeed, if ν is the upper bound of the support of Y , we know from Daouia

and Simar (2005, Equation (8)) that P[ϕ̂(x) ≤ ϕ(x) ≤ ν, for all x ∈ D] = 1. Thus, we have

ϕ̂m,n(x) − ϕm(x) =

∫ ν

0

(

[F (y|x)]m − [F̂n(y|x)]m
)

dy

=

∫ ν

0

(

F (y|x) − F̂n(y|x)
)

m−1
∑

j=0

[F (y|x)]m−1−j[F̂n(y|x)]jdy

for all x ∈ D, almost surely. This gives ‖ϕ̂m,n − ϕm‖D ≤ mν sup(x,y) |F̂n(y|x) − F (y|x)|
almost surely. By the uniform law of the iterated logarithm for the empirical processes
√
n(F̂X,n − FX) and

√
n(F̂ − F ), we have sup(x,y) |F̂n(y|x) − F (y|x)| = O

(

(log log n/n)1/2
)

almost surely, which completes the proof. �

Proof of Theorem 4. The desired result follows immediately by applying Theorem 1 in

conjunction with the results of Horváth, Horváth and Zhou (2008). �

Proof of Theorem 5. Under the assumption that E(Xp) < ∞ for some p > 2, both

conditions (C3) and (C4) of Theorem 1 are fulfilled in view of (4) and (5). �
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