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Abstract

Additive varying coefficient models are a natural extension of multiple linear

regression models, allowing the regression coefficients to be functions of other

variables. Therefore these models are more flexible to model more complex

dependencies in data structures. In this paper we consider the problem of selecting

in an automatic way the significant variables among a large set of variables, when

the interest is on a given response variable. In recent years several grouped

regularization methods have been proposed and in this paper we present these under

one unified framework in this varying coefficient model context. For each of the

discussed grouped regularization methods we investigate the optimization problem

to be solved, possible algorithms for doing so, and the variable and estimation

consistency of the methods. We investigate the finite-sample performance of these

methods, in a comparative study, and illustrate them on real data examples.

1 Introduction

In a classical linear regression model the influence of covariates X(1), · · · , X(p) on a

response variable Y is modelled via Y = β0+β1X
(1)+ · · ·+βpX(p)+ε, where ε denotes the

error term in the regression model. A useful extension of this classical linear regression

model is functional (varying) coefficient models, where model parameters (such as βj,

j = 0, · · · , p) may change with the value of other variables (factors). To formalize

the functional coefficient, parametric representations such as finite order polynomials or

Fourier expansions, or otherwise nonparametric approaches can be employed.

In the varying coefficient model of [20], the regression function depends linearly

on some regressors, with coefficients considered as smooth functions of other predictor
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variables, called tuning variables. A special type of varying coefficient model is called the

functional coefficient model by [9] (see also [16]). There, all tuning variables are the same

and univariate. Such models have been used for longitudinal data where subjects are

often measured repeatedly over a given period of time, so that the measurements within

each subject are possibly correlated with each other (see [34]).

While many procedures have been developed in the literature for estimating the

varying coefficients, the problem of variable selection for such models has rarely been

addressed. Recently, [27] have studied the problem of variable selection for partial

linear varying coefficient models, where the parametric components are identified via

the Smoothed Clipped Absolute Deviation (scad) procedure of [13] but the varying

coefficients are selected via the generalized likelihood ratio test of [15]. Their approach

can be viewed as a combination of shrinkage and hypotheses testing methods. In [2] the

authors use an extension of the nonnegative garrote selection method to select variables in

a varying coefficient model. That paper also discusses a selection method that is equivalent

to a grouped lasso regularization method, discussed in our review of methods.

In this paper we present in a unifying framework several regularized estimation

procedures for variable selection in nonparametric varying coefficient models using basis

function approximations and grouped type of penalties. We focus on a varying coefficient

model used in the context of longitudinal data. Such data arise in many scientific studies,

where measurements possibly change over time t, leading to a response variable Y (t) and

covariates X(1)(t), · · · , X(p)(t). It is then of interest to study the association between

the covariates and the responses and to examine how the association varies with time.

A simple and useful model for studying the association between Y (t) and the covariates(
X(1)(t), · · · , X(p)(t)

)
is then the linear model

Y (t) = β0(t) + β1(t)X
(1)(t) + · · ·+ βp(t)X

(p)(t) + ε(t), (1.1)

where ε(t) is a zero-mean correlated stochastic process that cannot be explained by the

covariates. Such a model has been considered in [16] as a functional linear model for

longitudinal data. Model (1.1) is also a specific model within a class of functional linear

models introduced by [33] in a somewhat different context. For the varying coefficient

models, smoothing spline and kernel methods are proposed in [20]. In [21], smoothing

spline and kernel methods were studied whereas in [8] the smoothing spline method was

considered for functional analysis-of-variance (ANOVA) models which are special cases

of functional linear models. Although the spline method has better performance than

the kernel method due to its introduction of multiple smoothing parameters [21], its

computation is very intensive even for a longitudinal data set of moderate size, not to

mention the difficulty of selecting the multiple smoothing parameters which involves high

dimensional optimization problems. For some longitudinal data sets with special structure

[16] proposed two-step procedures that overcome the inflexibility of traditional spline and

kernel methods.

Model (1.1) is also the same as the one used by [23] but where a global smoothing

procedure is developed for estimating the parameters using a basis function approximation
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for the varying coefficients functions in a repeated measurements longitudinal data model.

It is also the model studied by [41] where the varying coefficients functions are estimated

by some locally kernel weighted least squares procedures. Model (1.1) further includes

many other useful models proposed in the literature, as will be discussed in the next

section.

In this paper we study the variable selection problem in the context of model (1.1).

We use the method of basis expansion to estimate the smooth functions βj(·) and discuss

various grouped regularization methods for variable selection, including grouped lasso

regularization, grouped scad regularization, grouped Bridge regularization and grouped

cosso regularization. Using results of [29], we show that the grouped lasso regularization

method is both variable selection consistent and estimation consistent, in asymptotic

sense, even when the dimensionality p increases much faster than the sample size. For

each grouped regularization selection method we comment on the available algorithms for

solving the specific optimization problem.

The paper is organized as follows. In Section 2 we introduce the modeling framework

with the necessary notations. In Sections 3–6 we discuss four grouped regularization

methods, of which the finite-sample performances are investigated via a simulation study

in Section 7. In the same section the use of the grouped regularization techniques on some

real data is illustrated.

2 Model formulation and set up

We consider a varying coefficient model

Y (t) = X(t)β(t) + ε(t), (2.1)

where X(t) = (1, X(1)(t), · · · , X(p)(t)), of dimension 1 × (p + 1), is the vector of time-

dependent covariates, and β(t) = (β0(t), β1(t), β2(t), · · · , βp(t))T is a vector of time-

varying coefficients, with AT denoting the transposed of a vector or matrix A. The

first elements in these vectors ensure the inclusion of an intercept parameter function in

the model.

For the error term we assume that for all t and s,

E (ε(t)) = 0, and Cov (ε(t), ε(s)) = σ2δst,

with δst the Kronecker delta.

In the context of longitudinal data, we have for each individual/subject under

study (for i = 1, · · · , n), observations at discrete time point ti1, · · · , tiNi
, denoted by

((Xi(ti1), Yi(ti1)), · · · , (Xi(tiNi
), Yi(tiNi

)), with Xi(tij) =
(

1, X
(1)
i (tij), · · · , X(p)

i (tij)
)

the

observed covariate values for individual i at time point tij. So, n denotes the number

of subjects/individuals, Ni is the number of observations at discrete time points for

individual/subject i, and p is the number of covariates.
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Observations are from the model (2.1) and hence satisfy

Yi(tij) = Xi(tij)β(tij) + εi(tij), i = 1, · · · , n, j = 1, · · · , Ni, (2.2)

with, for all i, j and all s, t,

E (εi(tij)) = 0 and Cov (εi(t), εj(s)) = σ2δstδij.

The main interest in the paper is in the variable selection problem, in particular

when p > n. For tackling this problem we study procedures of grouped lasso, grouped

scad, grouped Bridge and grouped cosso regularization. The focus is of course on the p

univariate functions βk(·), k = 1, · · · , p, since they describe the influence of the covariates

X(k)(·) on the response variable Y (·).
In practice, it is more useful to express the model in terms of basis functions. Assume

that the functions βk(·), k = 0, 1, · · · , p, belong to a certain space of smooth functions,

say that we can write

βk(t) =
∞∑
`=1

γ∗k`B`(t),

where γ∗ denotes the true parameter and we further approximate this by

βk(t) ≈
Lk∑
`=1

γ∗k`B
(k)
` (t), (2.3)

where the superscript (k) indicates that the set of approximating basis functions can

be different for each univariate function, and where Lk is an integer-valued truncation

parameter, possible different for each k. For example, in an approximation with B-

splines one could use B-splines of a different degree and/or a different number of knot

points for each of the univariate functions. Note that the approximation in (2.3) means

that one already has dealt with a (modeling) bias issue. In a modeling setting, we will

accept this approximation. Note, however, that when focusing on the asymptotic analysis

(when Lk goes to infinity), the rate of convergence obtained for each variable coefficient

is the optimal rate for nonparametric regression. Therefore the incurred loss due to this

approximation is not important asymptotically.

Hereafter we restrict ourselves to the finite dimensional space of cubic B-splines. For

each function βk we use a cubic B-spline parameterization with a reasonable amount of

knots or basis functions. A typical choice would be to use (Lk − 2) � mini=1,...,nNi
1/5

interior knots that are placed at the empirical quantiles of X(k)(·), completed by two extra

knots placed at the boundaries of the domain of definition of βk. A truncation parameter

Lk = Lkn for each component of the order mini=1,...,nNi
1/5 yields a truncation bias that

is negligible for twice differentiable functions, i.e.
∥∥∥βk −∑Lk

`=1 γ
∗
k`B

(k)
`

∥∥∥2
L2

= O(L−4k ), see

for instance [32].
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We now rewrite the (approximate) model in matrix notation. Substituting the

approximation (2.3) into the model (1.1) we can write

Yi(tij) =

p∑
k=0

X
(k)
i (tij)(B

(k)(tij))
Tγ∗k + εi(tij), i = 1, · · · , n, j = 1, · · · , Ni, (2.4)

where we introduced the notation

γ∗k =
(
γ∗k,1, · · · , γ∗k,Lk

)T
and B(k)(t) =

(
B

(k)
1 (t), · · · , B(k)

Lk
(t)
)T

for these vectors of dimension Lk × 1 and

Y = (Y1(t11), · · · , Y1(t1N1), Y2(t21), · · · , Y2(t2N2), · · · , Yn(tn1), · · · , Yn(tnNn))T

ε = (ε1(t11), · · · , ε1(t1N1), ε2(t21), · · · , ε2(t2N2), · · · , εn(tn1), · · · , εn(tnNn))T

for the latter vectors of dimension
n∑
i=1

Ni × 1 ≡ N × 1.

We further denote by Zk the matrix of dimension N × Lk consisting of all elements

(Zk)ij,` = X
(k)
i (tij)B

(k)
` (tij) i = 1, · · · , n, j = 1, · · · , Ni, ` = 1, · · · , Lk.

We have (p+ 1) such matrices and stack these into one single big structure

Z = [Z0Z1Z2 · · ·Zp] ,

of dimension N ×

(
p∑

k=0

Lk

)
. Finally we denote

γ∗ =
(
γ∗0, · · · ,γ∗p

)T
,

of dimension (

p∑
k=0

Lk)× 1.

With all the notations introduced above we can write the (approximate) model of

observations in (2.4) in matrix form as

Y = Zγ∗ + ε, (2.5)

which is now a linear model in γ∗ in which the variance-covariance matrix of the error

term has the structure

Σ(ε) = σ2IN ,

where IN denotes the diagonal matrix of dimension N ×N with ones on the diagonal.

In the sequel we work with the goodness-of-fit quantity

n∑
i=1

1

Ni

Ni∑
j=1

(
Yi(tij)−

p∑
k=0

Lk∑
`=1

γk,`X
(k)
i (tij)B

(k)
` (tij)

)2

≡ ‖Ỹ − Z̃γ‖22, (2.6)
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where we put Ỹ = W1/2Y and Z̃ = W1/2Z with W the matrix of dimension N × N

consisting of all diagonal matrices Wi of dimension Ni×Ni containing N−1i on the diagonal

elements.

A special situation occurs when, for all individuals, i, observations on the same time

points t1, · · · , tÑ are available, meaning that Ni = Ñ for all i = 1, · · · , n. In that case

N = nÑ .

Model (1.1) is also related to the model considered in [30] when studying smoothing `1-

penalized estimators for high-dimensional time-course data. They consider linear models

with slowly changing high-dimensional p× 1 parameter vector β(t):

Y(tr) = X(tr)β(tr) + ε(tr), r = 1, . . . , Ñ , (2.7)

where X(t) is an n(t)× p design matrix at time t, Y(t) is the n(t) dimensional response

vector at times t, that is for every time t one has data as in (2.7) with sample size n(t), and

finally the ε(t)’s are independent with E(ε(t)) = 0 and Cov(ε(t)) = σ2In(t). Assuming

that for all t they have the same number of observations n(t) = Ñ , they propose the

smoothed lasso for estimating sparsely β.

The high-dimensional linear model (2.7) considered in [30] with n(t) = Ñ is thus

a special case of the varying coefficient model (2.2) studied by [16]. Indeed, this is

easily seen by taking in (2.2), Ni = Ñ for all i = 1, . . . , n (cross-sectional longitudinal

data model) and assuming further that the error covariance structure is determined by

Cov(ε(t), ε(s)) = σ2δst. This remark will be important when we are going to explore

the various estimation procedures that have been designed in the literature to treat such

models.

The interest is now to study the variable selection problem together with the estimation

of the univariate functions βk(·). Given our framework, this is equivalent to selecting and

estimating some vector of coefficients γ in the linear model (2.5). In the next sections we

discuss several grouped regularization methods for this task. For each of the methods we

provide a brief discussion on their implementation and computational algorithms as well

as on their possible limitations.

3 Grouped lasso regularization

The grouped lasso procedure consists of minimizing the objective function

1

2n
‖Ỹ − Z̃γ‖22 + λ

p∑
k=1

wk‖γk‖2, (3.1)

where wk =
√
Lk, with respect to the vector of parameters γ. Note that we are not

penalizing the intercept function β0(·) parameterized by the vector γ0, since this term

has not to be selected. Denote by γ̂ the solution of this optimization problem.
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Minimization of (3.1) is equivalent to minimization of

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

λkwk‖γk‖22 + ν

p∑
k=1

1

λk
, (3.2)

with the constraints that λ1, · · · , λp > 0 and ν > 0.

The above equivalent reformulation of the minimization problem given in (3.1) was

first noticed and proved in the context of smoothing splines ANOVA (SS-ANOVA) models

where the COmponent Selection Shrinkage Operator (Cosso) was introduced as a variable

selection method in SS-ANOVA models (see [28]). The only difference with the cosso

smoothing spline approach is the penalty, which here is a weighted sum of the `2 norms of

the vectors γk instead of a specific squared projection norm used in the cosso method.

The proposed new penalty penalizes the fitted model more straightforward through the

norm of the vector of fitted coefficients of each group component. Such a penalty therefore

encourages sparsity at the group level. The equivalence between (3.1) and (3.2) can be

proved along the same lines as in Lemma 1 of [1] who studied additive models with P -

splines. Note also that the minimization problem (3.2) is a Lagrangian formulation of the

equivalent adaptive ridge estimation problem

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

λkwk‖γk‖22, subject to

p∑
k=1

1

λk
=
p

ν
, (3.3)

defined and studied by [18]. Note that the first penalty term in (3.2), namely∑p
k=1 λkwk‖γk‖22 involves ‖γk‖22 instead of ‖γk‖2 as in (3.1). In order to minimize

(3.2) with respect to the vector λ = (λ1, . . . , λp) and the sequence of group coefficients

(γk)k=0,...,p one iterates between minimizing (3.2) for fixed λ (ridge regression) and

minimizing (3.2) for fixed (γk)k=0,...,p under the positivity constraint on the components

of λ (nonnegative garrote). We will review in Section 6 how the above results may be

exploited to provide effective algorithms for computing a minimizer of the original grouped

lasso minimization problem.

We would like to mention here a different and promising approach for solving the

grouped lasso regularization problem, that is based on an iterative projection method

for structured sparsity regularization used in the machine learning community (see, e.g.

[35]). The method in [35] is based on the spectral projected-gradient algorithm originally

developed by [6]. Instead of the regularized version (3.1) of the grouped lasso problem,

they consider the following constrained version

min
γ

1

2n
‖Ỹ − Z̃γ‖22

p∑
k=1

λkwk‖γk‖2 ≤ τ , (3.4)

where τ is a positive constrain parameter, that they iteratively solve using a spectral

gradient projection. Basically, given a current iterate γ(j) their iterated solution is defined
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as

γ(j+1) = Π
(
γ(j) + αZ̃

t
(Ỹ − Z̃γ(j))

)
, (3.5)

where the step length α > 0 is some step size to be optimized to ensure sufficient descent

(with a backtracking line search, for example) and Π(·) is the projection operator defined

as

Π(u) =

{
argminx‖u− x‖2 subject to

p∑
k=1

λkwk‖γk‖2 ≤ τ

}
.

This algorithm is simple to implement, has low memory requirements and seems to be

competitive with the more elaborated Cosso-based algorithm that is usually used in the

statistical literature (see [17]).

For the grouped lasso problem in (3.1) we aim at applying the theoretical results

established by [29]. We investigate the variable selection consistency as well as the

estimation consistency. In order to apply the results in [29] we need to make sure that the

columns of the matrix Z̃ are standardized. This is done easily by replacing Z̃ by Z̃D−1
‖Z̃‖2

where D‖Z̃‖2 is the diagonal matrix of dimension (
∑p

k=0 Lk) × (
∑p

k=0 Lk) consisting of

all diagonal sub matrices of dimension Lk × Lk with ‖Z̃k‖2/
√
n on the diagonal where

Z̃k = W
1/2
k Zk, for k = 0, · · · , p. From now on we assume that the matrix Z̃ has been

standardized from the start. Let us remark that the results in [29] are given for a loss

function different from ours when Nj, j = 1, . . . , p, are different. Nevertheless all their

results can be obtained in our case.

We now explain what is meant by variable selection consistency and estimation

consistency in the presented framework. Denote by

S = {k : ‖γ∗k‖∞ 6= 0, k = 1, · · · , p}, (3.6)

the set of all varying coefficient variables that are non-null, where we used the standard

notation ‖γk‖∞ = max1≤`≤Lk
|γk,`|. Denote by sN = |S|, the number of elements in

S. Since p = pN , sN obviously depends on N . The sparsity assumption means that

sN << pN . An estimator is said to be variable selection consistent if it can correctly

recover the sparsity pattern with probability going to one, i.e.

P {S (γ̂) = S(γ∗)} → 1, asN →∞,

where S(γ∗) = S as defined in (3.6), and S (γ̂) is defined similarly using γ̂.

An estimator is `2-estimation consistent if

‖γ̂ − γ∗‖2
P−→ 0 as N →∞.

Let us introduce ρ∗N = minj∈S ‖γ∗j‖. Further denote by Z̃S the large matrix formed by

stacking the columns of Z̃ whose indexes belong to S. We need to introduce the following

assumptions
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(C1) Λmin( 1
n
Z̃
T

S Z̃S) ≥ C > 0, where Λmin(A) denotes the minimum eigenvalue of

the matrix A.

(C2) ∃ 0 < δ < 1, maxk∈SC ‖(Z̃
T

k·Z̃S)(Z̃
T

S Z̃S)−1‖2,2 ≤ 1 − δ, where ‖A‖a,b =

supx ‖Ax‖`a/‖x‖`b , 1 ≤ a, b ≤ ∞.

(C3) Lk → +∞, k = 0, . . . , pN , and LN = o(N), where LN = maxk=0,...,pN Lk.

(C4)
λ2NN

log((pN − sN)LN)
→ +∞.

(C5)

1

ρ∗N


√

log(sNLN)

N
+ λN

√
LN

∥∥∥∥∥
(

1

N
Z̃
T

S Z̃S

)−1∥∥∥∥∥
∞,∞

→ 0.

Applying Theorem 3.1 in [29], we obtain the following result.

Theorem 3.1 Under conditions (C1-C5), the grouped lasso estimator is variable

selection consistent.

For the estimation consistency we need to add the following assumption:

(C6) κ = min
S0⊆{1,...,p}:|S0|≤sN

min∑
j∈Sc

0

√
Lj‖γj‖2≤3

∑
j∈S0

√
Lj‖γj‖2

∥∥∥Z̃γ∥∥∥
2

√
n
√∑

j∈S0
Lj‖γj‖22

> 0.

We apply Theorem 4.3 together with Remark 4.4 in [29] to obtain the following result.

Theorem 3.2 Under condition (C6), let εi(tij), i = 1, . . . , n, j = 1, . . . , Ni, be

independent identically normal distributed of mean 0 and variance σ2. If

λN = Aσ

√
log
∑pN

k=1 Lk
N

,

for some A > 2
√

2, then with probability at least 1− (
∑pN

k=1 Lk)
1−A2/8, we have

‖γ̂ − γ∗‖22 ≤
144A4σ4s2NL

2

N

κ4
log
∑pN

k=1 Lk
N

.

For example, assuming that Ni = Ñ , for i = 1, . . . , n, if one takes pN = O(nβ) and

Lk = O(Ñα) for all k with 0 < α, β < 1/2, in Theorem 3.2, one guarantees the asymptotic

consistency of γ̂.

Since we are estimating some functional coefficient βk, it is natural to study the rate

of convergence of the grouped lasso estimator. When using our B-splines setup, the

following holds ([10]):∥∥∥β̂k − βk∥∥∥2
L2

≤

∥∥∥∥∥
Lk∑
`=1

(γ̂k` − γ∗k`)B
(k)
`

∥∥∥∥∥
2

L2

+

∥∥∥∥∥βk −
Lk∑
`=1

γ∗k`B
(k)
`

∥∥∥∥∥
2

L2

=
1

Lk
‖γ̂k − γ∗k‖

2
2 +O(L−4k ),
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where ‖g‖L2 denotes {
∫
g2(x)dx}1/2 the L2-norm of a function g.

Using Theorem 3.2, we obtain the following theorem:

Theorem 3.3 Under conditions of Theorem 3.2, we have

∥∥∥β̂k − βk∥∥∥2
L2

= OP

(
s2NL

2

N log
∑pN

k=1 Lk
NLk

+ L−4k

)
.

Note that, assuming again that Ni = Ñ = exp(n1−η), for i = 1, . . . , n, if one takes

pN = O(nβ) and Lk = O(Ñ1/5) for all k with 0 < η < β < 1/2, in Theorem 3.3, one

guarantees the optimal nonparametric asymptotic rate for the functional coefficients.

Let us remark that [40] propose a grouped lasso type of variable selection method in

the context of varying coefficient models. They consider however a penalty term that is

equal to
√∑p

k=1 γ
T
kRkγk with Rk being an Lk×Lk symmetric positive definite matrix. In

the context of B-splines approximations and for components βk that are twice continuously

differentiable the evaluation of these quadratic forms Rk involves the inner products of

the B-spline basis functions.

Similar quadratic forms, but involving up to the second order derivatives of the B-spline

basis functions, have been used in the work by [3] . The numerical evaluation of these

quadratic forms is not an as easy task as it appears. Indeed, when the knots that

are used for the B-splines approximation are equi-spaced then one may use a recursive

difference equation defining the elements of the B-spline basis and then an appropriate

algorithm described by [5] for the numerical evaluation of the Rk’s. In [40] it is shown

that, under appropriate conditions, this grouped lasso procedure, with penalty term√∑p
k=1 γ

T
kRkγk, selects a model of the right order of dimensionality and is estimation

consistent. However, this procedure is (under their assumptions) in general not selection

consistent. In order to improve the selection results, they propose to apply an adaptive

grouped lasso penalty, based on a given initial estimator. But they need to add some

critical condition on this initial estimator used in the weights of the adaptive grouped

lasso penalty to have the oracle selection property (see condition (C5) in [40]). Indeed

this condition is very difficult to establish. For these two reasons, we decided not to

compare our approach with the method of [40].

4 Grouped scad regularization

A scad procedure for variable selection in nonparametric varying coefficient models has

been discussed in [39]. An application to microarray gene expression data can be found

in [38].

The approach taken in both papers is as follows. Denote by pλ(v) the function
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providing the scad penalty. For v ≥ 0, the penalty is defined as

pλ(v) =


λv if 0 ≤ v ≤ λ,

−v
2 − 2aλv + λ2

2(a− 1)
if λ < v < aλ,

(a+ 1)λ2

2
if v ≥ aλ.

(4.1)

A common choice for a is 3.7. A Taylor expansion of pλ(v) for v around v0 leads to

pλ(v) ≈ pλ(v0) +
1

2

p′λ(v0)

v0
(v2 − v20), (4.2)

as explained in [13].

A first version of a grouped scad procedure under the model (2.5) is defined by

minimizing

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(ωk‖γk‖2), (4.3)

with pλ(·) the scad penalty function in (4.1), and ωk =
√
Lk as before.

Substitution of (4.2) into (4.3) then leads to

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

{
pλ(ωk‖γ(0)

k ‖2) +
1

2

p′λ(ωk‖γ
(0)
k ‖2)

‖γ(0)
k ‖2

ωk

(
‖γk‖22 − ‖γ

(0)
k ‖

2
2

)}
,

which as minimization problem is equivalent to the minimization problem

1

2n
‖Ỹ − Z̃γ‖22 +

1

2

p∑
k=1

p′λ(ωk‖γ
(0)
k ‖2)

‖γ(0)
k ‖2

ωk‖γk‖22, (4.4)

with γ
(0)
k starting vectors.

Defining a diagonal matrix

V λ

(
γ(0)

)
=


ω1
p′λ(ω1‖γ(0)

1 ‖2)
‖γ(0)

1 ‖2
IL0 0

. . .

0 ωp
p′λ(ωp‖γ

(0)
p ‖2)

‖γ(0)
p ‖2

ILp


of dimension

(
p∑

k=1

Lk

)
×

(
p∑

k=1

Lk

)
, and letting Dλ

(
γ(0)

)
= diag(0,V λ

(
γ(0)

)
), the

(p+ 1)× (p+ 1) diagonal matrix, we rewrite (4.4) as a Ridge-regression problem

1

2n
‖Ỹ − Z̃γ‖22 +

1

2
γTDλ(γ

(0))γ. (4.5)
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Minimization of (4.5) with respect to γ yields

γ̂ =
1

2n

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ

(0))

)−1
Z̃
T
Ỹ,

and the fitted values

Ŷ = Z̃γ̂ =
1

2n
Z̃

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ

(0))

)−1
Z̃
T
Ỹ,

which leads to the (approximate) Hat matrix

H(λ) =
1

2n
Z̃

(
1

2n
Z̃
T
Z̃ +

1

2
Dλ(γ̂)

)−1
Z̃
T
. (4.6)

Relying on this expression for the Hat matrix one can then use Generalized Cross

Validation (GCV) techniques for selecting the smoothing parameter λ, as explained in

[39].

The above treatment of the grouped scad regularization problem hence results into an

approximate Ridge regression problem. As a consequence, the approach has the drawback

that we will have the restriction that pN < N .

A completely different approach for tackling the grouped scad optimization problem

in (4.3) is inspired by the work of [25] that is using a so-called ConCave Convex Procedure

(CCCP) type of algorithm. However, there has been no investigation of asymptotic

properties of estimators derived by this method in the context of high-dimensional models.

A second scad alike optimization problem is obtained by using an L1-norm of the

group vector γk, and considering

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(‖γk‖1). (4.7)

This grouped scad regularization procedure is inspired by the work of [29]. An algorithm

for solving the optimization problem (4.7) can be found in [7]. Here again the properties

and behavior of the resulting estimates in the context of high-dimensional models is only

investigated via appropriate simulations. Note that the coordinate descent algorithm on

which this grouped scad regularization is based does not guarantee convergence to a

minimum because group penalties are separable between groups, but not within them.

Moreover its behavior has been proven to be quite sensitive to the choice of the penalty

parameter λ.

5 Grouped Bridge regularization

In Bridge regression the penalty function equals, for v > 0,

pλ(v) = λ|v|q with 0 < q < 1. (5.1)

12



The grouped Bridge approach then consists of minimizing the objective function

1

2n
‖Ỹ − Z̃γ‖22 +

p∑
k=1

pλ(ωk‖γk‖2), (5.2)

and an algorithm for solving this optimization problem is obtained from [7] .

Asymptotic properties of Bridge estimators with 0 < q < 1 when the number of

covariates pN may increase to infinity with N have been studied by [22] extending the

results of [26] to infinite-dimensional parameter settings. They show that, for 0 < q < 1,

the Bridge estimators can correctly select covariates with nonzero coefficients and that,

under appropriate conditions on the growth rates of pN and λN , the estimators of

nonzero coefficients have the same asymptotic distribution as they would have if the

zero coefficients were known in advance. Therefore, Bridge estimators have the oracle

property of [13] and [14]. The permitted rate of growth of pN depends on the penalty

function form specified by q. The above authors require that pN < N that is, the number

of covariates must be smaller than the sample size, which is needed for identification and

consistent estimation of the regression parameters. However, if there is a special suitable

structure in the covariate matrix (the partial orthogonality condition), they show that it is

possible to achieve consistent variable selection and estimation, even in the case pN > N .

The estimation is performed in two steps: first, they use a marginal bridge estimator

to select the covariates with nonzero coefficients; and then they estimate the regression

model with these selected covariates. The interested reader is referred to their paper for

further details.

6 Grouped Cosso regularization

The grouped Cosso regularization procedure consists of minimizing the objective function

1

2n
‖Ỹ − Z̃γ‖22 + λ

p∑
k=1

wk‖γk‖2, (6.1)

where wk are positive fixed weights. Note that considering weights in the block penalty

norm is important in practice as those have an influence regarding the consistency of the

estimator (see [4]). Note also that with probability tending to one, if for example Z̃
T
Z̃

is invertible, there is a unique minimum. Efficient exact algorithms exist for the regular

lasso, i.e., for the case where all group dimensions, and therefore the weights wk, are

equal to one. They are based on the piecewise linearity of the set of solutions as a function

of the regularization parameter λ (see [12]). For the grouped lasso, however, the path is

only piecewise differentiable, and following such a path is not as efficient as for the lasso.

Other algorithms have been designed to solve problem (6.1) for a single value of λ. The

grouped cosso like algorithm relies upon the equivalent cosso formulation of (6.1),

1

2n
‖Ỹ − Z̃γ‖22 + µ

p∑
k=1

λkwk‖γk‖22 + ν

p∑
k=1

1

λk
, (6.2)
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and the algorithm that one may use can be summarized as follows:

1. Fix λ = (λ1, . . . , λp) = (1, . . . , 1), find the best µ to minimize GCV in the

corresponding ridge like criterion, say µ0 and let γµ0 the corresponding coefficients.

2. For fixed γ, solve for λ via quadratic programming.

3. For fixed λ, solve for γ using the normal equation or the Gaussian profile likelihood

if λ contains zero entries.

4. Iterate between steps 2 and 3 until convergence. The final solution corresponds to

ν that gives the minimum GCV score.

We do not consider further the grouped cosso regularization method and this algorithm,

since the results obtained with such an approach are very unstable.

7 Numerical study

In this section, we first carry out a simulation study to compare the performances of

the grouped Bridge, the grouped scad, the grouped MCP (Minimum Concave Penalized

method, see [42]) and two implementations of the grouped lasso methods.

The first grouped lasso method, denoted by glasso 1, was implemented by [7] and

the second grouped lasso method, called glasso 2, was implemented by [31]. In [7], the

authors use a general approach based on a local coordinate descent algorithm. In fact

they propose a procedure that also includes the methods gbridge (with q = 1/2), gscad

and gMCP.

In a second section, we illustrate the use of the grouped lasso method on two real

data examples: a data set concerning the study of AIDS and the Boston Housing data

set.

To chose the tuning parameter λ, we use a BIC-type criterion with effective number

of model parameters estimated as in [7]. More precisely we use the following criterion

log

(
RRSλ
Σn
i=1Ni

)
+

log(Σn
i=1Ni)

Σn
i=1Ni

dfλ, (7.1)

where the residual sum of squares (RSSλ) is the sum of squares of residuals associated

with the estimate γ̂ and dfλ is the number of nonzero coefficients of γ̂. It is worth noting

that in [7], one uses a criterion without the logarithm applied to the normalized RSSλ.

In our simulation study we have observed however that such a criterion (without the log

function) leads in some situations to very bad results in comparison with the criterion

involving the logarithm. Moreover the criterion (7.1) leads to results similar to those

obtained when applying the LSA (Least squares approximation) with a BIC type penalty

as proposed by [36].
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7.1 Simulation study and comparison

We consider a model similar to the one used by [23] and [39], given by

Yi(tij) = β0(tij) +
23∑
k=1

βk(tij)X
(k)
i (tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , Ñ .

The coefficients βk(t), k = 0, . . . , 3, correspond to the intercept term and the three true

relevant variables and are given by

β0(t) = 15 + 20 sin
(
πt
60

)
, β1(t) = 2− 3 cos

(
π(t−25)

15

)
,

β2(t) = 6− 0.2t, β3(t) = −4 + (20−t)3
2000

, t ∈ [1, 30].

The remaining coefficients are given by βk(t) = 0, k = 4, . . . , 23. The time points tij are

1, 2, . . . , 30 (Ñ = 30) and n = 100. The three relevant variables X
(k)
i (t), k = 1, . . . , 3, are

simulated in the following way. At any point t, the variable X
(1)
i (t) is sampled uniformly

from [t/10, 2 + t/10]. Conditioning on X
(1)
i (t), the variable X

(2)
i (t) is a centered Gaussian

random variable with variance given by (1+X
(1)
i (t))/(2+X

(1)
i (t)). The variable X

(3)
i (t) is

independent of X
(1)
i and X

(2)
i and is a Bernoulli random variable with success rate equal

to 0.6. The irrelevant variables X
(k)
i , k = 4, . . . , 23 are paths of centered Gaussian process

with covariance function Cov(X
(k)
i (t), X

(k)
i (s)) = 4 exp(−|t − s|); they are independent

between them as well as independent of the other first three variables. We chose several

levels of noise, σ = 1, 1.25 and 2, for the random error. These noise levels correspond to

signal-to-noise ratios (SNR) given respectively by 6.15, 4.92 and 3.08. The SNR is defined

by γ∗TZTZγ∗/N (see [11]).

For each simulated data set, we use cubic splines with five equidistant internal knots.

We repeat the simulations 500 times. The simulation results are summarized in Table 1.

We present the mean value of the tuning parameter λ, the average number of variables

selected, the average number of truly zero variables that where selected (false positives),

the average number of truly nonzero variables that where not selected and the mean and

standard deviation of the model error. The model error is defined similarly as in [7] and

is given by (γ̂ −γ∗)TZTZ(γ̂ −γ∗)/N. Figure 7.1 depicts the boxplots of the model errors

for all the methods except for glasso 2, since the errors for this method are very (too)

high compared to these for the other four methods. See also Table 1. In Figure 7.2 we

present typical curve (median-performing curve over all the simulations) estimates of the

first four coefficients for a signal-to-noise ratio given by 1.25.

Looking at Table 1 we can see that for all the signal-to-noise ratios, the methods

gbridge and glasso 1 give the best results in terms of selection ability and model error

compared to the other methods. The gbridge method is better in model error while

glasso 1 method is better in selection ability (each time this method has selected the

exact model). The gscad and gMCP procedures are not very good in selection ability:

the number of false positives is rather high. Finally we can observe that the other
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Table 1: Selection model ability. First column (λ): mean value of λ. Second one (S):

mean of number of variables selected. Third one (FP): mean of number of false positives

(truly zero variables that where selected). Fourth one (FN) : mean of number of false

negatives (truly nonzero variables that where not selected). Fifth one (ME) : mean of the

model error and in brackets, its standard deviation.

λ S FP FN ME

σ = 1

gbridge 0.006 4.038 0.038 0 0.0121 (0.0033)

gscad 0.199 8.088 4.088 0 0.0324 (0.0142)

gMCP 0.206 7.360 3.360 0 0.0311 (0.0124)

glasso 1 0.114 4.000 0.000 0 0.0141 (0.0066)

glasso 2 0.061 4.102 0.102 0 3.1458 (0.0497)

σ = 1.25

gbridge 0.008 4.050 0.050 0 0.0189 (0.0053)

gscad 0.236 6.598 2.598 0 0.0572 (0.0198)

gMCP 0.240 6.208 2.208 0 0.0522 (0.0190)

glasso 1 0.120 4.000 0.000 0 0.0216 (0.0113)

glasso 2 0.072 4.384 0.384 0 3.2250 (0.0528)

σ = 2

gbridge 0.0146 4.052 0.052 0 0.0482 (0.0137)

gscad 0.294 6.350 2.350 0 0.1222 (0.0316)

gMCP 0.299 6.050 2.050 0 0.1103 (0.0317)

glasso 1 0.145 4.000 0.000 0 0.0587 (0.0407)

glasso 2 0.110 4.586 0.586 0 3.5621 (0.1209)

implementation of grouped lasso (glasso 2) gives relatively correct result in selection

model but leads to very bad results in terms of the model error criterion.

7.2 Data analysis

In this subsection we demonstrate the effectiveness of the glasso 1 method in selecting

the variables and in estimating the varying coefficients, by considering results from the

analysis of two real data sets: the AIDS data set (see [24]) and the Boston Housing data

set (see [19]).

7.2.1 AIDS data

In [24] the authors reported on a Multicenter AIDS Cohort Study conducted, in which

one obtain repeated measurements of physical examinations, laboratory results, and CD4

cell counts and percentages of homosexual men who became human immunodeficiency
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Figure 7.1: Boxplot of the model errors for four methods.

virus (HIV)-positive during 1984 and 1991. This data set is also analyzed by [39] using a

varying coefficient model. They use the gscad method to select and estimate the varying

coefficients. All individuals were scheduled to undergo measurements at semi-annual

visits, but because many individuals missed some of their scheduled visits and the HIV

infections occured randomly during the study, there were unequal numbers of repeated

measurements and different measurement times for each individual. Their analysis focused

on the 283 homosexual men who become HIV-positive and aimed to evaluate the effects of

cigarette smoking, pre-HIV infection CD4 cell percentage, and age at HIV infection on the

mean CD4 percentage after infection. This data set is available in the R package timereg

(data(cd4)). As in [39], the glasso 1 method identified two nonzero coefficients (the

intercept and the pre-infection CD4 percentages). That indicates that cigarette smoking

and age at HIV infection have no effect on the post-infection CD4 percentage. Figure 7.3

shows the two fitted relevant varying coefficients.

7.2.2 Boston data

The Boston Housing data set was analyzed by [19], with the aim to find out whether

‘clean air’ had an influence on house prices. This data set is available in the R package

mlbench (data(BostonHousing)) with 14 variables and 506 cases. As in [37], we consider

the median value of owner occupied homes (MEDV) as the response of interest and the

proportion of population that has a lower status (LSTAT) as the index variable. We
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Figure 7.2: Typical curve (median-performing curve over all the simulations) estimates

of the intercept and the three coefficients corresponding to relevant variables for the five

methods (σ = 1.25). Red curves correspond to the true coefficient functions and black

ones to the estimated coefficient functions.

consider the following predictors as: per capita crime rate by town (CRIM), nitric oxides

concentration (parts per 10 million, NOX), average number of rooms per dwelling (RM),

proportion of owner-occupied units built prior to 1940 (AGE), full-value property-tax rate

per 10,000 (TAX) and pupil-teacher ratio by town (PTRATIO). Moreover as in [37] before

applying our procedure, both the response and the predictors (except the intercept) are

transformed so that their marginal distribution is approximately centered and reduced

to an approximate normal distribution. We use Box-Cox transformations. The index

variable LSTAT is transformed so that its marginal distribution is approximately uniform
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Figure 7.3: Application of the glasso 1 method to the AIDS data: estimates of the

relevant coefficient functions for the intercept and pre-infection CD4 percentages.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

Intercept

LSTAT

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

CRIM

LSTAT

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

RM

LSTAT

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

TAX

LSTAT

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
−

0.
2

0.
0

0.
2

PTRATIO

LSTAT

Figure 7.4: Application of the glasso 1 method to the Boston data: estimates of relevant

coefficient functions for the intercept, the crime rate ratio, the average number of rooms,

the full-value property-tax rate and the pupil-teacher ratio.
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on [0, 1].

The authors [37] propose to combine local polynomial smoothing and grouped lasso

to select and estimate the varying coefficients. We obtain results similar to theirs except

that we select one supplementary variable (TAX). Figure 7.4 shows the five fitted relevant

varying coefficients.
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