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Léopold Simar§ Anne Vanhems∗∗ Paul W. Wilson‡‡

September 2011

Abstract

In productivity and efficiency analysis, the technical efficiency of a production unit is
measured through its distance to the efficient frontier of the production set. The most
familiar non-parametric methods use Farrell-Debreu, Shephard, or hyperbolic radial
measures. These approaches require that inputs and outputs be non-negative, which
can be problematic when using financial data. Recently, Chambers et al. (1998) have
introduced directional distance functions which can be viewed as additive (rather than
multiplicative) measures efficiency. Directional distance functions are not restricted
to non-negative input and output quantities; in addition, the traditional input and
output-oriented measures are nested as special cases of directional distance functions.
Consequently, directional distances provide greater flexibility. However, until now, only
FDH estimators (and their conditional and robust extensions) of directional distances
have known statistical properties (Simar and Vanhems, 2010). This paper develops the
statistical properties of directional DEA estimators, which are especially useful when
the production set is assumed convex. We first establish that the directional DEA esti-
mators share the known properties of the traditional radial DEA estimators. We then
use these properties to develop consistent bootstrap procedures for statistical inference
about directional distance, estimation of confidence intervals, and bias correction. The
methods are illustrated in some empirical examples.

Keywords: Productivity, efficiency, directional distances, non-parametric frontier estima-
tion, bootstrap, data envelopment analysis.

JEL Classification: Primary C13; secondary C14
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1 Introduction

Non-parametric estimators of technical efficiency introduced by Farrell (1957) and popu-

larized by Charnes et al. (1978) and Banker et al. (1984) based on minimal convex sets

that envelop a set of observations on input and output quantities have been widely applied;

Gattoufi et al. (2004) list more than 1,800 published examples. These estimators are col-

lectively known as data envelopment analysis (DEA) estimators. Technical efficiency refers

to whether, and to what degree, a production unit might (i) increase its output without

increasing input usage, (ii) reduce its input usage without reducing its level of outputs, or

(iii) simultaneously reduce input usage while increasing output quantities produced.

Until recently, technical efficiency has been measured almost exclusively in terms of either

(i) or (ii), i.e., in either an input or output orientation, respectively. As discussed below in

Section 2, the statistical properties of input and output oriented DEA estimators are known,

and inference-making methods are available for these estimators. Färe et al. (1985) proposed

measuring technical efficiency along a hyperbolic path; this approach amounts to describing

technical inefficiency in terms of the maximum, feasible, multiplicative factor by which input

quantities can be divided and by which output quantities can be simultaneously multiplied.

The statistical properties of DEA estimators of this measure are also known, and inference

methods are available, again as discussed below in Section 2. Chambers et al. (1998) proposed

an additive measure of technical efficiency which allows one to consider how much might be

feasibly added to a unit’s output quantities and simultaneously subtracted from its input

quantities; this measure is known as the directional distance function.

Since the appearance of Chambers et al. (1998), a number of subsequent papers using

directional distance functions have appeared; examples include Fukuyama (2003), Silva-

Portela et al. (2004), Ricazo-Tadeo et al. (2005), Färe et al. (2005), Park and Weber (2006a,

2006b), and many more. Directional distance functions are often used in applications in-

volving undesirable outputs such as pollution, or in cases where observed inputs or outputs

can be negative. Färe et al. (2008) discuss the importance of the directional distance func-

tion and its relation to profit efficiency, duality theory, and Luenberger, Bennet-Bowley and

other indices of productivity. In addition, Briec et al. (2004) and Briec and Kerstens (2009)

use directional distance functions to evaluate the performances of mutual fund managers.
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Although Simar and Vanhems (2010) have derived statistical properties of the FDH esti-

mator of directional distances, most researchers estimating directional distances have used

DEA estimators. Yet, the properties of these estimators remain unknown, and consequently

statistical inference has not been possible in studies using DEA estimators of directional

distance functions.

This paper extends the results of Kneip et al. (2008, 2011) to DEA estimators of direc-

tional distance functions. In so doing, we provide rates of convergence as well as the limiting

distribution under variable returns to scale. As will be seen, the asymptotic properties of

DEA estimators of directional distance functions are similar to those of DEA estimators of

input- and output-oriented distance function estimators. Although the limiting distributions

derived below are not useful in a direct, practical sense for inference, the results allow us to

establish consistency of sub-sampling methods along the lines of Simar and Wilson (2011)

for inference, and permit DEA estimators of directional distance functions to be used for

testing general hypotheses about the structure of the frontier or technology (e.g., convexity,

returns to scale, etc.) along the lines of Simar and Wilson (2011). Directional distance

functions allow for negative observations on inputs or outputs, and so are useful where these

might occur, as in one of our empirical examples given below. Given the increasing interest

in the use of DEA estimators of directional distance functions, we anticipate that our results

will be useful for an increasing number of empirical researchers who, until now, have had no

method for making inference or testing hypotheses when using DEA estimators of directional

distances.

The paper proceeds as follows. The next section gives a careful description of the di-

rectional distance function, its relation to other distance functions, and a brief review of

existing results on non-parametric distance function estimators. Section 3 introduces the

non-parametric estimators (both DEA and the free-disposal hull (FDH) estimator described

by Deprins et al., 1984) of directional distance functions that will be used in our empirical

illustrations. The main contribution of the paper comes in Section 4, where we show that

the DEA estimator of directional distances share the same properties as the DEA estimators

of input and output distance functions. These results are then used in Section 5 to develop

bootstrap algorithms for performing consistent inference in a practical, implementable way.

In Section 6 the methods are illustrated by estimating confidence intervals for observations
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on schools in the data used by Charnes et al. (1981) and for observations in a small sample

of risk-returns data for Mutual Funds. Summary and conclusions are given in Section 7.

2 Radial and Directional Distance Functions

In productivity and efficiency analysis, the technical efficiency of a production unit is mea-

sured through its distance to the efficient frontier, or boundary, of the production set. Con-

sider a set of p input quantities used to produce q output quantities. Then the production

set Ψ is the set of technically feasible combinations of inputs and outputs, i.e.,

Ψ =
{
(x, y) ∈ Rp+q

+ | x can produce y
}
. (2.1)

The efficient frontier or boundary of Ψ, also known as the technology, is given by

Ψ∂ =
{
(x, y) ∈ Ψ |

(
γ−1x, γy

)
̸∈ Ψ ∀ γ > 1

}
. (2.2)

The technical efficiency of a given point (x, y) is then determined by the distance to

the frontier Ψ∂. The Farrell-Debreu and their reciprocal Shephard distances (Debreu, 1951;

Farrell, 1957; Shephard, 1970) are the most widely used measures of technical efficiency;

both rely on multiplicative radial measures of distance. For example, the Shephard (1970)

input distance function

θ(x, y | Ψ) = sup
{
θ | (θ−1x, y) ∈ Ψ

}
(2.3)

gives the maximum, feasible reduction in input quantities, holding output quantities fixed,

for a unit operating at (x, y) ∈ Ψ. The input distance function is multiplicative in the sense

that for (x, y) ∈ Ψ, we have (θ−1x, y) ∈ Ψ∂. Similarly, the Shephard (1970) output distance

function

λ(x, y | Ψ) = inf
{
λ | (x, λ−1y) ∈ Ψ

}
(2.4)

gives the maximum, feasible increase in output quantities, holding input quantities fixed, for

a unit operating at (x, y) ∈ Ψ. The output distance function is also multiplicative in the

sense that for (x, y) ∈ Ψ, we have (x, λ−1y) ∈ Ψ∂. Alternatively, the hyperbolic distance

function

γ(x, y | Ψ) = sup
{
γ | (γ−1x, γy) ∈ Ψ

}
(2.5)
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proposed by Färe et al. (1985) and examined by Wheelock and Wilson (2008) and Wilson

(2011) is also multiplicative; γ(x, y | Ψ) gives the maximum feasible, equiproportionate,

simultaneous reduction in input quantities and increase in output quantities.1

The input- and output-oriented measures of efficiency in (2.3)–(2.4) are radial in the

sense that efficiency of a particular point is defined in terms of the feasible, equiproportionate

reduction of all inputs (or increase of all outputs), holding output (or input) quantities fixed.

The hyperbolic measure defined in (2.5) is also said to be radial; with γ(x, y | Ψ), efficiency

of a particular point is defined in terms of the feasible, equiproportionate reduction of all

inputs and simultaneous feasible, equiproportionate increase of all outputs. In addition, the

multiplicative construction of the measures in (2.3)–(2.5) ensures that the distance functions

are independent of units of measure for either input quantities or output quantities; i.e.,

θ(x, y | Ψ), λ(x, y | Ψ), and γ(x, y | Ψ) are homogeneous of degree zero in both input and

output quantities.

Chambers et al. (1998) introduce the directional distance function

δ(x, y | dx, dy,Ψ) = sup {δ | (x− δdx, y + δdy) ∈ Ψ} , (2.6)

which projects the input-output vector (x, y) ∈ Rp+q onto the technology frontier in a di-

rection determined by a vector d = (−dx, dy), where (dx, dy) ∈ Rp+q
+ . Directional distance

functions are discussed by Färe and Grosskopf (2000) and Färe et al. (2008). By construc-

tion, δ(x, y | dx, dy,Ψ) ≥ 0 if and only if (x, y) ∈ Ψ, and δ(x, y | dx, dy,Ψ) = 0 for all

(x, y) ∈ Ψ∂. In addition, the directional distance function in (2.6) nests both the input- and

output-oriented measures in (2.3)–(2.4) (but not the hyperbolic distance function in (2.5))

as special cases. It is easy to show that for dx = x, dy = 0, and (x, y) ∈ Ψ ⊂ Rp+q
+ ,

δ(x, y | dx, dy,Ψ) = 1− θ(x, y | Ψ)−1. (2.7)

Similarly, for dx = 0, dy = y, and (x, y) ∈ Ψ ⊂ Rp+q
+ ,

δ(x, y | dx, dy,Ψ) = λ(x, y | Ψ)−1 − 1. (2.8)

Hence, the directional distance function is more general than either the input or output

distance functions.

1 The hyperbolic measure of efficiency proposed by Färe et al. (1985) is the reciprocal of the measure
that appears in (2.5).

4



The directional distance function is additive, as opposed to multiplicative; δ(x, y |
dx, dy,Ψ) gives the amount that can be subtracted from input quantities x and simulta-

neously added to output quantities y in the direction (−dx, dy) to reach the frontier. This

differs from the traditional input- and output-oriented distance functions, as well as the

hyperbolic distance function, used to measure efficiency.

Due to its additive (as opposed to multiplicative) nature, the directional distance function

defined in (2.6) satisfies a translation property in the sense that

δ(x− ηdx, y + ηdy | dx, dy,Ψ) = δ(x, y | dx, dy,Ψ)− η ∀ η ∈ R, (2.9)

i.e., multiplying the direction vectors by a constant η is equivalent to subtracting η from the

distance function with the original direction vectors. In addition, Färe et al. (2008, p. 534)

state that the directional distance function is independent of unit of measurement in the

sense that

δ(βx ◦ x, βy ◦ y | βx ◦ dx, βy ◦ dy,Ψ) = δ(x, y | dx, dy,Ψ), (2.10)

where βx ∈ Rp
+, βy ∈ Rq

+, and ◦ denotes the Hadamard product.2 However, while (2.10) is

true, it also indicates that if units of measurement for inputs or outputs are changed, the

corresponding direction vector must be rescaled to avoid changing the value of the directional

distance function. Instead of being homogeneous of degree zero with respect to inputs and

outputs, the directional distance function is only homogeneous of degree zero with respect

to inputs, outputs, and direction vectors.

This feature of the directional distance function makes the range of reasonable choices for

the direction vectors less broad than has been suggested in the literature. For example, Färe

et al. (2008, p. 533) note that the direction vectors should be specified in the same units as

the inputs and outputs, but then go on to suggest choosing dx = 1, dy = 1 or to optimize u

and v to minimize distance to the (estimated) frontier. But, if one specifies dx = 1, dy = 1,

and then changes the units of measurement, this will require re-scaling also dx and dy so that

their no longer equal unity in order to avoid changing the value of the distance function.

Hence the choice of (1, 1) for (dx, dy) is arbitrary and somewhat meaningless. Moreover, if

2 The Hadamard product of two arrays A = [aij ] and B = [bij ] with the same dimensions is given by
the array C = [cij ] having the same dimensions as A and B, where cij = aijbij ; e.g., see Marcus and Kahn
(1959).
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the direction vectors are optimized to minimize distance to the estimated frontier, then the

results will be sensitive to the units of measurement that are used.

As noted above, the relations in (2.7)–(2.8) require Ψ ⊂ Rp+q
+ . In certain situations,

however, it is conceivable that the production process might be such that negative inputs

or outputs are possible, i.e., if Ψ ∩ Rp+q
+ ̸= Ψ. In such cases, the input and output distance

functions are undefined, but the directional distance function remains defined due to its

additive (instead of multiplicative) construction. If, for example, y < 0, dx = 0, and dy = −y

(so that dy > 0), then there exists a value δ > 1 such that (x, y + δdy) = (x, (1− δ)y) ∈ Ψ∂.

The relation between the directional distance function and the output distance function in

(2.8) has no meaning in this case, but the directional distance function remains well-defined.

Non-parametric estimation of technical efficiency typically involves estimating the pro-

duction set Ψ using a sample of observations Xn = {(Xi, Yi)}ni=1. The standard non-

parametric estimators of Ψ are (i) the Free Disposal Hull (FDH) of the sample observations,

proposed by Deprins et al. (1984), and (ii) the convex hull of the FDH of the sample ob-

servations, proposed by Farrell (1957) and popularized by Charnes et al. (1978). The latter

approach is commonly referred to as Data Envelopment Analysis (DEA). The FDH approach

requires an assumption of free disposability of the inputs and the outputs, while the DEA

approach requires the additional assumption that the production set Ψ is convex.

Properties of FDH and DEA estimators of the radial distance functions defined in (2.3)–

(2.5) are now well-known. Park et al. (2000) established asymptotic results for the input and

output oriented FDH estimators, and Kneip et al. (1998) and Kneip et al. (2008) derived

asymptotic results for the input and output oriented DEA estimators under variable returns

to scale (VRS). Wilson (2011) extended these results to FDH and DEA estimators of the

hyperbolic distance function defined in (2.5), while Park et al. (2010) extended the DEA

results to cases where returns to scale are constant. To briefly summarize, under mild

regularity conditions, the FDH and DEA estimators of the radial distance functions, when

scaled by appropriate rates of convergence, have non-degenerate limiting distributions (more

details are given below).3 However, each of the limiting distributions depends on unknown

parameters, which in turn depend on characteristics of the Data Generating Process (DGP).

3 By “non-degenerate” we mean that the distribution is not a probability mass concentrated at a single
point.
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The limiting distributions of the FDH estimators can be written in closed form, but it

is difficult to estimate the unknown parameters. The limiting distributions of the DEA

estimators have no closed, analytical expression; in principle, the distributions could be

estimated using simulation methods, but it is not clear how the unknown parameters might

be estimated.

Bootstrap methods provide the only practical approach for inference using either FDH

or DEA estimators of the input, output, or hyperbolic distance functions. Jeong and Simar

(2006) prove that sub-sampling provides a consistent bootstrap approximation for FDH

estimators of the radial distance functions. Kneip et al. (2008) prove consistency of two dif-

ferent bootstrap methods for DEA estimators of radial distance functions; the first employs

a complicated, double-smoothing technique, while the second uses sub-sampling. Kneip

et al. (2011) propose a simplified version of the double-smooth bootstrap and prove its

consistency; this approach is useful for estimating confidence intervals for the efficiency of

individual points in the input-output space, but is not useful for testing hypotheses about

the frontier, etc. For purposes of hypothesis testing (e.g., testing hypotheses about returns

to scale, separability, convexity of Ψ, etc.), the sub-sampling techniques proposed by Simar

and Wilson (2011) offer the only practical approach available to date. The methods de-

veloped by Simar and Wilson (2011) have been used for testing returns to scale or testing

convexity in Simar and Wilson (2011), testing restrictions in Schubert and Simar (2011),

testing separability in Daraio et al. (2010), etc.

Simar and Vanhems (2010) provide asymptotic results for FDH estimators of directional

distances, as well as results for robust order-m and order-α quantile estimators of directional

distances; their results also allow (in the FDH case) conditioning on environmental variables.

The results reveal that the FDH estimators of directional distances possess asymptotic prop-

erties similar to those of the FDH estimators of radial distance functions. To date, however,

no such results exist for DEA estimators of directional distances. This paper provides the

missing piece in the collection of results on asymptotics of non-parametric distance func-

tion estimators by developing asymptotic results for DEA estimators of directional distance

functions. We next describe the estimators; the asymptotic results follow.
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3 Non-parametric Estimation of Directional Distances

3.1 The Model

For the remainder of the paper, unless otherwise stated, let x ∈ Rp and y ∈ Rq denote

vectors of input and output quantities. The vectors x and y need not be non-negative. We

make standard assumptions on the production set Ψ by adopting those of Shephard (1970)

and Färe et al. (1985).

Assumption 3.1. Ψ is convex.

Assumption 3.2. Ψ is closed.

Assumption 3.3. Both inputs and outputs are strongly disposable; i.e., for x̃ ≥ x, ỹ ≤ y,

if (x, y) ∈ Ψ then (x̃, y) ∈ Ψ and (x, ỹ) ∈ Ψ.4

Convexity of Ψ is required for consistency of DEA estimators, which estimate Ψ by

convex sets. Assumption 3.3 amounts to assuming monotonicity of isoquants (both input

and output), and is a common assumption in production analysis. Let the operator F(·)
denote the free-disposal hull of a set in Rp+q. Then for any set A ⊆ Rp+q,

F(A) =
∪

(x,y)∈A

{
(x̃, ỹ) ∈ Rp+q | ỹ ≤ y, x̃ ≥ x

}
. (3.1)

Now let C(Ψ) denote the convex hull of F(Ψ). In some cases, it is also useful to consider

the conical hull of F(Ψ), which we denote by V(Ψ). If Ψ∂ exhibits constant returns to scale

(CRS) everywhere, then Ψ = V(Ψ). Assumptions 3.2–3.3 ensure that Ψ = F(Ψ) ⊆ C(Ψ),

while Assumption 3.1 implies Ψ = F(Ψ) = C(Ψ). The notation introduced here will be

useful for describing the test of convexity that we introduce later.

When estimating Ψ or Ψ∂ from the sample Xn = {(Xi, Yi)}ni=1, additional assumptions are

needed to complete the statistical model. Following Kneip et al. (1998), Kneip et al. (2008,

2011), and Park et al. (2000), we assume the following.

Assumption 3.4. The n observations in Xn are identically, independently distributed (iid)

random variables on the attainable set Ψ.

4 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
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Assumption 3.5. The random variables (X,Y ) possess a joint density f with compact

support D ⊂ Ψ; f is continuous on D; and f(x, y) > 0 ∀ (x, y) ∈ Ψ∂.

Assumption 3.6. The function δ(x, y | dx, dy,Ψ) is twice continuously differentiable for all

(x, y) ∈ Ψ and for all (dx, dy)
′ ∈ Rp+q

+ .

Assumption 3.5 guarantees a positive probability of observing production units close to

the boundary Ψ∂ when the sample size increases. Assumption 3.6 imposes some smoothness

on the boundary of Ψ; the condition given here is sufficient, but stronger than necessary

for establishing consistency of the DEA distance function estimators. A weaker, but more

complicated, assumption was used in Kneip et al. (1998).

Deprins et al. (1984) proposed estimating Ψ by the free-disposal hull of the sample

observations in Xn, i.e., by

Ψ̂FDH(Xn) = F(Xn) =
∪

(xi,yi)∈Xn

{
(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi

}
. (3.2)

FDH estimators θ̂FDH(x, y | Xn), λ̂FDH(x, y | Xn), γ̂FDH(x, y | Xn), and δ̂FDH(x, y | dx, dy,Xn)

of the distance functions defined in (2.6)–(2.5) are obtained by replacing Ψ on the right-hand

sides of (2.3)–(2.6) with Ψ̂FDH(Xn).

Under Assumptions 3.2–3.6, and for (x, y) ∈ Ψ ⊂ Rp+q
+ , Park et al. (2000) prove con-

sistency and derive limiting distributions of the FDH estimators of the input and output

distance functions in (2.3)–(2.4). Wilson (2011) extends these results to the FDH estimator

of the hyperbolic distance function in (2.5), while Simar and Vanhems (2010) extend the

results to the FDH estimator of the directional distance function in (2.6). In each case, the

rate of convergence is shown to be n1/(p+q); moreover, each of the FDH distance function

estimators is shown to have an asymptotic distribution related to the Weibull distribution.

In the case of the FDH estimator of the directional distance function, the assumption that

(x, y) ∈ Ψ ⊂ Rp+q
+ is not needed.

The VRS-DEA estimator of Ψ under variable returns to scale is the convex hull of F(Xn),

and is given by

Ψ̂VRS(Xn) =
{
(x, y) ∈ Rp+q | y ≤ Y ω, x ≥ Xω, i′nω = 1, ω ∈ Rn

+

}
, (3.3)

whereX =
(
x1, . . . , xn

)
and Y =

(
y1, . . . , yn

)
are (p×n) and (q×n) matrices of input and

output vectors, respectively; in is an (n×1) vector of ones, and ω is a (n×1) vector of weights.
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The corresponding VRS-DEA estimators θ̂VRS(x, y | Xn), λ̂VRS(x, y | Xn), γ̂VRS(x, y | Xn),

and δ̂VRS(x, y | dx, dy,Xn) of the distance functions defined in (2.3)–(2.6) are obtained by

replacing Ψ on the right-hand sides of (2.3)–(2.6) with Ψ̂VRS(Xn). Kneip et al. (1998)

prove that θ̂VRS(x, y | Xn) and λ̂VRS(x, y | Xn) are consistent estimators of θ(x, y | Ψ) and

λ(x, y | Ψ) and converge at rate n−2/(p+q+1) under Assumptions 3.1–3.6 and the additional

assumption that (x, y) ∈ Ψ ⊂ Rp+q
+ ; limiting distributions are established by Kneip et al.

(2008). Wilson (2011) extends these results by proving, under the same assumptions, that the

VRS-DEA estimator γ̂VRS(x, y | Xn) consistently estimates the hyperbolic distance function

γ(x, y | Ψ) defined in (2.5). The convergence rate is again n−2/(p+q+1) and the limiting

distribution is similar to that of the input and output-oriented VRS-DEA estimators.5

While the limiting distribution of the VRS-DEA estimators of the input, output, and

hyperbolic distance functions in (2.3)–(2.5) is known, there exists no closed, analytical form

for this distribution. Consequently, bootstrap methods provide the only feasible, practical

approach to inference (e.g., see Simar and Wilson, 1998, 2008, 2011 and Kneip et al., 2008,

2011). As discussed above, the radial nature of these distance functions and their estima-

tors precludes negative values of inputs or outputs. Although directional distance functions

allow for this possibility, to date, the asymptotic properties (i.e., convergence rates, lim-

iting distributions, etc.) of VRS-DEA estimators of directional distance functions remain

unknown.

The results that are available so far indicate that VRS-DEA distance function estimators

have better rates of convergence than their corresponding FDH distance function estimators.

However, it should be clear that if the attainable set Ψ is not convex, VRS-DEA estimators

are inappropriate, providing non consistent estimators of the attainable set and consequently,

statistically inconsistent estimates of any measure of distance to the frontier of Ψ. This sug-

gests that convexity of Ψ should be tested if VRS-DEA estimators are to be used. Simar

and Wilson, 2011 develop sub-sampling methods for testing the convexity assumption using

5 The constant-returns-to-scale version of the DEA estimator of Ψ is obtained by dropping the constraint
inω = 1 from the right-hand side of (3.3). In this case, Ψ is estimated by the conical hull of F(Xn); Park
et al. (2010) prove, under Assumptions 3.1–3.6 and the additional assumption that Ψ = V(Ψ), that the
corresponding estimators of the input and output distance functions defined in (2.3)–(2.4) converge at the
rate n2/(p+q). In addition, it is trivial to show that under globally constant returns to scale, γ(x, y | Ψ) =√
θ(x, y | Ψ) = 1/

√
λ(x, y | Ψ). Consequently, under constant returns to scale, a consistent estimator of

γ(x, y | Ψ) is given by the square root of the input distance function estimator obtained by dropping the
constraint i′nω in (3.3).
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either input, output, or hyperbolic distance functions. Below, in Section 4, we derive asymp-

totic properties for VRS-DEA estimators of the directional distance function; this allows

extension of the methods of Simar and Wilson (2011) for estimating confidence intervals and

for hypothesis testing to directional distances. Before turning to the asymptotic results in

Section 4, however, we first give a careful description of the FDH and VRS-DEA estimators

of the directional distance function in (2.6).

3.2 Non-parametric Estimators of Directional Distances

As noted above, substituting Ψ̂FDH(Xn) for Ψ in (2.6) yields the FDH estimator δ̂FDH(x, y |
dx, dy,Ψ) of δ(x, y | dx, dy,Ψ) for the point (x, y) with direction given by d0 = (−dx, dy).

Simar and Vanhems (2010) give a probabilistic formulation of directional distances which

permits straightforward derivation of the asymptotic properties of the FDH estimator of

directional distances. Their main result, which will be needed below, appears in Theorem

4.1 of Simar and Vanhems (2010):

Theorem 3.1. Under Assumptions A2–A5,

n1/(p+q)
(
δ(x, y | dx, dy,Ψ)− δ̂FDH(x, y | dx, dy,Xn)

)
L−→ We

(
µp+q
(x,y),

p+ q

η(x,y)

)
, (3.4)

for any (x, y) in the interior of Ψ, where We(·, ·) is the Weibull distribution with constants

µ(x,y) > 0 and η(x,y) > 0 completely determined by the DGP.

A proof is given in Simar and Vanhems (2010). Extensions to the robust order-m and

order-α quantile directional distance and to conditional directional distance are also available

in Simar and Vanhems, 2010.

Alternatively, substituting Ψ̂VRS(Xn) for Ψ in (2.6) yields the VRS-DEA estimator

δ̂VRS(x, y | dx, dy,Xn) = max
δ,ω

{
δ | y + δdy ≤ Y ω, x− δdx ≥ Xω, i′nω = 1, ω ∈ Rn

+

}
(3.5)

of δ(x, y | dx, dy,Ψ) for the point (x, y) with direction given by d0 = (−dx, dy), where X, Y ,

ω, and in are defined as before. The estimator δ̂VRS(x, y | dx, dy,Xn) measures the distance

from a point (x, y) to the boundary of the convex hull of the F(Xn) following the direction

(−dx, dy). In the next section we show that the VRS-DEA estimator in (3.5) shares the

asymptotic properties of the VRS-DEA estimators of the radial input and output distance
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functions, as described in Kneip et al. (2008), as well as the asymptotic properties of the

VRS-DEA estimator of the hyperbolic distance function, as described in Wilson (2011).

As previously noted in footnote 5, dropping the constraint i′nω = 1 in (3.3) gives the CRS-

DEA estimator Ψ̂CRS(Xn) of Ψ. This in turn leads to the CRS-DEA estimator δ̂CRS(x, y |
dx, dy,Xn) of δ(x, y | dx, dy,Ψ); the estimator resembles the one in (3.5) except that the

constraint i′nω = 1 is omitted. In the next section, we focus primarily on properties of the

VRS-DEA estimator of the directional distance function, followed by a brief discussion of

properties of the CRS-DEA estimator.

4 Asymptotic Distribution Theory

In order to derive the statistical properties of the VRS-DEA estimator of directional distance

functions, we transform the coordinate system in order to represent both the frontier and its

estimator in terms of simple, scalar-valued functions. Jeong and Simar (2006) used a similar

device to construct and analyze a linearly interpolated version of the FDH estimator; more

recently, Kneip et al. (2008, 2011) used the same approach to derive asymptotic properties of

VRS-DEA estimators of input- and output-oriented distance functions. Using the approach

here, we are able to rely on results from Kneip et al. (2008, 2011) to establish asymptotic

properties for VRS-DEA estimators of directional distance functions; in addition, by using a

similar framework, we are able to show that existing bootstrap methods for radial efficiency

measures are easy to adapt to directional measures of efficiency.

Denote the ordered pair (x, y) ∈ Ψ by w, and let r = p + q be the length of the vector

w. Let w0 = (x0, y0) denote a specific point of interest. Suppose that we want to estimate

the distance from w0 to the frontier of Ψ in the direction d0 = (−dx, dy), where dx, dy ≥ 0.

Let {vj | j = 1, . . . , r − 1} denote an orthonormal basis for d0, and let V be the r × (r − 1)

matrix whose jth column is vj.
6

Now consider the linear transformation from Rr to Rr given by

hw0 : w 7→ ξ = T (w − w0), (4.1)

where T ′ =
(
V d0

||d0||

)
is a r × r orthogonal matrix and ||d0|| =

√
d′0d0 is the Euclidean

6 Various methods exist for computing an orthonormal basis of a vector; e.g., see Jeong and Simar (2006)
or Anderson et al. (1999).
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norm of d0; then T ′T = Ir where Ir denotes the r × r identity matrix. This one-to-one

transformation can be inverted, i.e., w = w0 + T ′ξ; also note that hw0(w0) = 0.

To see the consequence of this transformation, partition ξ as ξ′ =
(
z′ u

)
, where z =

V ′(w − w0) ∈ Rr−1 and u = d′0(w − w0)||d0||−1 ∈ R. The translation (w − w0) places the

origin of the new coordinate system at the point w0; the rotation T puts one coordinate (u)

in the direction d0 and the r − 1 remaining coordinates (z) are orthogonal to d0 (and hence

to the u-axis). Figure 1 illustrates the transformation for the bivariate case with p = q = 1.

Applying the transformation in (4.1) to each observation (Xi, Yi) in the observed sample

Xn results in the transformed sample Zn = {(Zi, Ui)}ni=1, where Zi = V ′(
[
X ′

i Y ′
i

]′ − w0) ∈
Rr−1 and Ui = ||d0||−1d′0(

[
X ′

i Y ′
i

]′ − w0) ∈ R.
In the new coordinate system, the attainable set Ψ is represented by

Γ(w0) = {ξ ∈ Rr | ξ = hw0(w), w ∈ Ψ}. (4.2)

This representation of Ψ depends on and is from the perspective of the point of interest w0.

The efficient frontier of Ψ can now be represented in the transformed coordinate system in

terms of the scalar-valued function

ϕ(z | w0) = sup
{
u | ξ =

(
z′ u

)′ ∈ Γw0

}
. (4.3)

Figure 1 illustrates the representation of the frontier of Ψ in terms of the function ϕ(z | w0)

when p = q = 1. Representing the frontier in terms of a scalar-valued function permits the

attainable set Γ(w0) to be described in terms of this function; i.e.,

Γ(w0) = {ξ =
(
z′ u

)′ ∈ Rr | u ≤ ϕ(z | w0)}. (4.4)

It is easy to see that for a generic point w = (x, y) ∈ Ψ, and the direction vector d0,

δ(x, y | dx, dy,Ψ) = ||d0||−1(ϕ(z | w0)− u), (4.5)

since
(
z′ u

)
= ξ′ and ξ = hw0(w). For the point of interest w0, we have hw0(w0) = 0 (since

z = 0 and u = 0 at w0), and hence

δ(x, y | dx, dy,Ψ) = ||d0||−1ϕ(0 | w0). (4.6)
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The empirical analog of the true model replaces Ψ with its VRS-DEA estimator

Ψ̂VRS(Xn). Let W =
(
X ′ Y ′)′; then W is a r × n matrix containing the sample ob-

servations. The VRS-DEA estimator (3.3) can be written as

Ψ̂VRS(Xn) =

{
w ∈ Rr | w = Wω + Ir

(
βx

−βy

)
, i′nω = 1, ω ∈ Rn

+, βx ∈ Rp
+, βy ∈ Rq

+

}
.

(4.7)

The βx and βy are introduced in (4.7) to replace the inequalities in (3.3), and to ensure

the free disposability of the estimator. In terms of the transformed coordinate system, the

VRS-DEA estimator of Γ(w0) can be written as

Γ̂VRS(Zn, w0) =

{
ξ | ξ = TWω + T

(
βx

−βy

)
− Tw0, i

′
nω = 1, ω ∈ Rn

+, βx ∈ Rp
+, βy ∈ Rq

+

}
.

(4.8)

The boundary of Ψ̂VRS(Xn) can now be described in the transformed coordinate system by

the scalar-valued function

ϕ̂VRS(z | Zn, w0) = sup
{
u | ξ =

(
z′ u

)′ ∈ Γ̂VRS(Zn, w0)
}
. (4.9)

Hence, the set Γ̂VRS(Zn, w0) can be represented equivalently as

Γ̂VRS(Zn, w0) =
{
ξ =

(
z′ u

)′ ∈ Rr | u ≤ ϕ̂VRS(z | Zn, w0)
}
. (4.10)

In Figure 1, the VRS-DEA frontier is depicted by the dashed line, corresponding to ϕ̂VRS(z |
Zn, w0). At the point w0, we have the frontier point ϕ(0 | w0) and its VRS-DEA estimate

ϕ̂VRS(0 | Zn, w0) on the u-axis, i.e. for z = 0.

As a practical matter, for any point z, ϕ̂VRS(z | Zn, w0) can be obtained by a solving the

simple linear program

ϕ̂VRS(z | Zn, w0) = max
u,ω,βx,βy

{
u |V ′Wω + V ′ (β′

x −β′
y

)′
= z + V ′w0,

u− d′0
||d0||

Wω − d′0
||d0||

(
β′
x −β′

y

)′
= − d′0

||d0||
w0,

i′nω = 1, ω ∈ Rn
+, βx ∈ Rp

+, βy ∈ Rq
+

}
. (4.11)

The VRS-DEA estimator of the directional distance at any point w = (x, y) ∈ Ψ, given the

direction vector d0, is

δ̂VRS(x, y | dx, dy,Xn) = ||d0||−1(ϕ̂VRS(z | Zn, w0)− u). (4.12)
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For the point of interest w0, we have

δ̂VRS(x, y | dx, dy,Xn) = ||d0||−1ϕ̂VRS(0 | Zn, w0). (4.13)

Careful examination of (4.6) and (4.13) reveals that we have an identical mathematical

formulation to define the directional distance and its VRS-DEA estimator, as we had for

the Farrell input (or output) radial distances considered in Kneip et al. (2008, 2011) (e.g.,

see equations (3.10) and (3.17) in Kneip et al., 2011). Consequently, under the regularity

conditions described in Kneip et al. (2011) and summarized above, we obtain the following

result.

Theorem 4.1. Under the regularity conditions given by assumptions 3.1–3.6, as n → ∞,

for any point (x, y) ∈ Ψ, and for any direction d0 = (−dx, dy) where dx, dy ≥ 0,

n2/(p+q+1)
(
δ̂VRS(x, y | dx, dy,Xn)− δ(x, y | dx, dy,Ψ)

)
L−→ Q, (4.14)

where Q is a random variable having a non-degenerate distribution with finite mean µQ and

finite variance σ2
Q > 0.

The proof of Theorem 4.1 follows directly using the transformation introduced above and

the arguments in Kneip et al. (2011); here, we give an heuristic description.

First, by Lemma 1 in Kneip et al. (2008) (where the function dx corresponds to the

function ϕ(. | w0) in the present notation) strict convexity of Ψ implies that the function

ϕ(z | w0) is convex. Second, the smoothness of the frontier assumed in Assumption 3.6

([A5]) implies that the function ϕ(z | w0) is twice continuously differentiable for all points in a

neighborhood of z = 0, with a positive semidefinite matrix of second derivatives at z = 0. By

Lemma 2 in Kneip et al. (2008), the sampling distribution of δ̂VRS(x, y | dx, dy,Xn)− δ(x, y |
dx, dy,Ψ) can be reformulated in terms of ϕ(· | w0) and of the joint density of δ(Xi, Yi |
dx, dy,Ψ) and Zi. Theorem 1 in Kneip et al. (2008) establishes the “local” nature of VRS-

DEA estimators when Ψ is convex (as assumed in Assumption 3.1); hence the value of the

directional VRS-DEA estimator δ̂VRS(x, y | dx, dy,Xn) is determined by observations lying in

a small neighborhood of the frontier point (x− δdx, y + δdy), where δ = δ(x, y | dx, dy,Ψ)).

The final result is obtained by reformulating Theorem 2 of Kneip et al. (2008) to obtain

the result in Theorem 4.1 above. The asymptotic properties of VRS-DEA estimators of
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directional distances are identical to the asymptotic properties of VRS-DEA estimators of

radial efficiency measures.

The result in Theorem 4.1 is not surprising since the usual input- and output-oriented dis-

tance functions (and their estimators) can be written as special cases of directional distance

functions as shown in (2.7)–(2.8). In addition, VRS-DEA estimators of the various distance

functions θ(x, y | Ψ), λ(x, y | Ψ), γ(x, y | Ψ), and δ(x, y | dx, dy,Ψ) are plug-in estimators

in the sense that the VRS-DEA estimators are obtained by replacing Ψ in the definition of

a particular distance function with Ψ̂VRS. Consequently, the statistical properties of VRS-

DEA estimators of distance to the boundary of Ψ necessarily depend on the properties of

the VRS-DEA estimator Ψ̂VRS of Ψ. The VRS-DEA distance function estimators are, in

each case, smooth functions of Ψ̂VRS, and hence share similar asymptotic properties.

In the cases where Ψ is equivalent to its conical hull, the frontier of the production set Ψ is

said to exhibit globally constant returns to scale. In such cases, one can consistently estimate

Ψ by Ψ̂CRS described above. Substituting this estimator for Ψ in (2.6) gives an estimator

δ̂CRS(x, y | dx, dy,Xn) of δ(x, y | dx, dy,Ψ) under constant returns to scale; the estimator is

similar to the VRS-DEA estimator in (3.5), except that the constraint i′nω = 1 is omitted.

Asymptotic results for δ̂CRS(x, y | dx, dy,Xn) are similar to those for δ̂CRS(x, y | dx, dy,Xn),

and are given in the following Theorem:

Theorem 4.2. Assume that Ψ = V(Ψ), and that the conditions given by Assumptions 3.1–

3.6 hold. Then as n → ∞, for any point (x, y) ∈ Ψ, and for any direction d0 = (−dx, dy)

where dx, dy ≥ 0,

n2/(p+q)
(
δ̂CRS(x, y | dx, dy,Xn)− δ(x, y | dx, dy,Ψ)

)
L−→ Q∗, (4.15)

where Q∗ is a random variable having a non-degenerate distribution with finite mean µQ∗

and finite variance σ2
Q∗ > 0.

We do not give a formal proof here in order to save space; however, the proof of Theorem

4.2 is straight-forward, relying on the the transformation introduced above and the reasoning

in Park et al. (2010). Note that here, with constant returns to scale, the convergence rate

is n2/(p+q); in Theorem 4.1 with variable returns to scale, the convergence rate is slower, i.e.,

n2/(p+q+1).
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5 Bootstrap and Inference

The asymptotic results obtained in Section 4 are not particularly useful from a practical point

of view since the limiting distribution has no closed form. The asymptotic results established

in Section 4 are important, however, for establishing validity of bootstrap methods that are

useful in applications for making inference about the efficiency of individual points as well as

tests of general hypotheses regarding the production set Ψ (e.g., tests of convexity, returns

to scale, or various restrictions that might be imposed).

Kneip et al. (2008) propose two bootstrap procedures to estimate confidence intervals

for the efficiencies of individual points and prove consistency of both methods. The first

approach uses sub-sampling where bootstrap samples of sizem < n are drawn independently,

with replacement from the empirical distribution of the original sample Xn. Simulation

results, however, indicate that the coverage of bootstrap estimates of confidence intervals

depends critically on the sub-sample size m. Kneip et al. were unable to offer a practical

method for choosing the sub-sample size. Their second, double-smoothing approach involves

bootstrap samples of size n, and requires smoothing both the joint distribution of inputs

and outputs as well as the initial frontier estimate. The double-smoothing method requires

solving a large number of intermediate linear programs as well as selecting values for two

bandwidths, making the method computationally intensive.

For the case of confidence intervals for the input distance function defined in 2.3, Kneip

et al. (2011) establish validity of a simplified, computationally efficient version of the double-

smooth bootstrap developed by Kneip et al. (2008). The idea is to construct bootstrap

samples by drawing “naively,” i.e., from the empirical distribution of observed input-output

pairs, while replacing draws of observations “near” the estimated frontier with draws from

a uniform distribution. The method requires smoothing the initial frontier estimate as in

the original double-smooth method of Kneip et al. (2008), but avoids the need for solving

intermediate linear programs on each bootstrap replication. Consequently, the method is

much faster than the original double-smoothing approach, with computational time of the

same order as a simple, naive (but inconsistent) bootstrap. The simplified method also

requires two bandwidths, but one (controlling the size of the neighborhood “near” the frontier

estimate) can be set using a simple rule-of-thumb, while the second bandwidth (controlling
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the degree of smoothing of the initial frontier estimate) can be optimized using by iterating

the bootstrap along the lines of Simar and Wilson (2001, 2004).

In Appendix A we extend the computationally efficient bootstrap method of Kneip et al.

(2011) to estimate confidence intervals for directional distance functions. While the extension

is straightforward, some details differ from the algorithm given by Kneip et al. due to the

introduction of an arbitrary direction in (2.6). In addition, when the direction vectors dx and

dy are strictly positive, the need for extrapolation as required by the Kneip et al. method

can be avoided.

While the computationally efficient bootstrap described in Appendix A can be used to

estimate confidence intervals for the directional efficiency of individual firms or points in Ψ,

it is inappropriate for testing hypotheses about the structure of Ψ or its frontier. In such

situations, the m out of n bootstrap analyzed by Simar and Wilson (2011) can be used for

testing general hypotheses about Ψ and other features of the model.

Them out of n bootstrap is based on drawing, without replacement,m < n times from the

empirical distribution of the observed input-output pairs; Simar and Wilson (2011) show that

ideas for choosing the subsample size m suggested by Politis et al. (2001) work well in finite

samples, and prove that the method provides statistically consistent inference for testing

hypotheses about the efficiency of individual points as well as for testing general hypotheses

using statistics that are Borel functions of a set of distance functions. Results from Monte

Carlo experiments reported by Simar and Wilson (2011) indicate that the method works

well in finite samples, yielding tests with appropriate size and confidence interval estimates

with coverage close to nominal levels.

The theoretical treatment in Simar and Wilson (2011) is in terms of input distance func-

tions, but is easily extended to the directional distance functions considered here. Substitut-

ing the directional distance function defined in (2.6) and its VRS-DEA and FDH estimators

for the input distance function and its corresponding estimators appearing in Section 4 of

Simar and Wilson (2011), results similar to those obtained in Simar and Wilson are obtained

since the asymptotic results obtained above in Section 3 are analogous to properties of the

DEA estimator of the input-oriented distance function in (2.3).

Use of the m out of n bootstrap to estimate confidence intervals for δ(x, y | dx, dy,Ψ)

corresponding to the point (x, y) is straightforward and analogous to the description in
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Simar and Wilson (2011) regarding estimation of confidence intervals for the input-oriented

efficiency measure. Consider an estimate δ̂ = δ̂VRS(x, y | dx, dy,Xn) of δ(x, y | dx, dy,Ψ),

and corresponding bootstrap estimates δ̂∗b = δ̂(x, y | dx, dy,X ∗
m), b = 1, . . . , B based on

bootstrap samples X ∗
m of size m < n obtained by drawing m times, independently, uniformly,

and without replacement from Xn. From Theorem 4.1, we have

Pr
(
aα ≤ n2/(p+q+1)

(
δ̂ − δ

)
≤ bα

)
= (1− α) (5.1)

for some aα and bα. Moreover, the results of Simar and Wilson (2011) adapted to the case

of directional distance functions and Theorem 2.1 in Politis et al. (2001) ensure that

Pr
(
aα ≤ n2/(p+q+1)

(
δ̂∗ − δ̂

)
≤ bα

)
≈ (1− α), (5.2)

with the approximation improving as B → ∞. Given δ̂ and the B bootstrap values

δ̂∗b , aα and bα can be estimated by the α
2

and (1 − α
2
) percentiles of the set of values{

m2/(p+q+1)(δ̂∗b − δ̂)
}B

b=1
; denote these estimates by â∗α and b̂∗α, respectively. Substituting

these estimates for aα and bα in (5.1) and then rearranging terms yields(
δ̂lo,α, δ̂hi,α

)
=

(
δ̂ − n−2/(p+q+1)b̂∗α, δ̂ − n−2/(p+q+1)â∗α

)
, (5.3)

which provides an estimate of the (1− α)× 100-percent confidence interval for δ in (5.1).7

The only remaining issue is how to choose the sub-sample size m; this can be done using

the data-driven method described in Simar and Wilson (2011). Consider a set M = {mj}Jj=1

of sub-sample sizes where m1 < m2 < . . . < mJ .

In the case of confidence intervals, estimated lower and upper bounds (ĉlo,j(α), ĉhi,j(α))

can be computed for each mj ∈ M. Then for each j ∈ {2, 3, (J − 1)}, com-

pute Vj as the sums of the standard deviations of {ĉlo,j−1(α), ĉlo,j(α), ĉlo,j+1(α)} and

{ĉhi,j−1(α), ĉhi,j(α), ĉhi,j+1(α)}; choose the subsample size and corresponding confidence

interval estimate corresponding to minj Vj. In the case of hypothesis testing, we can proceed

similarly by computing critical values cj(α) corresponding to each mj ∈ M, and then for

each j ∈ {2, 3, (J −1)}, compute Vj as the standard deviation of {cj−1(α), cj(α), cj+1(α)}.
7 Simar and Wilson (2011) also discuss use of the m out of n bootstrap for testing hypotheses about

model structure (e.g., returns to scale, convexity of Ψ) using input-oriented distance functions. It is straight-
forward to adapt the testing methods discussed by Simar and Wilson (2011) for use with directional distance
functions.
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Then choose the sub-sample size and corresponding critical value corresponding to minj Vj.

In either case, Vj gives a measure of “volatility” of either the estimated confidence bounds

or the estimated critical values. See Simar and Wilson (2011) for additional discussion.

6 Empirical Illustrations

Charnes et al. (1981, pp. 680–682) list 70 observations on 5 inputs and 3 outputs of schools

examined in their study.8 These data have been examined by Wilson (1993), Simar (2003),

and others; although the number of dimensions (eight) is large for the number of observa-

tions (70) given the slow convergence rate (n2/9) of the VRS-DEA estimator, the data serve

as a useful, illustrative application that readers can replicate. We use the Charnes et al.

(1981) data to illustrate the full-sample bootstrap method explained in Appendix A and

adapted from Kneip et al. (2011).

Application of the full-sample bootstrap is straight-forward. For each observation, we

take the direction vectors dx, dy to be the observed input-output vectors for the given

observation; we then transform the data to the (Z,U)-space as described in Section 3, and

employ the algorithm given in Appendix A within a golden section search to optimize the

bandwidth h.9 For each observation, we use B = 2, 000 bootstrap replications.

Results are reported in Table 1, consisting of two panels with the one on the left giving

results for observations 1–35 and the one on the right giving results for observations 36–

70. In each panel, the column labeled “δ̂i” gives the estimate of the directional distance

function defined in (2.6) for observations i obtained with the estimator in (3.5). The next

two columns give the estimated 95-percent confidence interval, while the remaining columns

give the optimized values of the bandwidths and finally the estimated size (i.e., one minus the

estimated coverage) of the estimated confidence intervals. Size can be estimated because the

full-sample bootstrap involves iteration to optimize the smoothing parameter h. Although

we do not do so here, one could adjust the nominal size in order to optimize the achieved

size of the estimated confidence intervals as described by Simar and Wilson (2001, 2004).

As discussed previously, the DEA estimator is biased downward. This is reflected in

8 See Charnes et al. (1981) for a complete description of the data, including precise definitions of the
inputs and outputs.

9 See Press et al. (2007) for a description of the golden-section search method
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the results given in Table 1 by the fact that the distance function estimates lie to the left

of the confidence interval estimates. This is not surprising and is as it should be—the

bootstrap that we have used incorporates an automatic correction for bias when estimating

confidence intervals. The estimated sizes average 0.0681 over the 70 observations in the

sample, ranging from 0.0235 to 0.1490. On average, the estimated sizes a are close to the

nominal value of 0.05; some variation is to be expected due to the small sample size and the

large dimensionality of the problem.

As a second example, we use sub-sampling methods to examine data on 129 aggressive-

growth Mutual Funds; data were collected from Morningstar and updated May 2002. These

same data have been examined by Simar and Vanhems (2010), and with additional mutual

fund data by Daraio and Simar (2006, 2007).10 In this setting, the traditional output Y

is total annual return, expressed in percentage terms; we consider three inputs, namely

risk, given by the standard deviation of returns (X1), the expense ratio which measures

of transaction costs (operating expenses and management fees, administrative fees, and all

other asset-based costs) as a percentage of total assets (X2), and X3, the turnover ratio that

measures the fund’s trading activity (X3; funds with higher turnover incur greater brokerage

fees for affecting the trades). Annual returns can be either positive or negative; due to the

nature of aggressive growth funds and the period covered by our data (January 1–December

31, 2001), most of the returns observed in our sample are negative.

We take the direction vectors dx, dy as the average values for the inputs (all are positive

in our case) so that dx = (34.98, 155.19, 1.68)′, and the average of absolute values of returns,

yielding dy = 18.36 Note that since the output is here univariate, the value of dy does not

matter so much (it is only a rescaling of the directional distance). Comparing the efficiency

level along an average benchmark direction sounds meaningful, although from a theoretical

view point, any other direction could be chosen.

Table 2 shows individual results for 20 funds randomly selected from the data.11 For

10 We are grateful to Cinzia Daraio for providing the data. A number of studies have applied efficiency
and productivity measurement techniques to the problem of evaluating the performances of mutual funds.
In these studies, risk (measured by volatility or variance) and average return on a fund or portfolio are
analogous to inputs and outputs in models of production. The boundary of the attainable set of funds gives
a benchmark relative to which the efficiency of a fund can be measured (see, for example, Briec et al., 2004
and Briec and Kerstens, 2009 for discussions of the relation between the hypothesis of the basic Markowitz
model and production theory, and the usefulness of directional distances in this framework).

11 To facilitate comparison, the selected units are the same as those selected in Simar and Vanhems (2010).
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each selected observation, Table 2 shows FDH and VRS-DEA estimates of the directional

distance functions in columns 2 and 3. In addition, in columns 4–6, results are shown for

the bias-corrected version of the VRS-DEA estimator. The bias-corrected estimates shown

in column 5 are computed using

δ̂BC,DEA = δ̂n,DEA − (m/n)2/(p+q+1) 1

B

B∑
b=1

(δ̂∗b,DEA − δ̂n,DEA) (6.1)

where we adjust for the difference between the original sample size n and the sub-sample size

m < n. For each observation, the sub-sample size mBC appearing in column 4 is chosen to

minimize the volatility of the bias-correction term, again along the lines of Simar and Wilson

(2011). Column 6 in Table 2 gives the corresponding bootstrap estimates of the standard

errors of the initial, uncorrected VRS-DEA estimates. Comparing the values in Columns 3

and 5 with the standard errors in column 6 reveals that the estimated bias is larger in every

case than 0.25 × σ(δ̂DEA). Employing the conservative rule given in Efron and Tibshirani

(1993), the results suggest that the bias corrected estimate should be used in favor of the

uncorrected estimate.

The last three columns of Table 2 show results for confidence intervals estimated by

the sub-sampling bootstrap. The sub-sample sizes mCI used for constructing the individual

interval estimates are given in column 7, and the estimated lower and upper bounds for

95-percent confidence intervals are given in the last two columns. The sub-sample sizes for

estimating confidence intervals are sometimes different from the sub-sample sizes for bias-

correction. Since the choice of sub-sample size is data-driven, this should not be surprising;

in the case of confidence interval estimation, the sub-sample size mCI is chosen to minimize

the volatility of the estimated confidence bounds (see Simar and Wilson, 2011 for details and

discussion), while the sub-sample size mBC was chosen by minimizing the volatility of the

bias-corrected estimate as discussed above. The width of the estimated confidence intervals

gives an idea of the precision of the VRS-DEA estimates; while there is some variation in

widths, in most cases the estimated intervals are rather narrow.

Using robust versions of directional distance estimators, Simar and Vanhems (2010) found

evidence that fund #56 is an outlier in the sense that it does not lie close to other observations

in the data. This is reflected in the confidence interval estimate for this observation; the

estimated interval is wide—0 to 0.1309—reflecting the fact that there is little information in
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the sample to inform us about the directional distance from this observation to the boundary

of the production set. We know that the precision of the distance function estimates depends

on the density of data points in a neighborhood of the frontier along the directional path

(−dx, dy); where the density is large, estimated confidence intervals are narrow, but where

the density is sparse, estimated confidence intervals are wider. In contrast to the previous

example with the school data from Charnes et al. (1981), here the estimated lower bounds

of the confidence intervals typically coincide with the initial VRS-DEA estimate. In the

previous example, the lower bounds were to the right of the initial distance function estimate.

This difference is due to the fact that here, the convergence rate for the VRS-DEA estimator

is n2/5, whereas in the previous example, the convergence rate was n2/9. In addition, the

sample size is larger in this example than in the previous example. Here, this bias is less

than in the previous example, though perhaps still substantial.

7 Conclusions

This paper, examines the non-parametric DEA estimator of directional distances. Directional

distances generalize the standard input or output oriented radial distances considered by

Debreu (1951), Farrell (1957), Shephard (1953, 1970), and others, and consequently allow

for more general analyses of production. In addition, directional distance functions and their

estimators are able to accommodate negative quantities of inputs or outputs, whereas the

traditional measures do not. We extend existing results on asymptotic convergence properties

of radial DEA estimators, obtained by Kneip et al. (2008), to the case of directional distances.

This allows adaptation of bootstrap procedures developed by Kneip et al. (2008, 2011) and

Simar and Wilson (2011) for radial distance functions to the case of directional distances.

We provide empirical examples to illustrate the use of both full-sample and sub-sampling

bootstrap methods for making inference and testing hypotheses about model structure. Our

illustration of the test of convexity in our second example is easily extended to tests of

returns to scale as in Simar and Wilson (2011) and other model features.
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A Appendix: Bootstrap For Confidence Intervals

Kneip et al. (2011) developed a consistent bootstrap for making inferences about input- or

output-oriented efficiency measures that avoids much of the computational burden of the

double-smooth bootstrap algorithm developed by Kneip et al. (2008). The main idea under-

lying the Kneip et al. (2011) bootstrap method is to use a naive bootstrap for observations

that are “far” from the initial DEA estimate of the production frontier, while drawing from a

smooth, uniform distribution for observations that lie “near” the DEA frontier. The method

requires two bandwidth parameters, h1 and h2, which can be optimized using data-driven

methods as in Kneip et al. (2011). The bandwidth h2 controls the degree of smoothing of

the initial frontier estimate, while the bandwidth h1 determines the size of the neighborhood

near the initial frontier estimate. With a few changes, the idea can be extended to the case

of directional distances; given values for the bandwidth parameters, the following algorithm

is analogous to Algorithm #2 appearing in Kneip et al. (2011):

Input: Xn, h1, h2, w0, d0, α

Output: δ̂VRS(x, y | dx, dy,Xn), (δ̂lo,α, δ̂hi,α), α̂(h2)

[1] Using the transformation defined in (4.1), transform each (Xi, Yi) ∈ Xn to (Zi, Ui) to

form the set Zn.

[2] Compute δ̂0 = δ̂VRS(x0, y0 | dx, dy,Xn) = ϕ̂VRS(0|Zn,w0)
||d0|| , and δ̂i =

(ϕ̂VRS(Zi|Zn,w0)−Ui)
||d0||

∀ i = 1, . . . , n.

[3] Set h1 = 4δ̂medn
−2/(3(p+q+1)) where δ̂med denotes the median of the values δ̂1, δ̂2, . . . , δ̂n

computed in step [2].

[4] Compute the smoothed frontier points (Zi, U
∂
i ) for each i = 1, . . . , n where U∂

i =

ϕ̂VRS(0 | Zn, w0) + h2
2

[
ϕ̂VRS(h

−1
2 Zi | Zn, w0)− ϕ̂VRS(0 | Zn, w0)

]
.

[5] Set k = 0, B = ∅.

[6] Loop over steps [5.1]–[5.9] B1 times:

[6.1] Draw independently, uniformly, and with replacement from the set of integers

{i}ni=1 n times to create a set of labels J = {ji}ni=1.
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[6.2] For each i = 1, . . . , n, set Z∗
i = Zji and

U∗
i =

{
U∂
ji
− δ̂ji if δ̂ji > h1;

U∂
ji
− ξ∗ji otherwise,

where ξ∗ji is a random, independent draw from a uniform distribution on the

interval [0, h1], to construct a bootstrap sample Z∗
n = {(Z∗

i , U
∗
i )}ni=1.

[6.3] Compute δ̂∗0 = ϕ̂VRS(0|Z∗
n,w0)

||d0|| and add δ̂∗0 to the set Bh2 .

[6.4] Analogous to step [2], compute δ̂∗i =
(ϕ̂VRS(Z

∗
i |Z∗

n,w0)−U∗
i )

||d0|| ∀ i = 1, , . . . , n.

[6.5] Compute (smoothed) frontier points (Z∗
i , U

∂∗
i ) where U∂∗

i = ϕ̂VRS(0 | Z∗
n, w0) +

h2
2

[
ϕ̂VRS(h

−1
2 Z∗

i | Z∗
n, w0)− ϕ̂VRS(0 | Z∗

n, w0)
]
∀ i = 1, . . . , n.

[6.6] Set B∗
h = ∅.

[6.7] Loop over steps [6.7.1]–[6.7.3] B2 times:

[6.7.1] Draw independently, uniformly, and with replacement from the set of integers

{i}ni=1 n times to create a set of labels J ∗ = {j∗i }ni=1.

[6.7.2] For each i = 1, . . . , n, set Z∗∗
i = Z∗

ji
and

U∗∗
i =

{
U∂∗
ji

− δ̂∗j∗i ifδ̂∗j∗i > h1;

U∂∗
ji

− ξ∗∗j∗i otherwise,

where ξ∗∗j∗i is a random, independent draw from a uniform distribution on the

interval [0, h1], to construct a bootstrap sample Z∗∗
n = {(Z∗∗

i , U∗∗
i )}ni=1.

6.7.3] Compute δ̂∗∗0 = ϕ̂VRS(0|Z∗∗
n ,w0)

||d0|| ; add δ̂∗∗0 to the set B∗
h2
.

[6.8] Use the estimate δ̂∗0 computed in step [6.3] and the set B∗
h2

= {δ̂∗∗0,ℓ}
B2
ℓ=1 of bootstrap

values to estimate a (1 − α) × 100-percent confidence interval
[
ĉ∗lo,α(h2)

, ĉ∗hi,α(h2)

]
for δ̂0.

[6.9] If δ̂0 ∈
[
ĉ∗lo,α(h2)

, ĉ∗hi,α(h2)

]
then increment k by 1.

[7] Use the estimate δ̂0 computed in step [2] and the set Bh2 = {δ̂∗0,ℓ}
B1
ℓ=1 of bootstrap values

to estimate a (1− α)× 100-percent confidence interval
[
ĉlo,α(h2), ĉhi,α(h2)

]
for δ0.

[8] Compute α̂(h2) = 1− kB−1
2 , the estimated size of the interval computed in step [7].
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Kneip et al. (2011) discuss the need for extrapolation in their algorithm; extrapolation

is needed when smoothing of the initial frontier estimates causes some observations to be

shifted above the convex hull of the sample observations when working in the input direction

(or to be shifted to the left of the convex hull of the sample observations when working in

the output direction). With directional distances, however, provided each element of the

direction vectors dx and Dy are strictly positive, no extrapolation is needed. The smoothing

in step [3] is certain to maintain convexity of the frontier estimate; see Kneip et al. (2011)

for discussion.

The computations in steps [1]–[5] of the above algorithm can be done prior to the boot-

strap loop beginning in step [6]; the computations need only be done once. As noted above,

the bandwidth h1 that is computed in step [3] controls the size of the neighborhood near the

frontier estimate. From the discussion in Section 4.5 of Kneip et al. (2011), this bandwidth

must be of order O
(
n−2/3(p+1+1)

)
. Reflecting the δi computed in step [2] around zero yields

a set of (2n) points whose density must be symmetric around zero. As in Kneip et al. (2011),

the bandwidth h1 can be optimized using the normal reference rule of Freedman and Diaco-

nis (1981) for selecting bin-widths in histogram estimators of probability density functions.

Their rule sets bin-widths for a histogram estimator of the density of the set of 2n values

D = {δ̂i,−δ̂i}ni=1 to 2(IQ)(2n)−1/3, where IQ denotes the inter-quartile range of the values

in D. Noting that the interquartile range of the values in D is simply the median of the

n values δ̂1, δ̂2, . . . , δ̂n, denoted by δ̂med, and multiplying the Freedman and Diaconis by

n−2/3(p+q+1)/n−1/3 to obtain the correct order, gives the value for h1 appearing in step [4]

above.

As discussed in Kneip et al. (2011), the above algorithm can be embedded in a golden-

section search algorithm (Kiefer, 1953) in order to optimize the value of the bandwidth h2

that controls the degree of smoothing of the frontier estimate.
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Table 2: FDH and DEA estimators of directional distance for 20 Mutual Funds

Units δ̂FDH δ̂DEA mBC δ̂BC,DEA σ(δ̂DEA) mCI δ̂lo,α δ̂hi,α

3 0.0000 0.1097 62 0.1526 0.0363 122 0.1097 0.1472
99 0.5026 0.5290 62 0.5910 0.0594 76 0.5290 0.6968

107 0.1611 0.1711 34 0.2372 0.0478 122 0.1711 0.2007
39 0.4317 0.4627 80 0.5020 0.0675 122 0.4627 0.5059
51 0.1368 0.1867 80 0.2208 0.0532 40 0.1867 0.3537

121 0.2771 0.3205 76 0.3551 0.0441 122 0.3205 0.3534
122 0.0000 0.1020 62 0.1697 0.0566 100 0.1020 0.2018
15 0.1546 0.4047 46 0.4877 0.0476 84 0.4047 0.5564

123 0.0000 0.0745 62 0.1245 0.0297 122 0.0745 0.1389
28 0.2706 0.2946 106 0.3160 0.0410 112 0.2946 0.4085
65 0.3222 0.3372 90 0.3567 0.0322 74 0.3372 0.4818
56 0.0000 0.0000 80 0.0618 0.0866 122 0.0000 0.1309

115 0.3568 0.4898 62 0.5567 0.0479 120 0.4898 0.5645
27 0.4183 0.4224 106 0.4471 0.0531 94 0.4224 0.6067
6 0.3628 0.3706 106 0.4044 0.0714 88 0.3706 0.5861
31 0.0000 0.1182 64 0.1627 0.0393 100 0.1182 0.2215
61 0.4011 0.4081 106 0.4279 0.0410 116 0.4081 0.5130
45 0.4059 0.4744 120 0.4759 0.0053 122 0.4744 0.4827
91 0.7256 0.7283 90 0.7449 0.0455 122 0.7283 0.7337

129 0.2821 0.3571 106 0.3885 0.0627 96 0.3571 0.5299

NOTE: The value of mBC gives the subsample size for bias correction and mCI is for building
the 95% confidence intervals.
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Figure 1: Transformation from (x, y)-space to (z, u)-space
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NOTE: The boundaries of the attainable set and its DEA estimate are indicated by the
smooth, solid curve and the dashed, piece-wise linear curve, respectively. Data points are
shown by asterisks (*).
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