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This work deals with the ill-posed inverse problem of reconstructing a function f given
implicitly as the solution of g = Af , where A is a compact linear operator with unknown
singular values and known eigenfunctions. We observe the coefficients of g and the singular
values subject to Gaussian white noise with noise levels ε and σ.

We develop a minimax theory in terms of both noise levels and propose an orthog-
onal series estimator attaining the minimax rates. This estimator requires the optimal
choice of a dimension parameter depending on certain characteristics of f and A. This
work addresses the fully data-driven choice of the dimension parameter combining model
selection with Lepski’s method. We show that the fully data-driven estimator preserves
minimax optimality over a wide range of classes for f and A and noise levels ε and σ. The
results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse
problems.
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1. Introduction

Let (H, 〈·, ·〉H) and (G, 〈·, ·〉G) be separable Hilbert spaces and A a compact linear operator from H
to G with unknown singular values. This work deals with the reconstruction of a function f ∈ H given
noisy observations of the image g = Af on the one hand and of the unknown sequence of singular
values b = (aj)j∈N on the other hand. In other words, we consider a statistical inverse problem with
partially unknown operator. There is a vast literature on statistical inverse problems. For the case
where the operator is fully known, the reader may refer to Cavalier et al. (2002), Mair and Ruymgaart
(1996), Mathé and Pereverzev (2001), and Johnstone and Silverman (1990) and the references therein.
A typical illustration of such a situation is a deconvolution problem (cf. Fan (1991), Ermakov (1990),
∗e-mail: {jan.johannes|maik.schwarz}@uclouvain.be
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and Stefanski and Carroll (1990) among many others). For a more detailed discussion and motivation
of the case of a partially unknown operator which we consider in this work, we refer the reader to
Cavalier and Hengartner (2005). Neumann (1997) and Efromovich (1997) consider such a setting in
the particular context of a deconvolution problem.
Let us describe in more detail the model we are going to consider. We suppose that A admits
a singular value decomposition (aj , ϕj , ψj)j∈N as follows. Denote by A∗ the adjoint operator of A.
Then, A∗A is a compact operator onH with eigenvalues (a2

j )j∈N whose associated orthonormal basis of
eigenfunctions {ϕj} we suppose to be known. Analogously, the operator AA∗ has eigenvalues (a2

j )j∈N
and known orthonormal eigenfunctions ψj = ‖Aϕj‖−1

G Aϕj in G. Projecting the inverse problem
g = Af on the eigenfunctions, we obtain the system of equations [g]j := 〈g, ψj〉G = aj〈f, ϕj〉H for
j ∈ N. As the operator A is compact, the sequence of singular values tends to zero and the inverse
problem is called ill-posed.
The solution f is characterized by its coefficients [f ]j := 〈f, ϕj〉H . Our objective is their estimation
based on the following observations:

Yj = [g]j +
√
ε ξj = aj [f ]j +

√
εξj and Xj = aj +

√
σ ηj (j ∈ N), (1.1)

where the ξj , ηj are iid. standard normally distributed random variables and ε, σ ∈ (0, 1) are noise
levels. Thus we represent the problem at hand as a hierarchical Gaussian sequence space model. Of
course f can only be reconstructed from such observations if all the aj are non-zero which is the case
if and only if the operator A is injective. We assume this from now on, which allows us to write
f =

∑∞
j=1[g]ja

−1
j ϕj . Hence, an orthogonal series estimator of f seems to be a natural approach:

f̂k :=

k∑
j=1

Yj
Xj

1[X2
j>σ] ϕj .

The stabilizing threshold on the random denominator Xj corresponds to its noise level as an estimator
of aj . Note that f̂k depends on a dimension parameter k whose choice essentially determines the
estimation accuracy. Its optimal choice generally depends on both unknown sequences ([f ]j) and (aj).
Our purpose is to establish an adaptive estimation procedure for the function f which does not
depend on these sequences. More precisely, assuming that the solution and the operator belong to
given classes f ∈ F and A ∈ A, respectively, we shall measure the accuracy of an estimator f̃ of f by
the maximal weighted risk Rω(f̃ ,F ,A) := supf∈F supA∈AE‖f̃ − f‖2ω defined with respect to some
weighted norm ‖·‖ω :=

∑
j∈N ωj |[·]j |2, where ω := (ωj)j∈N is a strictly positive weight sequences. This

allows us to quantify the estimation accuracy in terms of the mean integrated square error (MISE)
not only of f itself, but as well of its derivatives, for example. Given observations Y = (Yj)j∈N and
X = (Xj)j∈N with respective noise levels ε and σ according to (1.1), the minimax risk with respect
to the classes F and A is then defined as R∗ω(ε, σ,F ,A) := inf

f̃
Rω(f̃ ,F ,A), where the infimum is

taken over all possible estimators f̃ of f . An estimator f̂ is said to attain the minimax rate or to be
minimax optimal with respect to F and A if there is a constant C > 0 depending on the classes only
such that Rω(f̂ ,F ,A) 6 CR∗ω(ε, σ,F ,A) for all ε, σ ∈ (0, 1). An estimation procedure which is fully
data-driven and minimax optimal for a wide range of classes F and A is called adaptive.

In the next section, we show that for a wide range of classes F and A the orthogonal series estima-
tor f̂k∗ε attains the minimax rate for an optimal choice k∗ε of the dimension parameter. We illustrate
this result considering subsets of Sobolev spaces for F and distinguishing two types of operator
classes A specifying the decay of the singular values: If (aj) decays polynomially, the inverse problem
is called mildly ill-posed and severely ill-posed if they decay exponentially. However, k∗ε is chosen sub-
ject to a classical variance-squared-bias tradeoff and depends on properties of both classes F and A
which are unknown in general.
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The last section is devoted to the development of a data-driven choice k̂ of k, using a combination
of the model selection scheme (Barron et al., 1999, cf.) with Lepski’s procedure which is inspired by
the work of Goldenshluger and Lepski (2011) who consider bandwidth selection for kernel estimators.
Given a random sequence (p̂enk)k>1 of penalties, a random set {1, . . . , K̂} of admissible dimension
parameters and the random sequence of contrasts

Ψ̂k := max
k6j6K̂

{
‖f̂j − f̂k‖2ω − p̂enj

}
(k ∈ N), (1.2)

the dimension parameter is selected as the minimizer1 of a penalized contrast

k̂ := argmin
16k6K̂

{
Ψ̂k + p̂enk

}
. (1.3)

We assess the accuracy of the fully data-driven estimator f̂
k̂
deriving an upper bound forRω(f̂

k̂
,F ,A).

Obviously this upper bound heavily depends the random sequence (p̂enk) and the random upper
bound K̂. However, we construct these objects in such a way that the resulting fully data-driven
estimator f̂

k̂
is minimax optimal in many cases and thus adaptive.

Adaptive estimation in a hierarchical Gaussian sequence space model has previously been considered
by Cavalier and Hengartner (2005). Though, the authors restrict their investigation to the mildly
ill-posed case and to noise levels satisfying σ 6 ε. The new approach presented in this paper has the
advantage of not requiring such restrictions. On the contrary, the influence of the two noise levels
on the estimation accuracy is characterized. Moreover, the estimator presented in this paper is can
attain optimal convergence rates independently of whether the underlying inverse problem is mildly
or severely ill-posed, for example, even when ε� σ.
The more technical proofs and some auxiliary results are deferred to the appendix.

2. Minimax

In this section we develop a minimax theory for Gaussian inverse regression with respect to the classes

Frγ :=

{
h ∈ H

∣∣∣ ∑
j∈N

γj |[h]j |2 =: ‖h‖2γ 6 r
}

and

Adλ :=

{
T ∈ C(H,G)

∣∣∣ The eigenvalues {uj} of T ∗T satisfy 1/d 6
u2
j

λj
6 d ∀ j ∈ N

}
,

where C(H,G) denotes the set of all compact linear operators from H to G having {ϕj} and {ψj} as
eigenfunctions, respectively. The minimal regularity conditions on the solution, the operator and the
weighted norm ‖·‖ω which we need in this section are summarized in the following assumption.
Assumption 2.1 Let γ := (γj)j∈N, ω := (ωj)j∈N and λ := (λj)j∈N be strictly positive sequences of
weights with γ1 = ω1 = λ1 = 1 such that ω/γ and λ are non-increasing, respectively.
Illustration 2.2 As an illustration of the results below, we will consider weight sequences γj = j2p, for
which Frγ is a Sobolev space of p-times differentiable functions if we consider the trigonometric basis
in H = L2[0, 1]. As for the operator, we will distinguish the cases λj = j−2b, referred to as mildly
ill-posed ([m]) and λj = exp(1−j2b), the severely ill-posed case ([s]). Concerning the weighted norm,
we will consider sequences2 ωj ∼ j2s, such that ‖f‖ω = ‖f (s)‖L2 for all f ∈ Frγ .
The following result states lower risk bounds for the estimation of f and thus describes the complexity
of the problem.

1For a sequence (bk)k∈N attaining a minimal value on N ⊂ N, let argmin
n∈N

bn := min{n ∈ N | bn 6 bk ∀k ∈ N}.
2bρ ∼ cρ means that limρ→0 bρ/cρ exists in (0,∞).
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Theorem 2.3 Suppose that we observe sequences Y and X according to the model (1.1). Consider
sequences ω, γ, and λ satisfying Assumption 2.1. For all ε, σ ∈ (0, 1), define

ρk,ε := max
(ωk
γk
,
k∑
j=1

εωj
λj

)
, χε := min

k∈N
ρk,ε, k∗ε := argmin

k∈N
ρk,ε, κσ := max

k∈N

{ωk
γk

min
(

1,
σ

λk

)}
.

(2.1)
If η := infn∈N{χ−1

ε min(ωk∗εγ
−1
k∗ε
,
∑k∗ε

l=1 εωl(λl)
−1)} > 0, then

inf
f̃

sup
f∈Frγ

sup
A∈Adλ

{
E‖f̃ − f‖2ω

}
>

1

4d
min(η, r) min(r, 1/(2d), (1− d−1/2)2) max(χε, κσ).

It is noteworthy that apart from the somewhat unwieldy constant, the lower bound is given by two
terms (χε and κσ), each of which depending only on one noise level. We show in the proof that χε
is actually a lower bound when we assume the eigenvalues aj to be known. Therefore, κσ shows to
which extent the additional difficulty arising from the preliminary estimation of the eigenvalues aj
influences the possible estimation accuracy for f : As long as χε > κσ, the same lower bound as in
the case of known eigenvalues holds. Otherwise, the lower bound increases. Notice further that the
term ρk,ε above corresponds to the MISE of the orthogonal series estimator f̂k in the case of known
eigenvalues aj , and k∗ε is its minimizer with respect to k. Under classical smoothness assumptions,
the rates and k∗ε take the following forms.
Illustration 2.4 In the special cases defined in Illustration 2.2 above, the rates from (2.1) are

[m] χε ∼ ε2(p−s)/(2p+2b+1), k∗ε ∼ ε−1/(2p+2b+1), κσ ∼ σ((p−s)∧b)/b

[s] χε ∼ | log ε|(p−s)/b, k∗ε ∼ | log ε|1/(2b), κσ ∼ | log σ|−(p−s)/b.

The following theorem shows that the orthogonal series estimator f̂k∗ε with optimal parameter k∗ε
given in (2.1) actually attains the lower risk bound up to a constant and is thus minimax optimal.
Theorem 2.5 Under the assumptions of Theorem 2.3, the estimator f̂k∗ε satisfies for all ε, σ ∈ (0, 1)

sup
f∈Frγ

sup
A∈Adλ

{
E‖f̂k∗ε − f‖

2
ω

}
6 4(6d+ r) max(χε, κσ).

To conclude this section, let us summarize the resulting optimal convergence rates under the classical
smoothness assumptions introduced in Illustration 2.2. In order to characterize the influence of the
second noise level σ, we consider it as a function of the first noise level ε.
Illustration 2.6 Let (σε)ε∈(0,1) be a noise level in X depending on the noise level ε in Y .

[m] Let p > 1/2, b > 1, and 0 6 s 6 p. If q1 := lim
ε→0

ε−2((p−s)∨b)/(2p+2b+2)σε exists3, then

sup
f∈Frγ

sup
A∈Adλ

E‖f̂ (s)
k∗ε
− f (s)‖2L2 =

{
O(ε2(p−s)/(2p+2b+1)) if q1 <∞
O(σ

((p−s)∧b)/b
ε ) otherwise.

[s] Let p > 1/2,b > 0 and 0 6 s 6 p. If q2 := lim
ε→0
| log ε| | log σε|−1 exists, then

sup
f∈Frγ

sup
A∈Adλ

E‖f̂ (s)
k∗ε
− f (s)‖2L2 =

{
O(| log ε|(p−s)/b) if q2 <∞
O(| log σε|(p−s)/b) otherwise.

This illustration shows that often the same optimal rates as in the case of known eigenvalues hold
even when ε < σ.

3The limit «∞» meaning strict divergence is authorized.
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3. Adaptation

In this section, we construct a fully data-driven estimator of f following the procedure sketched
in (1.2) and (1.3). The following Lemma will be our key tool when controlling the risk of the adaptive
estimator.
Lemma 3.1 Let pen be an arbitrary positive sequence and K ∈ N. Consider the sequence Ψ of
contrasts Ψk := max16j6K

{
‖f̂j − f̂k‖2ω − penj

}
and k̃ := argmin16j6K{Ψj + penj}. Let further

(a)+ := (a ∨ 0). If (pen1, . . . ,penK) is non-decreasing, then we have for all 1 6 k 6 K that

‖f̂
k̃
− f‖2ω 6 7 penk +78 bias2

k +42 max
16j6K

(
‖f̂j − fj‖2ω −

1

6
penj

)
+
, (3.1)

where we denote by fj :=
∑j

k=1[f ]k ϕk the projection of f on the first j basis vectors in H and by
biask := ‖f − fk‖ω the bias due to the projection.
Proof. In view of the definition of k̃, we have for all 1 6 k 6 K that

‖f̂
k̃
− f‖2ω 6 3

{
‖f̂
k̃
− f̂

k̃∧k‖
2
ω + ‖f̂

k̃∧k − f̂k‖
2
ω + ‖f̂k − f‖2ω

}
6 3
{

Ψk + pen
k̃

+Ψ
k̃

+ penk +‖f̂k − f‖2ω
}

6 6
{

Ψk + penk

}
+ 3‖f̂k − f‖2ω.

(3.2)

Since (pen1, . . . ,penK) is non-decreasing and 4 bias2
k > max16j6K‖fk − fj‖2ω, we have

Ψk 6 6 sup
16j6K

(
‖f̂j − fj‖2ω −

1

6
penj

)
+

+ 12 bias2
k .

It easily verified that for all 1 6 k 6 K we have

‖f̂k − f‖2ω 6
1

3
penk +2 bias2

k +2 sup
16j6K

(
‖f̂j − fj‖2ω −

1

6
penj

)
+
.

The result follows combining the last estimates with (3.2). �

The Lemma being valid for any upper bound K and any monotonic sequence of penalties, we now
need to specify our choice. Let us first define some auxiliary quantities needed in the construction of
the penalty sequence and the upper bound K.
Definition 3.2 For any sequence α := (αj)j∈N, define

(i) ∆α
k := max16j6k ωj α

−2
j and δαk := k∆α

k
log(∆α

k∨(k+2))

log(k+2) ;

(ii) given ω+
k := max16j6k ωj, N◦ε := max{1 6 N 6 ε−1 | ω+

N 6 ε
−1},

and vσ := (8 log(log(σ−1 + 20)))−1, let

Nα
ε := min

{
2 6 j 6 N◦ε

∣∣∣ α2
j

jω+
j

6 ε| log ε|
}
−1 and Mα

σ := min
{

2 6 j 6 σ−1
∣∣∣ α2

j 6 σ
1−vσ

}
−1,

and Kα
ε,σ := Nα

ε ∧Mα
σ . If the defining set is empty, set Nα

ε = N◦ε or Mα
σ = bσ−1c, respectively.

Let us first have a closer look at the last term on the right hand side of (3.1). To this end, let us
define an upper bound K+

ε,σ and a penalty sequence.

Definition 3.3 Using Definition 3.2, let N+
ε := N

√
4dλ

ε , M+
σ := M

√
4dλ

σ , and K+
ε,σ := K

√
λ4d

ε,σ , finally
penk := 60δak ε.
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The following assumption is satisfied in particular under the classical smoothness assumptions con-
sidered in the illustration.
Assumption 3.4 Suppose that σ−7λ

−1/2

M+
σ +1

exp
(
−λM+

σ +1/(72σd)
)
6 C(λ, d) for all σ ∈ (0, 1).

Proposition 3.5 There is a constant C > 0 depending only on the class Adλ such that

sup
f∈Frγ

sup
A∈Adλ

E

[
sup

16k6K+
ε,σ

(
‖f̂k − fk‖2ω −

1

6
penk

)
+

]
6 C

{
ε+ rκσ + σ

}
.

Note that we could now define an estimator using the penalty sequence pen from Definition 3.3.
Combining Lemma 3.1 and Proposition 3.5, we would even obtain an upper risk bound for this
estimator. Though, as pen and the upper bound K+

ε,σ still depend on the singular values (aj) and
the operator class Adλ, respectively, this would not yield an adaptive procedure. Thus, let us define
randomized versions of pen and K which exclusively depend on the observations.

Definition 3.6 Using Definition 3.2, define the sequences N−ε := N

√
λ/(4d)

ε , M−σ := M

√
λ/(4d)

σ , and

K−ε,σ := K

√
4/(dλ)

ε,σ which are obviously element-wise smaller than the analogous sequences from Def-
inition 3.3. Denoting by X the sequence of random variables (Xj)j∈N, define further the random
quantities N̂ε := NX

ε , M̂σ := MX
σ , K̂ε,σ := KX

ε,σ, and p̂enk := 600δXk ε.
The next proposition ensures that the randomized upper bound and penalty sequence behave sim-
ilarly to their deterministic counterparts with sufficiently high probability as not to deteriorate the
estimation risk. This justifies the choice of the penalty.
Proposition 3.7 For every ε, σ ∈ (0, 1), define the event

fε,σ := {penk 6 p̂enk 6 30 penk ∀ 1 6 k 6 K+
ε,σ} ∩ {K−ε,σ 6 K̂ε,σ 6 K

+
ε,σ}.

Then, we have that supf∈Frγ supA∈Adλ
E[‖f̂

k̂
− f‖2ω1fcε,σ ] 6 C σ ∀ ε, σ ∈ (0, 1), where C > 0 is a

constant depending only on the classes Frγ and Adλ.
We are finally in position to state the upper risk bound of the fully data-driven estimator of f , which
is the main result of this article.
Theorem 3.8 Consider the adaptive estimator f̂

k̂
with k̂ given in (1.3). Under Assumptions 2.1

and 3.4, there is a constant C depending only on the classes Frγ and Adλ such that for all ε, σ ∈ (0, 1)

sup
f∈Frγ

sup
A∈Adλ

E‖f̂
k̂
− f‖2ω 6 C

{
min

16k6K−ε,σ
{max(ωk/γk, δ

λ
kε)}+ κσ + ε+ σ

}
.

Proof. First, decompose the risk using the event fε,σ defined in Proposition 3.7 as

E‖f̂
k̂
− f‖2ω = E‖f̂

k̂
− f‖2ω1fε,σ +E‖f̂

k̂
− f‖2ω1fcε,σ .

As the random sequence p̂enk is non-decreasing in k, we may apply Lemma 3.1 and obtain for every
1 6 k 6 K̂ε,σ

‖f̂
k̂
− f‖2ω 6 7 p̂enk + 78 bias2

k +42 max
16j6K̂ε,σ

(
‖f̂j − fj‖2ω −

1

6
p̂enj

)
+
.

On the event fε,σ, this implies that for all 1 6 k 6 K−ε,σ

E‖f̂
k̂
− f‖2ω1fε,σ 6 210 penk +78 bias2

k +42 max
16j6K+

ε,σ

(
‖f̂j − fj‖2ω −

1

6
penj

)
+
.
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Thus, using δak 6 dζd δ
λ
k with ζd = log(3d)/ log(3),

E‖f̂
k̂
− f‖2ω1fε,σ 6 C(d) min

16k6K−ε,σ
{max(ωk/γk, δ

λ
kε)}+ 42 max

16j6K+
ε,σ

(
‖f̂j − fj‖2ω −

1

6
penj

)
+
.

It remains to apply Propositions 3.5 and 3.7 to conclude. �

A comparison with the lower bound from Theorem 2.3 shows that this upper bound ensures minimax
optimality of f̂

k̂
only if

χ�ε,σ := min
16k6Kλ

ε,σ

[
max

(ωk
γk
, δλkε

)]
is at most of the same order as max(χε, κσ), whence the following corollary.
Corollary 3.9 Under Assumption 2.1 and if supε,σ∈(0,1){χ�ε,σ/max(χε, κσ)} <∞, we have

Rω(f̂
k̂
,Frγ ,Adλ) 6 CR∗ω(Frγ ,Adλ) ∀ ε, σ ∈ (0, 1).

We conclude this article reconsidering the framework of the preceding Illustration 2.6. Notice that
the adaptive estimator is minimax optimal over a wide range of cases, even when ε < σ.
Illustration 3.10 Let (σε)ε∈(0,1) be a noise level in X depending on the noise level ε in Y and suppose
that the limits q1 and q2 from Illustration 2.6 exist in the respective cases. Some straightforward
computations then show that the adaptive estimator attains the following rates of convergence.

[m] If p − s > b, the adaptive estimator f (s)

k̂
attains the optimal rates (cf. Illustration 2.6). In case

p− s 6 b, we have, supposing that qv1 := lim
ε→0

ε−2b/(2p+2b+1)σ
1−vσε
ε exists,

sup
f∈Frγ

sup
A∈Adλ

E‖f̂ (s)

k̂
− f (s)‖2L2 =

{
O(ε2(p−s)/(2p+2b+1)) if q1 <∞ and qv1 <∞,
O(σ

(p−s)/b
ε σ

−vσε
ε ) otherwise.

[s] The adaptive estimator attains the optimal rates.

A. Proofs

A.1. Minimax theory (Section 2)

Lower risk bound

Proof of Theorem 2.3. The proof consists of two steps: (A) First, we show that χε yields a lower risk
bound in the case where the eigenvalues (aj) of the operator A are known. (B) Then, we show that
another lower risk bound is given by κσ.
Step (A). Given ζ := ηmin(r, 1/(2d)) and αε := χε(

∑k∗ε
j=1 εωj/λj)

−1 we consider the function f :=

(εζαε)
1/2
∑k∗ε

j=1 λ
−1/2
j ϕj . We are going to show that for any θ := (θj) ∈ {−1, 1}k∗ε , the function

fθ :=
∑k∗ε

j=1 θj [f ]jϕj belongs to Frγ and is hence a possible candidate for the solution.
For a fixed θ and under the hypothesis that the solution is fθ, the observation Yk is distributed
according to N (ak[fθ]k, ε) for any k ∈ N. We denote by Pθ the distribution of the resulting sequence
{Yk} and by Eθ the expectation with respect to this distribution.
Furthermore, for 1 6 j 6 k∗ε and each θ, we introduce θ(j) by θ(j)

l = θl for j 6= l and θ(j)
j = −θj . The

key argument of this proof is the following reduction scheme. If f̃ denotes an estimator of f then we
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conclude

sup
f∈Frγ

E‖f̃ − f‖2ω > sup
θ∈{−1,1}k∗ε

Eθ‖f̃ − fθ‖2ω >
1

2k∗ε

∑
θ∈{−1,1}2k∗ε

Eθ‖f̃ − fθ‖2ω

>
1

2k∗ε

∑
θ∈{−1,1}k∗ε

k∗ε∑
j=1

ωjEθ|[f̃ − fθ]j |2

=
1

2k∗ε

∑
θ∈{−1,1}k∗ε

k∗ε∑
j=1

ωj
2

{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
.

(A.1)

Below we show furthermore that for all ε ∈ (0, 1) we have{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
>
ε ζαε
2λj

. (A.2)

Combining the last lower bound and the reduction scheme gives

sup
f∈Frγ

E‖f̃ − f‖2ω >
1

2k∗ε

∑
θ∈{−1,1}k∗ε

k∗ε∑
j=1

ωj
2

εζαε
2λj

=
ζαε
4

k∗ε∑
j=1

εωj
λj

=
ζχε
4
,

which implies the lower bound given in the theorem by definition of ζ.
To complete the proof, it remains to check (A.2) and fθ ∈ Frγ for all θ ∈ {−1, 1}k∗ε . The latter is
easily verified if f ∈ Frγ , which can be seen recalling that ω/γ is non-increasing and noticing that the

definitions of ζ, αε and η imply ‖f‖2γ 6 ζ
γk∗ε
ωk∗ε

αε

(∑k∗ε
j=1

εωj
λj

)
6 ζ/η 6 r.

It remains to show (A.2). Consider the Hellinger affinity ρ(P1,P−1) =
∫ √

dP1 dP−1, then we obtain
for any estimator f̃ of f that

ρ(P1,P−1) 6
∫ |[f̃ − fθ(j) ]j |
|[fθ − fθ(j) ]j |

√
dP1 dP−1 +

∫ |[f̃ − fθ]j |
|[fθ − fθ(j) ]j |

√
dP1 dP−1

6
(∫ |[f̃ − fθ(j) ]j |2
|[fθ − fθ(j) ]j |2

dP1

)1/2
+
(∫ |[f̃ − fθ]j |2

|[fθ − fθ(j) ]j |2
dP˘1

)1/2
.

Rewriting the last estimate we obtain{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
>

1

2
|[fθ − fθ(j) ]j |

2ρ2(P1,P−1). (A.3)

Next, we bound the Hellinger affinity ρ(P1,P−1) from below. Consider the Kullback-Leibler diver-
gence of these two distributions first. The components of the two sequences corresponding to the
distributions P1 and P−1 are pairwise equally distributed except for the j-th component. Thus, we
have log(dPθ/dPθ(j)) = (2yjajθj [f ]j/ε), and taking the integral over yj with respect to Pθ, we find

KL(P1,P−1) =
2

ε
a2
j [f ]2j 6

2d

ε
[f ]2jλj = 2dζαε 6 1,

Using the well-known relationship ρ(P1,P−1) > 1 − (1/2)KL(P1,P−1) between the Kullback-Leibler
divergence and the Hellinger affinity, we obtain that ρ(P1,P−1) > 1/2. Using this estimate, (A.3)
becomes

{
Eθ|[f̃ − fθ]j |2 + Eθ(j) |[f̃ − fθ(j) ]j |2

}
> 1

2 [f ]2j , and combining this with (A.1) implies the
result by construction of the solution f .
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Step (B). First, we construct two solutions fθ ∈ Frγ and operators Aθ ∈ Adλ (with θ ∈ {−1, 1}) such
that the resulting images gθ satisfy g−1 = g1. To this end, we define k∗σ := argmaxj∈N{ωjγ−1

j min(1, σλ−1
j )}

and ασ := ζ min(1, σ1/2λ
−1/2
k∗σ

) with ζ := min(2−1, (1 − d−1/2)). Observe that 1 > (1 − ασ)2 >

(1− (1− 1/d1/2))2 > 1/d and 1 6 (1 + ασ)2 6 (1 + (1− 1/d1/2))2 = (2− 1/d1/2)2 6 d, which implies
1/d 6 (1 + θασ)2 6 d. These inequalities will be used below without further reference. We show
below that for each θ the function fθ := (1− θασ) rdγ

−1/2
k∗σ

ϕk∗σ belongs to Frγ and that the operator Aθ
with the singular values aθk = [1 + θασ1{k = k∗σ}]

√
λk is an element of Adλ. We obviously have that

A1ff = (1− α2
σ)(λk∗σ/γk∗σ)1/2(r/d)ψk∗σ = A−1f−1.

For θ ∈ {±1}, denote by Pθ the joint distribution of the two sequences (X1, X2, . . .) and (Y1, Y2, . . .),
and let Eθ denote the expectation with respect to Pθ.
Applying a reduction scheme as under Step (A) above, we deduce that for each estimator f̃ of f

sup
f∈Frγ

sup
A∈Adλ

E‖f̃ − f‖2ω > max
θ∈{−1,1}

Eθ‖f̃ − fθ‖2ω >
1

2

{
E1‖f̃ − f1‖2ω +E−1‖f̃ − f−1‖2ω

}
.

Below we show furthermore that

E1‖f̃ − f1‖2ω +E−1‖f̃ − f−1‖2ω >
1

8
‖f1 − f−1‖2ω. (A.4)

Moreover, we have ‖f1 − f−1‖2ω = 4α2
σ(r/d)ωk∗σγ

−1
k∗σ

= 4ζ2(r/d)ωk∗σγ
−1
k∗σ

min
(

1, σ
λk∗σ

)
. Combining the

last lower bound with the reduction scheme and the definition of k∗σ implies the result of the theorem.
To conclude the proof, it remains to check (A.4), fθ ∈ Frγ and Aθ ∈ Adλ for both θ. In order to show
fθ ∈ Frγ observe that ‖fθ‖2γ = γk∗σ |[fθ]k∗σ |

2 6 γk∗σ |(1− θασ)(r/d)γ
−1/2
k∗σ
|2 6 r.

To check that Aθ ∈ Adλ, it remains to show that 1/d 6 (aθj)
2/λj 6 d for all j > 1. These inequalities

are obviously satisfied for all j 6= k∗σ, and as well for j = k∗σ by construction of the operator A. Finally
consider (A.4). As in Step (A) above by employing the Hellinger affinity ρ(P1,P−1) we obtain for any
estimator f̃ of f that

E1‖f̃ − f1‖2ω +E−1‖f̃ − f−1‖2ω >
1

2
‖f1 − f−1‖2ωρ2(P1,P−1).

Next, we bound the Hellinger affinity ρ(P1,P−1) from below for all σ ∈ (0, 1), which proves (A.4).
Notice that by construction of fθ and Aθ, the distribution of Xi and Yi does not depend on θ, except
for Xθ

k∗σ
. It is thus easily seen that the Kullback-Leibler divergence can be controlled as follows,

KL(P1,P−1) =
(a1
k∗σ
− a−1

k∗σ
)2

2σ
=

2α2
σ

σ
λk∗σ 6 1

Using ρ(P1,P−1) > 1− (1/2)KL(P1,P−1) again, (A.4) is shown and so is the theorem. �

Upper risk bound

The following proof uses Lemma A.1 from the auxiliary results section A.3 below.
Proof of Theorem 2.5. Define f̃ :=

∑k∗ε
j=1[f ]j1{X2

j > σ}ej and decompose the risk into two terms,

E‖f̂ − f‖2ω = E‖f̂ − f̃‖2ω +E‖f̃ − f‖2ω =: A+B, (A.5)
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which we bound separately. Consider first A which we decompose further,

E‖f̂ − f̃‖2ω =

k∗ε∑
j=1

ωjE

[
(Yj −EYj)2

X2
j

1{X2
j > σ}

]

+

k∗ε∑
j=1

ωj |[f ]j |2E

[
(Xj −EXj)

2

X2
j

1{X2
j > σ}

]
=: A1 +A2.

As far as A1 is considered, we use Lemma A.1 (iii) from Section A.3 below and write

A1 =

k∗ε∑
j=1

ωjε

E[Xj ]2
E

[(
E[Xj ]

Xj

)2

1{X2
j > σ}

]
6 4d

k∗ε∑
j=1

ωjε

λj
6 4dχε.

As for A2, we apply Lemma A.1 (i) and obtain

A2 6 8d

k∗ε∑
j=1

ωj |[f ]j |2 min

(
1,
σ

λj

)
6 8dκσ

Consider now B which we decompose further into

E‖f̃ − f‖2ω =
∑
j∈N

ωj |[f ]j |2E[(1− 1{1 6 j 6 k∗ε}1{X2
j > σ})2]

=
∑
j>k∗ε

ωj |[f ]j |2 +

k∗ε∑
j=1

ωj |[f ]j |2P
(
X2
j < σ

)
=: B1 +B2,

where B1 6 ‖f‖2γωk∗εγ
−1
k∗ε
6 rχε because f ∈ Frγ . Moreover, B2 6 4drκσ using Lemma A.1 (ii). The

result of the theorem follows now by combination of the decomposition (A.5) and the estimates of
A1, A2, B1 and B2. �

A.2. Adaptive estimation (Section 3)

The proofs in this section use the Lemmas A.3– A.6 from the auxiliary results section A.3 below.

Proof of Proposition 3.5. Using the model equation Yj = [g]j +
√
ε ξj , we have for all t ∈ Sk that

[f̂k − fk]j =

√
ε ξj
aj

+

(
1

Xj
1[X2

j>σ] −
1

aj

)√
ε ξj +

(
1

Xj
1[X2

j>σ] −
1

aj

)
[g]j .

Thus, we may decompose the norm ‖f̂k − fk‖2ω in three terms according to

‖f̂k − fk‖2ω 6 3
k∑
j=1

ωj
aj
ε ξ2

j + 3

k∑
j=1

ωj

(
1

Xj
1[X2

j>σ] −
1

aj

)2

ε ξ2
j + 3

k∑
j=1

ωj

(
1

Xj
1[X2

j>σ] −
1

aj

)2

[g]2j

=: 3
{
T

(1)
k + T

(2)
k + T

(3)
k

}
.

Define the event
Ωσ :=

{
∀ 0 < j 6M+

σ

∣∣∣∣ ∣∣∣ 1

Xj
− 1

aj

∣∣∣ 6 1

2 aj
∧ X2

j > σ

}
.
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Since 1{X2
j > σ}1{Ωσ} = 1{Ωσ}, it follows that for all 1 6 j 6 K+

ε,σ we have(
aj
Xj

1{X2
j > σ} − 1

)2

1{Ωσ} = a2
j 1{Ωσ}

∣∣∣∣ 1

Xj
− 1

aj

∣∣∣∣2 6 1

4
.

Hence, T (2)
k 1Ωσ 6

1
4T

(1)
k for all 1 6 k 6 K+

ε,σ, and thus

sup
16k6K+

ε,σ

(
‖f̂k − fk‖2ω −

1

6
penk

)
+

6 4

K+
ε,σ∑

k=1

 k∑
j=1

ωj
aj
ε ξ2

j − 2δkε


+

+ 3 sup
16k6K+

ε,σ

T
(2)
k 1Ωcσ + 3 sup

16k6K+
ε,σ

T
(3)
k .

Note that P[Ωc
σ] 6 C(d)σ2 by virtue of Lemma A.6. The result follow immediately using Lemmas A.3,

A.4, and A.5 below. �

Proof of Proposition 3.7. Let f̆k :=
∑

16j6k[f ]j1{X2
j > σ}ej . It is easy to see that ‖f̂k − f̆k‖2 6

‖f̂k′ − f̆k′‖2 for all k′ 6 k and ‖f̆k − f‖2 6 ‖f‖2 for all k > 1. Thus, using that 1 6 k̂ 6 (N◦ε ∧ σ−1),
we can write

E‖f̂
k̂
− f‖2ω1{fcε,σ} 6 2{E‖f̂

k̂
− f̆

k̂
‖2ω1{fcε,σ}+E‖f̆

k̂
− f‖2ω1{fcε,σ}}

6 2

{
E‖f̂(N◦ε∧bσ−1c) − f̆(N◦ε∧bσ−1c)‖2ω1{fcε,σ}+ ‖f‖2ω P[fcε,σ]

}
.

Moreover, using the Cauchy-Schwarz inequality, we conclude

E‖f̂(N◦ε∧bσ−1c) − f̆(N◦ε∧bσ−1c)‖2ω1{fcε,σ}

6 2σ−1
∑

16j6(N◦ε∧bσ−1c)

ωj

{
E(Yj − aj [f ]j)

21{fcε,σ}+E(aj [f ]j −Xj [f ]j)
21{fcε,σ}

}
6 2σ−1

{ ∑
16j6(N◦ε∧bσ−1c)

ωj

[
E (Yj − [g]j)

4
]1/2

P[fcε,σ]1/2

+
∑

16<j6(N◦ε∧bσ−1c)

ωj [fj ]
2[E(Xj − aj)4]1/2P[fcε,σ]1/2

}
6 2
√

3σ−1
{

(σ−1 max
16j6N◦ε

ωj)ε+ σ‖f‖2ω
}
P[fcε,σ]1/2,

which implies

E‖f̂
k̂
− f‖2ω1{fcε,σ} 6 C

{(
σ−2 + ‖f‖2ω

)
P[fcε,σ]1/2 + ‖f‖2ω P[fcε,σ]

}
.

Lemma A.6 below yields, for some C(d) > 0 depending only on d,

E‖f̂
k̂
− f‖2ω1{fcε,σ} 6 C(d)

{
σ + ‖f‖2ωσ6 + ‖f‖2ωσ12

}
which completes the proof due to f ∈ Frγ . �
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A.3. Auxiliary results

Lemma A.1 For every j ∈ N,

(i) RIj := E

[ (
aj
Xj
− 1

)2

1{X2
j > σ}

]
6 min

{
1, 8σ

a2j

}
(ii) RIIj := P[X2

j < σ] 6 min
{

1, 4σ
a2j

}
(iii) E

[(
E[Xj ]
Xj

)2
1{X2

j > σ}
]
6 4

Proof. (i) It is easy to see that

RIj = E

[
|Xj − aj |2

X2
j

1{X2
j > σ}

]
6 σ−1

Var(Xj) = 1. (A.6)

On the other hand, using that E[(Xj − aj)4] = 3σ2, we obtain

RIj 6 E

[
(Xj − aj)2

X2
j

1{X2
j > σ} 2

{
(Xj − aj)2

a2
j

+
X2
j

a2
j

}]
6

2E[(Xj − aj)4]

σa2
j

+
2 Var(Xj)

a2
j

=
8σ

a2
.

Combining with (A.6) gives RIj 6 min
{

1, 8σ
a2j

}
, which completes the proof of (i).

(ii) Trivially, RIIj 6 1. If 1 6 4σ/a2
j , then obviously RIIj 6 min

{
1, 4σ

a2j

}
. Otherwise, we have σ < a2

j/4

and hence, using Tchebychev’s inequality,

RIIj 6 P[|Xj − aj | > |aj | /2 ] 6
4 Var(Xj)

a2
j

6 min
{

1,
4σ

a2
j

}
,

where we have used that Var(Xj) = σ for all j.

(iii) E
[(

E[Xj ]
Xj

)2
1{X2

j > σ}
]
6 2E

[(
Xj−E[Xj ]

Xj

)2
1{X2

j > σ}+ 1{X2
j < σ}

]
6 4. �

Lemma A.2 Under Assumption 2.1, we have that

(i) εδN+
ε
6 32 d2 for all ε ∈ (0, 1),

and for σ−1 > exp(512 log(3d)2) that

(ii) min16j6M+
σ
a2
j > 2σ.

Proof. (i) For N+
ε = 0, we have δN+

ε
= 0 and there is nothing to show. If 0 < N+

ε 6 n, one can show
that ω+

N+
ε
/λN+

ε
6 4d/(εN+

ε | log ε|), which we use in the following computation:

δN+
ε

= N+
ε

ω+

N+
ε

λN+
ε

log((ω+

N+
ε
/λN+

ε
) ∨ (N+

ε + 2))

log(N+
ε + 2)

6
4d

ε| log ε|

log
(

4d
N+
ε ε| log ε| ∨ (N+

ε + 2)
)

log(N+
ε + 2)

6 ε−1

{
4d (log(ε−1 + 2) > 4d)

4d(4d+ log(4d))/(log(ε−1 + 2)) (otherwise),
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which implies εδN+
ε
6 4d(4d+ log(4d)) 6 32d2 for all ε ∈ (0, 1). (iii) We have that

min
16j6M+

σ

a2
j > min

16j6M+
σ

λj
d
>
σ1−vσ

4d2
> 2σ,

where the last step holds for σ−1 > exp(128 log(8 d2)2) as some algebra shows. �

Lemma A.3 We have that
K+
ε,σ∑

k=1

E

( k∑
j=1

ωj
aj
εξ2
j − 2 δakε

)
+

6 6720 ε.

Proof. Representing the expectation of the positive random variable by the integral over its tail
probabilities and using δak >

∑k
j=1(ωj/a

2
j ), we may write

K+
ε,σ∑

k=1

E

( k∑
j=1

ωj
aj
εξ2
j − 2 δakε

)
+

6

K+
ε,σ∑

k=1

∫ ∞
0

P

 k∑
j=1

εωj
a2
j

(ξ2
j − 1) > x+ 2εδak − ε

k∑
j=1

ωj
a2
j

 dx
6

K+
ε,σ∑

k=1

∫ ∞
0

P

 k∑
j=1

εωj
a2
j

(ξ2
j − 1) > x+ εδak

 dx
Define ρk := (εωk)/a

2
k, Hk := 4ε∆a

k, and Bk := 2ε2
∑k

j=1 ω
2
j /a

4
j . It can be shown (see proof of

Proposition A.1 in Dahlhaus and Polonik (2006)) that for all 1 6 k′ 6 k and m > 2, we have∣∣∣E[(εωk′
a2
k′

(ξ2
k′ − 1)

)m]∣∣∣ 6 m! ρ2
k′ H

m−2
k .

Hence, the assumption of Theorem 2.8 from Petrov (1995) is satisfied and splitting up the integral,
get the following bound:

K+
ε,σ∑

k=1

E

( k∑
j=1

ωj
aj
εξ2
j − 2 δakε

)
+

6

K+
ε,σ∑

k=1

∫ Bk/Hk−εδak

0
exp

(
−

(x+ εδak)2

4Bk

)
dx+

∫ ∞
Bk/Hk−εδak

exp
(
−
x+ εδak

4Hk

)
dx

The second integral is equal to 4Hk exp(−Bk/(4H2
k)). Some computation shows that the first one is

bounded from above by 4Hk

[
exp

(
− ε2(δak)2/(4Bk)

)
− exp

(
− Bk/(4H2

k)
)]
. Thus, the two identical

terms cancel, and we get

K+
ε,σ∑

k=1

E

( k∑
j=1

ωj
aj
εξ2
j − 2 δakε

)
+

6 16 ε

K+
ε,σ∑

k=1

∆a
k exp

(
−

(δak)2

8k(∆a
k)

2

)
.

To complete the proof, we bound the sum on the right hand side as follows,

K+
ε,σ∑

k=1

∆a
k exp

(
−

(δak)2

8k(∆a
k)

2

)
6
∞∑
k=1

exp
(
− log(∆a

k ∨ (k + 2))
[ k

8 log(k + 2)
− 1
])

6 e
∞∑
k=1

exp
(
− k

8 log(k + 2)

)
6 e

∞∑
k=1

exp
(
−

√
k

8 log(3)

)
6 e

∫ ∞
0

exp
(
−

√
x

8 log(3)

)
dx = 128 log2(3) e,
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where we have used log(k + 2) 6 log(3)
√
k for all k > 1. �

Lemma A.4 For every k ∈ N and σ ∈ (0, 1),

E

[ k∑
j=1

ωj [g]2j

(
1

Xj
1[Xj>σ] −

1

aj

)2 ]
6 8 d r κσ(γ, λ, ω).

Proof. Firstly, as f ∈ Frγ , it is easily seen that

E

[ k∑
j=1

ωj [g]2j

(
1

Xj
1[Xj>σ] −

1

aj

)2 ]
6 r sup

16j6k

ωj
γj
E[|Rj |2],

where Rj is defined as

Rj :=

(
aj
Xj

1{X2
j > σ

2} − 1

)
. (A.7)

In view of the definition of κσ in Theorem 2.3, the result follows from E[|Rj |2] 6 d min
{

1, 8σ
λj

}
,

which is a consequence of the decomposition

E|Rj |2 = E

[ (
aj
Xj
− 1

)2

1{X2
j > σ}

]
+ P[X2

j < σ] (A.8)

and Lemma A.1. �

Lemma A.5 We have that

E

[K+
ε,σ∑

j=1

ωj

(
1

Xj
1[Xj>σ] −

1

aj

)2

εξ2
j1Ωcσ

]
6 64 d3(P[Ωc

σ])1/2.

Proof. Given Rj from (A.7), we begin our proof observing that

E

[K+
ε,σ∑

j=1

ωj

(
1

Xj
1[Xj>σ] −

1

aj

)2√
εξ2
j1Ωcσ

]
6 ε

K+
ε,σ∑

j=1

ωj
a2
j

E[|Rj |21Ωcσ ],

where we have used the independence of X and Y and Var(Yj) = ε. Since dδλk >
∑k

j=1
ωj
a2j

for all

A ∈ Adλ, the Cauchy-Schwarz inequality yields

E

[K+
ε,σ∑

j=1

ωj

(
1

Xj
1[Xj>σ] −

1

aj

)2

εξ2
j1Ωcσ

]
6 d (P[Ωc

σ])1/2 εδλ
N+
ε

max
0<j6N+

ε

(E[|Rj |4])1/2.

Proceeding analogously to (A.6) and (A.8), one can show that that E[|Rj |4] 6 4. The result follows
then by definition of N+

ε . �

Lemma A.6 For k ∈ N, define the events

Ω̃k :=

{∣∣∣Xj

aj
− 1
∣∣∣ 6 1

3
∀ 1 6 j 6 k

}
and suppose that Assumptions 2.1 and 3.4 hold. For all ε, σ ∈ (0, 1) , we have
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(i) Ωσ ⊆ {penk 6 p̂enk 6 30 penk ∀ 1 6 k 6 K+
ε,σ},

(ii) Ω̃M+
σ +1 ⊆ {K

−
ε,σ 6 K̂ε,σ 6 K+

ε,σ},

(iii) P[fcε,σ] 6 C(λ, d)σ6.

Proof. Consider (i). Notice first that δak 6 δλk d ζd for all k > 1 with ζd := (log(3d))/(log 3). Observe
that on Ωσ we have (1/2)∆a

k 6 ∆X
k 6 (3/2)∆a

k for all 1 6 k 6 M̃σ and hence (1/2)[∆a
k ∨ (k + 2)] 6

[∆X
k ∨ (k + 2)] 6 (3/2)[∆a

k ∨ (k + 2)], which implies

(1/2)k∆a
k

( log[∆a
k ∨ (k + 2)]

log(k + 2)

)(
1− log 2

log(k + 2)

log(k + 2)

log(∆a
k ∨ [k + 2])

)
6 δXk 6 (3/2)k∆a

k

( log(∆a
k ∨ [k + 2])

log(k + 2)

)(
1 +

log 3/2

log(k + 2)

log(k + 2)

log(∆a
k ∨ [k + 2])

)
.

Using log(∆a
k ∨ (k + 2))/log(k + 2) > 1, we conclude from the last estimate that

δak/10 6(log 3/2)/(2 log 3)δak 6 (1/2)δak [1− (log 2)/ log(k + 2)] 6 δXk
6 (3/2)δak [1 + (log 3/2)/ log(k + 2)] 6 3δak .

It follows that on Ωσ we have penk 6 p̂enk 6 30 penk for all 1 6 k 6M+
σ as desired.

Proof of (ii). Define the events ΩI := {K−ε,σ > K̂ε,σ} and ΩII := {K̂ε,σ > K+
ε,σ}. Then we have

{K−ε,σ 6 K̂ε,σ 6 K+
ε,σ}c = ΩI ∪ ΩII . Consider ΩI = {N̂ε < K−ε,σ} ∪ {M̂σ < K−ε,σ} first. By definition

of N−ε , we have that min16j6N−ε

a2j
j ω+

j

> 4 ε| log ε|, which implies, keeping in mind that K−ε,σ 6 N−ε,σ,

{N̂ε < K−ε,σ} ⊂
{
∃ 1 6 j 6 K−ε,σ :

X2
j

j ω+
j

< ε| log ε|
}

⊂
⋃

16j6K−ε,σ

{
Xj

aj
6

1

2

}
⊂

⋃
16j6K−ε,σ

{ ∣∣∣∣Xj

aj
− 1

∣∣∣∣ > 1

2

}
.

One can see that from min16j6M−σ
a2
j > 4σ1−vσ it follows in the same way that{

M̂σ < K−ε,σ

}
⊂

⋃
16j6K−ε,σ

{ ∣∣∣∣Xj

aj
− 1

∣∣∣∣ > 1

2

}
.

Therefore, ΩI ⊆
⋃

16j6M+
σ

{
|Xj/aj − 1| > 1/2

}
⊆ Ω̃c

M+
σ +1

, since M−σ 6M+
σ .

Consider ΩII = {N̂ε > K+
ε,σ} ∩ {M̂σ > K+

ε,σ}. In case K+
ε,σ = N+

ε , note that by definition of N+
ε , we

have ε| log ε|/4 >
a2
N+
ε +1

(N+
ε +1)ω+

N+
ε +1

, such that

ΩII ⊆ {N̂ε > N+
ε } ⊂

{
∀1 6 j 6 N+

ε + 1 :
X2
j

j ω+
j

> ε| log ε|
}

⊂

{
XN+

ε +1

aN+
ε +1

> 2

}
⊂

{∣∣∣∣XN+
ε +1

aN+
ε +1

− 1

∣∣∣∣ > 1

}
.

In case K+
ε,σ = M+

σ , it follows analogously from σ1−vσ > 4 maxj>M+
σ +1 a

2
j that

ΩII ⊂ {M̂σ > M+
σ } ⊂

{
|XM+

σ +1/aM+
σ +1 − 1| > 1

}
.
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Therefore, we have ΩII ⊆
{
|XK+

ε,σ+1/aK+
ε,σ+1 − 1| > 1

}
⊆ Ω̃c

M+
σ +1

and (ii) is shown.

Proof of (iii). We distinguish the cases σ 6 σ0 := exp(−512 log(3d)2) and σ > σ0. The assertion is
trivial for σ > σ0 (keeping in mind that P[fcε,σ] 6 σ−6

0 σ6). Consider the case σ 6 σ0, where a2
j > 2σ

for all 1 6 j 6M+
σ due to Lemma A.2 (ii). This yields for the complement of Ωσ

Ωc
σ =

{
∃ 1 6 j 6M+

σ :
∣∣∣ aj
Xj
− 1
∣∣∣ > 1

2
∨ |Xj |2 < σ

}
⊆
{
∃ 1 6 j 6M+

σ :

∣∣∣∣Xj

aj
− 1

∣∣∣∣ > 1

3

}
= Ω̃c

M+
σ
,

and thus Ω̃M+
σ +1 ⊆ Ωσ since trivially Ω̃M+

σ +1 ⊆ Ω̃M+
σ
. It follows with assertion (ii) that fcε,σ ⊆ Ω̃c

M+
σ +1

for all σ 6 σ0. For Z ∼ N (0, 1) and z > 0, one has P[Z > z] 6 (2πz2)−1/2 exp(−z2/2). Hence, there
is a constant C(d) depending on d such that for every 1 6 j 6M+

σ + 1,

P[|Xj/aj − 1| > 1/3] 6 C(d)

(
σ

λM+
σ +1

)1/2

exp

(
−
λM+

σ +1

18σd

)
.

Consequently, as M+
σ 6 σ

−1,

P[Ω̃c
M+
σ +1

] 6 C(d)(σλM+
σ +1)−1/2 exp

(
−
λM+

σ +1

18σd

)
which implies the assertion (iii) by virtue of Assumption 3.4. �
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